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Abstract
Background: Recent progress has demonstrated the potential of deep learning models in analyzing electrocardiogram (ECG)
pathologies. However, this method is intricate, expensive to develop, and designed for specific purposes. Large language
models show promise in medical image interpretation, and yet their effectiveness in ECG analysis remains understudied.
Generative Pretrained Transformer 4 Omni (GPT-4o), a multimodal artificial intelligence model, capable of processing images
and text without task-specific training, may offer an accessible alternative.
Objective: This study aimed to evaluate GPT-4o’s effectiveness in interpreting 12-lead ECGs, assessing classification
accuracy, and exploring methods to enhance its performance.
Methods: A total of 6 common ECG diagnoses were evaluated: normal ECG, ST-segment elevation myocardial infarction,
atrial fibrillation, right bundle branch block, left bundle branch block, and paced rhythm, with 30 normal ECGs and 10 of each
abnormal pattern, totaling 80 cases. Deidentified ECGs were analyzed using OpenAI’s GPT-4o. Our study used both zero-shot
and few-shot learning methodologies to investigate three main scenarios: (1) ECG image recognition, (2) binary classification
of normal versus abnormal ECGs, and (3) multiclass classification into 6 categories.
Results: The model excelled in recognizing ECG images, achieving an accuracy of 100%. In the classification of normal or
abnormal ECG cases, the few-shot learning approach improved GPT-4o’s accuracy by 30% from the baseline, reaching 83%
(95% CI 81.8%-84.6%). However, multiclass classification for a specific pathology remained limited, achieving only 41%
accuracy.
Conclusions: GPT-4o effectively differentiates normal from abnormal ECGs, suggesting its potential as an accessible
artificial intelligence–assisted triage tool. Although limited in diagnosing specific cardiac conditions, GPT-4o’s capability
to interpret ECG images without specialized training highlights its potential for preliminary ECG interpretation in clinical and
remote settings.
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Introduction
Artificial intelligence (AI) in the realm of medicine, including
cardiology, has been consistently evolving. A significant
recent AI milestone was achieved when a model, specifically
ChatGPT by OpenAI, successfully passed the European Exam
in Core Cardiology [1]. However, this evaluation focused
solely on text-based multiple-choice questions, excluding
those with audio or visual elements. While this accomplish-
ment is impressive, cardiology heavily relies on image
interpretation and visual data for patient assessment [2].

Deep learning (DL), which uses neural networks for
image-related tasks [3], has already demonstrated its
significant impact in medical image analysis, including
cardiology [4,5]. Moreover, it has been proven effective
in predicting clinically significant abnormalities in electro-
cardiograms (ECGs), such as potassium levels and adverse
reactions to medications, while also extracting valuable
insights beyond human capabilities, such as estimating sex,
age, and identifying specific cardiac conditions [6-10]. For
example, Prifti et al [7] trained convolutional neural networks
(CNNs) on short ECG recordings to accurately detect early
signs of drug-induced cardiac effects and inherited rhythm
disorders. In a separate study, Attia et al [9] demonstrated
that deep CNNs could estimate a person’s age and sex
solely from the heart’s electrical signals, tasks that even
experienced cardiologists cannot perform reliably, highlight-
ing AI’s ability to uncover hidden insights from routine
medical data. However, while DL has shown great promise,
developing a DL model requires substantial efforts, including
the collection of large, labeled datasets and extensive training
for the specific task [11,12].

Large language models (LLMs), such as Generative
Pretrained Transformer, specialize in processing human
language using artificial neural networks [13]. The newly
introduced multimodal LLM, GPT-4 Omni (GPT-4o) by
OpenAI, advances this even further by seamlessly combining
text and image data, presenting substantial potential benefits
in the medical domain [14-18].

In emergency rooms, efficient patient triaging based on
ECG findings is crucial. An AI model capable of distin-
guishing between normal and abnormal ECGs, even without
offering a specific diagnosis, holds significant promise for
improving patient care. The concept of “ECG triage” has
the potential to transform how patients are prioritized for
cardiology consultations.

This study aims to evaluate the ability of general pur-
pose LLMs to interpret ECG images using zero-shot and
few-shot learning strategies across a range of diagnostic tasks,
including ECG recognition, binary classification (normal vs
abnormal), and multiclass pathology classification. Our goal
is to determine whether GPT-4o can perform these tasks with
sufficient accuracy to support its potential role in clinical
ECG triage and diagnosis.

Methods
Image Collection and Cohort Selection
The study design is depicted in Figure 1.
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Figure 1. Research methodology overview illustrating the research methodology and portraying the high-level design of the method. AF: atrial
fibrillation; API: application programming interface; ECG: electrocardiogram; GPT: generative pretrained transformer; LBBB: left bundle branch
block; RBBB: right bundle branch block; STEMI: ST-segment elevation myocardial infarction.

The study included patients aged 18 years or older who
underwent a high-quality ECG recording using the MUSE
(GE HealthCare Technologies) system at our institute from
August 2010 to February 2024.

A cohort of 80 arbitrarily chosen 12-lead ECG strips was
assembled, covering 6 distinct electrocardiographic presenta-
tions. This included 30 records of normal ECG strips and
an additional 50 ECG strips representing 5 distinct, com-
mon diagnoses (10 ECG strips of each different diagnosis):
ST-segment elevation myocardial infarction (STEMI), atrial
fibrillation (AF), right bundle branch block (RBBB), left
bundle branch block (LBBB), and paced rhythm. These
pathologies were chosen for their diverse representation of
cardiac conditions, each with unique electrocardiographic
features [19]. All ECG charts were anonymized, removing
age and gender identifiers.
Data Validation
Each case underwent thorough validation via electronic
medical record review, with ECG findings meticulously
interpreted by a board-certified cardiologist. Only those
patients with a singular diagnosis for each condition were
included to ensure study validity; those with multiple
diagnoses or low-quality images were excluded.
GPT-4o Prompt Engineering and Study
Design
GPT-4o is a state-of-the-art multimodal model proficient in
analyzing both image and text inputs. We used the OpenAI

API to test whether it can interpret ECG images and classify
them accurately into distinct categories. We tested three main
scenarios: (1) Can GPT-4o recognize an ECG image? (2) Can
GPT-4o classify an ECG image as normal or abnormal? (3)
Can GPT-4o classify an ECG image into 1 of the 6 specific
diagnoses: normal ECG, AF, STEMI, LBBB, RBBB, and
paced rhythm?

Learning Techniques
In scenarios 2 and 3, we evaluated 2 learning approaches—
zero-shot and few-shot [20]. The zero-shot approach involved
providing the model with only a textual instruction describ-
ing the classification task, without any previous examples.
In contrast, the few-shot approach included a limited number
of ECG images, each labeled with its diagnosis, to serve
as training data [21,22]. These examples were intended to
guide the model in recognizing diagnostic visual patterns
and applying them when analyzing new ECGs. To ensure
unbiased testing, the evaluation excluded images used for
training. For example, if 6 images were given as examples,
54 images were evaluated. This design optimizes training
efficiency.

Prompt Formats
In some scenarios, we repeated the same task using three
different prompt formats to assess how varying levels of
complexity and detail affect model performance. The formats
were (1) a basic prompt stating only the classification task,
(2) a prompt that included the task along with brief descrip-
tions of each class, and (3) a detailed prompt that combined
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the task with explicit textual guidance, instructing the model
on specific visual features to consider when analyzing the
ECG images.

Experimental Scenarios’ Processes
The following section outlines the procedures and objectives
of each experimental scenario designed to evaluate GPT-4o’s

ability to interpret ECG images. Table 1 shows the different
experiments conducted across the 3 tested scenarios, and
Multimedia Appendix 1 provides the exact prompts used in
each experiment.

Table 1. Experiments descriptiona.

Experiment Scenario Technique Task Total, N
Few-shot training
sample Testing sample

1.1 1 Zero-shot Recognize ECGb 60 0 60
1.2 1 Zero-shot Classify ECG or not

ECG
60 0 60

2.1 2 Zero-shot Classify normal or
abnormal. No textual
guidance.

60 0 60

2.2 2 Zero-shot Classify normal or
abnormal. Minimal
textual guidance.

60 0 60

2.3 2 Zero-shot Classify normal or
abnormal. Textual
guidance was
provided.

60 0 60

4.2 2 Few-shot Classify normal or
abnormal—learn 6
examples. No textual
guidance.

60 6 54

4.3 2 Few-shot Classify normal or
abnormal—learn 6
examples along with
added textual
guidance.

60 6 54

4.4 2 Few-shot Classify normal or
abnormal—learn 10
examples along with
added textual
guidance.

60 10 50

3.1 3 Zero-shot Classify into 6 classes
(normal and 5
pathologies). No
textual guidance.

60 0 60

3.2 3 Zero-shot Classify into 6 classes
(normal and 5
pathologies). Textual
guidance was
provided.

60 0 60

5.1 3 Few-shot Classify into 6 classes
(normal and 5
pathologies).
Examples were
provided.

60 6 54

5.2 3 Few-shot Classify into 6 classes
(normal and 5
pathologies).
Examples were
provided along with
added textual
guidance.

60 6 54

aThe table summarizes the experimental design, including the scenario, prompting technique, classification task, total number of images used, and the
number of examples provided in few-shot learning settings.
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Experiment Scenario Technique Task Total, N
Few-shot training
sample Testing sample

bECG: electrocardiogram.

Scenario 1: ECG Image Identification
This scenario aimed to evaluate the GPT-4o model’s ability to
recognize ECG images. The dataset included 60 ECG images,
each assessed individually by the model. Two experiments
were conducted: the first (experiment 1.1) was a simple
test to determine whether GPT-4o could recognize that the
image presented was an ECG, using the prompt “What is this
image? Output one line for the label.” The second experiment
(experiment 1.2) explicitly asked the model to classify the
image as either “ECG” or “not ECG.”
Scenario 2: Distinguishing ECG Images
as Normal or Abnormal
This scenario aimed to evaluate the GPT-4o model’s ability
to distinguish between normal and abnormal ECG images.
The dataset included 30 normal and 30 abnormal ECGs
(6 images from each of the 5 abnormalities). Using the
zero-shot approach, ECGs were presented without previous
examples or guidance. For few-shot learning, 3 experiments
were conducted (4.2, 4.3, and 4.4). Two experiments used a

single composite image made up of 6 examples (3 normal
and 3 abnormal), with and without textual guidance. In the
third experiment, 2 composite images with textual guidance
were used, together containing 10 examples (5 normal and 5
abnormal). Each file contained a mix of normal and abnormal
examples (Table 1 and Multimedia Appendix 1).
Scenario 3: Multiclass Classification for a
Specific Pathology
This scenario aimed to assess the GPT-4o model’s abil-
ity to classify ECG images into specific abnormal catego-
ries. The dataset included 60 ECGs, with 10 images from
each of 6 pathology classes. Using the zero-shot approach,
ECGs were presented without previous examples or guidance
(experiments 3.1 and 3.2). In the few-shot learning experi-
ments (experiments 5.1 and 5.2), a single composite image
comprising 6 examples (1 from each category) was used, with
and without textual guidance. The composite image display-
ing the 6 pathologies is shown in Figure 2.

Figure 2. Composite image displaying the 6 electrocardiogram classes used in the multiclass classification few-shot learning approach. AF: atrial
fibrillation; LBBB: left bundle branch block; RBBB: right bundle branch block; STEMI: ST-segment elevation myocardial infarction.

Study End Point
In both the binary (normal or abnormal) and multiclass
classification scenarios, GPT-4o’s diagnostic output was
compared with the reference assessments made by expert
cardiologists who manually reviewed each ECG specifically
for this study.

Evaluation Metrics
The agreement level between the GPT-4o predictions and
the actual labels was evaluated using measures of accuracy,
sensitivity, specificity, and F1-score. The positive class was
defined as abnormal ECG, with sensitivity representing the
detection rate of abnormal ECG, and specificity indicating the
detection rate of normal ECG. To ensure the robustness of the
results, we repeated the best-performing experiment 5 times
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and reported both the average values of all evaluation metrics
and their corresponding confidence intervals across runs.
Software and Statistical Analysis
Python (version 3.10; Python Software Foundation) was used
to interface with the GPT-4o API and generate visualizations.
Statistical analyses and performance metric calculations were
conducted using R (version 4.4.2; R Foundation for Statistical
Computing).
Sensitivity Analysis
To assess the robustness of GPT-4o’s performance, we
conducted a sensitivity analysis using 2 additional models:
a pretrained Vision Transformer (ViT) and Gemini 2.0 Flash
(Google), the latest stable version of the Gemini model.

Vision Transformer
We implemented a pretrained ViT (vit_base_patch16_224,
pretrained on ImageNet) using the timm library in PyTorch.
The model was fine-tuned on 10 manually labeled ECG plots
(classified as normal or abnormal). Only the classification
head was trained, while the transformer backbone remained
frozen. Training was performed over 7 epochs using the
Adam optimizer (learning rate=1e-4). We also experimen-
ted with data augmentation techniques (random rotation and
horizontal flipping), which did not improve performance in
this small data setting. Model evaluation was performed on a
held-out test set of 50 ECG images.

Gemini 2.0 Flash
We evaluated Gemini 2.0 flash (Gemini-2.0-Flash-001) using
the official Vertex AI SDK (vertexai.generative_models) in

Python. Each ECG image was submitted along with the
same prompt used in the GPT-4o experiments (as described
in the “Methods” section) except for the few-shot learning
experiments, which were adapted to the structured format
supported by the model. The model’s textual output was
parsed to assign a binary class label (normal or abnormal).
We assessed accuracy, sensitivity, specificity, and F1-score
using the ground truth labels of the test set. We ran 1 iteration
for each experiment and set the temperature parameter to 0.2
for consistency across runs.
Ethical Considerations
Ethical approval was obtained from the institutional
ethics committee following standard institutional procedures
(SMC-D-0522-23).

Results
Overview
The cohort consisted of 80 patients, with a median age of 69
(IQR 57.0-78.0) years, of which 53.8% (43) were females,
carefully selected to ensure representativeness. Table 2 shows
the number of patients in each ECG pathology group, the
patients’ age distribution, gender, and key ECG parameters
that reflect the clinical and electrophysiological diversity of
the cohort.

Table 2. Demographic characteristics and electrocardiogram parameters of the cohort patients.
Characteristics Statistics
Total number of patients 80
Group, n (%)
  AFa 10 (12.5)
  LBBBb 10 (12.5)
  Normal 30 (37.5)
  Paced 10 (12.5)
  RBBBc 10 (12.5)
  STEMId 10 (12.5)
Age at ECGe (years), median (IQR) 69.0 (57.0-78.0)
Sex (female), n (%) 43 (53.8)
Ventricular rate, median (IQR) 72.0 (66.0-81.2)
QRS duration, median (IQR) 98.0 (84.0-138.0)
R axis, median (IQR) 4.5 (−42.8 to 46.2)
T axis, median (IQR) 44.0 (23.2-79.0)
Num QRS complexes, median (IQR) 12.0 (11.0-13.2)
Pacemaker, n (%) 10 (12.5)

a AF: atrial fibrillation.
b LBBB: left bundle branch block.
c RBBB: right bundle branch block.
 

JMIR AI Engelstein et al

https://ai.jmir.org/2025/1/e74426 JMIR AI 2025 | vol. 4 | e74426 | p. 6
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e74426


d STEMI: ST-segment elevation myocardial infarction.
e ECG: electrocardiogram.

As part of a sensitivity analysis, we compared the perform-
ance of GPT-4o with Gemini 2.0 Flash and a pretrained
ViT model. Since GPT-4o consistently outperformed the
alternative models, we report the full sensitivity analysis
results in Multimedia Appendix 2. The following sections
present the classification results for each scenario using
GPT-4o.
Scenario 1: ECG Image Identification
This scenario assessed the GPT-4o model’s ability to
recognize whether an image depicted an ECG. In both simple
experiments (experiments 1.1 and 1.2), the model demon-
strated excellent recognition ability, correctly classifying
100% of the images as ECG. These findings are consis-
tent with previous work showing that the earlier model,
GPT-4V, achieved 100% accuracy in recognizing medical
modalities such as ultrasonography, computed tomography,
and radiography [23], further supporting GPT-4o’s reliability
in fundamental image recognition tasks. However, we did not
evaluate its performance in more complex scenarios, such as
distinguishing electroencephalograms from ECGs.

Scenario 2: Distinguishing ECG Images
as Normal or Abnormal
This scenario evaluated the GPT-4o model’s ability to
differentiate between normal and abnormal ECGs using both
zero-shot and few-shot learning approaches. The zero-shot
approach showed moderate to high success in diagnosis, with
performance gradually improving with the addition of more
auxiliary text: 53% without any text, 57% with minimal text,
and 63% with extended text (Table 3). The sensitivity in the
zero-shot experiments was very high, while the specificity
was low, indicating that the model classified most cases as
abnormal, including many that were normal. In the initial
experiment, where no textual guidance was provided, the
specificity was close to zero. Following this, we added the
sentence “Normal ECG: Look for regular P waves, QRS
complexes, and T waves with consistent intervals between
them. Absence of significant abnormalities.” to the prompt,
thereby clarifying the definition of a normal ECG. As a result,
specificity improved by 26%.

Table 3. Scenario 2 results.
Experiment Technique Prompt type Testing size Accuracy Sensitivity Specificity F1-score
2.1 Zero-shot No textual

guidance.
60 0.53 1.0 0.07 0.68

2.2 Zero-shot Minimal textual
guidance.

60 0.57 1.0 0.13 0.7

2.3 Zero-shot Provide textual
guidance.

60 0.63 0.93 0.33 0.72

4.2 Few-shot Learn 6
examples. No
textual guidance.

54 0.72 0.67 0.78 0.71

4.3 Few-shot Learn 6
examples along
with added
textual guidance.

54 0.8 0.67 0.93 0.77

4.4 Few-shot Learn 10
examples along
with added
textual guidance
—average results
across 5 runs.

50 0.83 0.7 0.97 0.81

In contrast, the few-shot approach demonstrated enhanced
accuracy, particularly in experiment 4.4. Incorporating 10
learning examples and additional guidance led to the highest
classification performance, achieving an average accuracy
of 83% (95% CI 81.8%‐84.6%), sensitivity of 70% (95%
CI 62.9%‐76.3%), and specificity of 97% (95% CI 92.6%‐
100.0%) across 5 runs (Table 3 and Figure 3). By add-
ing textual guidance and providing examples, we improved

the accuracy by 30% compared with the baseline model
(experiment 2.1), indicating a significant improvement.
Multimedia Appendix 3 shows 2 examples of the GPT-4o
model’s reasoning when classifying an image as a normal or
abnormal ECG. We see from the reason it provides that it
considers the R-R intervals, P waves, QRS complex, QRS
duration, and T waves. However, the accuracy of these
explanations was not formally evaluated in this study.
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Figure 3. Experiment 4.4 average confusion matrix across 5 iterations. ECG: electrocardiogram.

Scenario 3: Multiclass Classification for a
Specific Pathology
In identifying a specific pathology, both approaches showed
low success. However, few-shot outperformed zero-shot,
achieving an accuracy of 41% compared with 28%. In the

few-shot scenario, textual guidance also led to improved
results compared with the case without it (Table 4 and Figure
4). Notably, 89% of normal ECGs were correctly classified
as normal. Paced rhythm was the most accurately identified
cardiac condition, with an accuracy of 55.5%.

Table 4. Scenario 3 results.
Experiment Technique Prompt type Testing size Accuracy

3.1 Zero-shot No textual guidance. 60 0.28
3.2 Zero-shot Textual guidance was provided. 60 0.28
5.1 Few-shot Six examples were provided. 54 0.31
5.2 Few-shot Six examples were provided along with added textual guidance. 54 0.41
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Figure 4. Experiment 5.2 confusion matrix. Multiclass classification, few-shot learning. ECG: electrocardiogram.

Discussion
Principal Findings
This study assesses the image analysis capabilities of GPT-4o
for interpreting ECG tests. The main findings reveal that
GPT-4o’s capabilities in recognizing and understanding ECG
images can be significantly improved with prompt engineer-
ing and learning examples. In our case, accuracy improved
by 30%. GPT-4o effectively identified the images as ECGs
and demonstrated a solid theoretical understanding of ECG
components and pathologies. Its performance in distinguish-
ing normal from abnormal ECGs was moderate to high, with
an average accuracy of 83% (95% CI 81.8%‐84.6%) across
5 repeated runs on the same 50 ECG examples, reflect-
ing consistent performance. However, the model struggled
with more granular classification tasks, achieving only 41%
accuracy when identifying specific diagnoses. Furthermore,
the study showed that few-shot learning surpassed zero-shot
learning, and combining textual instructions with image
examples led to better outcomes, achieving moderate to
high accuracy and high specificity improvement compared
with the baseline model. As part of a sensitivity analysis
to contextualize GPT-4o’s performance, we also evaluated
Gemini 2.0 Flash and a pretrained ViT model; however,
neither outperformed GPT-4o in this task.

Previous studies [24-31] extensively investigated DL
AI models’ diagnostic capabilities for classifying ECGs,
achieving higher accuracy rates compared with our study,
which explored the performance of LLMs in zero-shot and
few-shot learning contexts. While previous studies have
reported superior accuracy using specialized DL models (eg,
CNNs and LCNNs), these approaches require substantial

computational resources and model-specific training, limiting
their accessibility in routine clinical practice. In contrast,
multimodal LLMs such as GPT-4o provide a low-barrier
alternative that could support medical professionals without
specialized AI expertise.

Our findings also align with recent research on the
robustness of multimodal models to domain shifts, such as
ECG images, which differ substantially from the natural
images seen during model pretraining. Previous work has
shown that performance under such shifts can be improved
through in-context learning strategies such as few-shot
learning, as demonstrated in studies evaluating GPT-4V and
other vision-language models [32-35]. In our study, this was
evident in the improved performance observed with few-shot
learning when distinguishing normal from abnormal ECGs.
However, the model continued to struggle with identifying
specific pathologies, as seen in scenario 3. Several factors
likely contributed to this limitation. Certain cardiac conditions
are inherently difficult to detect, as their features may be
masked by noise, artifacts, or subtle waveform variations
[16]. These factors can mislead the model, especially with
incomplete or atypical ECGs that do not match the patterns
it learned during training [36], situations in which multi-
modal LMMs often fail to generalize effectively. Further-
more, the absence of clinical context may further constrain
performance, as incorporating patient symptoms or medical
history has been shown to enhance diagnostic accuracy [37].
Together, these factors likely contributed to the model’s
limited ability to accurately identify specific abnormalities.

When comparing our study with those investigating AI’s
diagnostic performance, a distinct contrast emerges. These
studies, using DL models trained on large ECG datasets for
specific diagnosis tasks ranging from arrhythmia to STEMI
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detection, consistently report high diagnostic accuracy rates,
often exceeding 90% [24-29]. Conversely, compared with the
studies focusing on binary classification of ECGs (normal
vs abnormal) [30,31], our study achieved a moderate to
high accuracy of 83% despite minimal training, and by that,
highlighting the potential of accessible AI models for cardiac
diagnostics. Conversely, compared with the studies focus-
ing on binary classification of ECGs (normal vs abnormal)
[30,31], our study achieved a moderate to high accuracy of
83% despite minimal training, and by that, highlighting the
potential of accessible AI models for cardiac diagnostics.

In addition to its potential in cardiology, GPT-4o’s image
interpretation capabilities find relevance in various medical
domains, such as radiology, neurology, and ophthalmology.
Research in these fields indicates that while GPT-4o can
identify imaging modalities and tackle intricate diagnostic
tasks, its current success rates remain modest [14-17,33].

Consistent with these findings, our results suggest that
although GPT-4o shows promise in medical image interpre-
tation, it remains best suited as a supplementary tool to
support, rather than replace, clinical expertise [15,16]. This
is especially important given the risk of hallucinations and
overconfident misclassifications that LLMs may produce
when faced with ambiguous or unfamiliar inputs [38]. As
multimodal AI models continue to evolve, further research is
needed to refine their integration into diagnostic workflows
and optimize their clinical use.
Limitations and Future Research
The current findings rely on a small retrospective sample
of 80 patients. While this limited sample size constrains
the statistical robustness of the findings, it was sufficient to
support a focused proof-of-concept evaluation of GPT-4o’s
capabilities in ECG interpretation. The sample, although
small, demonstrated consistent performance across repeated
runs and helped highlight key challenges and opportunities
in applying multimodal LLMs to ECG analysis. Moreover,
our study acknowledges the documented potential impact

of prompt wording variations on GPT-4o’s responses [39].
Minor changes in prompts can significantly affect language
models such as GPT-4o. Finally, our study solely evalu-
ated GPT-4o with ECG recordings, excluding the patient’s
medical history, a departure from typical clinical practice,
where attending physicians have access to comprehensive
patient information. We hypothesize that incorporating these
contextual data into the model could enhance diagnostic
accuracy.

Future research could assess custom GPT-4o perform-
ance when it is enhanced with specific knowledge sources,
such as cardiology textbooks, rather than solely instructions.
Furthermore, to address the challenges observed in multiclass
classification of specific diagnoses (scenario 3, Multimedia
Appendix 4), future studies should explore few-shot learning
setups that include multiple examples for each diagnostic
class and test on a larger sample. As demonstrated in previous
work, this approach can improve performance under domain
shift conditions by enabling the model to generalize more
effectively across diverse pathology patterns [36,40]. Finally,
future work should consider evaluating more advanced
models such as Gemini 2.5, which, while not yet part of a
stable public release, has demonstrated strong performance
in multimodal tasks and may offer improved capabilities for
clinical ECG interpretation.
Conclusions
The current version of GPT-4o exhibits moderate to high
proficiency in distinguishing between normal and abnormal
ECG readings. However, its ability to diagnose specific
cardiac conditions remains limited. Our findings suggest
that GPT-4o’s performance can be enhanced through prompt
engineering and few-shot learning, highlighting its poten-
tial as a supplementary decision support system in clinical
practice. Future improvements to the algorithm, particularly
in fine-tuning its diagnostic capabilities, could further expand
its use in medical image analysis.
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