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Abstract

Background: Large language models (LLMs) have demonstrated the ability to perform complex tasks traditionally requiring
human intelligence. However, their use in automated diagnostics for psychiatry and behavioral sciences remains under-studied.

Objective: This study aimed to evaluate whether incorporating structured clinical assessment scales improved the diagnostic
performance of LLM-based chatbots for neuropsychiatric conditions (we evaluated autism spectrum disorder, aphasia, and
depression datasets) across two prompting strategies: (1) direct diagnosis and (2) code generation. We aimed to contextualize
LLM-based diagnostic performance by benchmarking it against prior work that applied traditional machine learning classifiers
to the same datasets, allowing us to assess whether LLMs offer competitive or complementary capabilities in clinical classification
tasks.

Methods: We tested two approaches using ChatGPT, Gemini, and Claude models: (1) direct diagnostic querying and (2)
execution of chatbot-generated code for classification. Three diagnostic datasets were used: ASDBank (autism spectrum disorder),
AphasiaBank (aphasia), and Distress Analysis Interview Corpus-Wizard-of-Oz interviews (depression and related conditions).
Each approach was evaluated with and without the aid of clinical assessment scales. Performance was compared to existing
machine learning benchmarks on these datasets.

Results: Across all 3 datasets, incorporating clinical assessment scales led to little improvement in performance, and results
remained inconsistent and generally below those reported in previous studies. On the AphasiaBank dataset, the direct diagnosis
approach using ChatGPT with GPT-4 produced a low F1-score of 65.6% and specificity of 33%. The code generation method
improved results, with ChatGPT with GPT-4o reaching an F1-score of 81.4%, specificity of 78.6%, and sensitivity of 84.3%.
ChatGPT with GPT-o3 and Gemini 2.5 Pro performed even better, with F1-scores of 86.5% and 84.3%, respectively. For the
ASDBank dataset, direct diagnosis results were lower, with F1-scores of 56% for ChatGPT with GPT-4 and 54% for ChatGPT
with GPT-4o. Under code generation, ChatGPT with GPT-o3 reached 67.9%, and Claude 3.5 performed reasonably well with
60%. Gemini 2.5 Pro failed to respond under this assessment condition. In the Distress Analysis Interview Corpus-Wizard-of-Oz
dataset, direct diagnosis yielded high accuracy (70.9%) but poor F1-scores of 8% using ChatGPT with GPT-4o. Code generation
improved specificity—88.6% with ChatGPT with GPT-4o—but F1-scores remained low overall. These findings suggest that,
while clinical scales may help structure outputs, prompting alone remains insufficient for consistent diagnostic accuracy.
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Conclusions: Current LLM-based chatbots, when prompted naively, underperform on psychiatric and behavioral diagnostic
tasks compared to specialized machine learning models. Clinical assessment scales might modestly aid chatbot performance, but
more sophisticated prompt engineering and domain integration are likely required to reach clinically actionable standards.

(JMIR AI 2025;4:e75030) doi: 10.2196/75030
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Introduction

Background
Large language models (LLMs) have recently demonstrated
capabilities that closely approximate or exceed human cognitive
functions in various domains [1-3]. Given their efficacy in
executing complex tasks, there is a burgeoning interest in
exploring the potential applications of LLMs in clinical settings,
including in areas such as providing emotional support [4,5]
and mental health diagnoses [6-10]. The diagnostic process for
neurobehavioral conditions typically encompasses
comprehensive clinical assessments and longitudinal behavioral
observations [11,12]. The integration of LLMs (as well as other
machine learning [ML] models) into this process could
potentially streamline this complex and time-consuming
diagnostic procedure by facilitating automated screening
processes [13,14]. While some research highlights some of the
potential challenges of using LLMs for these tasks [15-18], they
are emerging as a promising avenue for developing scalable
and accessible screening services.

ChatGPT [19], Gemini [20], and Claude [21], prominent
LLM-based conversational agents, have been the subject of
evaluation for their potential in digital neurobehavioral
diagnostics. Previous studies have indicated that the capabilities
of chatbots for neurobehavioral classification remain limited
even when assessing specific conditions or smaller patient
cohorts [10,22,23]. In response to these findings, subsequent
research efforts have focused on enhancing ChatGPT’s
performance in this domain [6,22], typically using varied
prompting strategies such as the formulation of precise inquiries
and the provision of relevant contextual information.

Objectives
Building on these foundational works, we aimed to evaluate the
use of LLM-based chatbots to aid in automated diagnostics for
neuropsychiatric conditions using assessment scales. We
evaluated two paradigms: (1) directly deriving diagnoses from
textual data and (2) chatbot-generated code executed in a local
environment for diagnostic classification. As an attempt to reach
clinical relevance, we instructed the chatbots to either provide
ratings on standardized clinical assessment scales which were
then used to derive a final diagnosis or to incorporate these
ratings into their diagnostic decision making. This approach
aimed to leverage established clinical approaches to diagnosis
while harnessing the analytical capabilities of LLMs. We
hypothesized that offering this clinically grounded method for
automated diagnosis would lead to improved diagnostic
performance.

Methods

Overview
We implemented 4 distinct methodologies to evaluate the
diagnostic capabilities of the chatbots (Figure 1). In the direct
diagnosis approach without assessment scales, we directly input
data into the conversational artificial intelligence (AI) model,
which then generated classification results. This process
involved providing the chatbot with the processed dataset as
input data and defining its primary task as providing
neurobehavioral classification results for the condition of
interest. We instructed the chatbot to derive diagnostic
classifications for all participants using the text data from the
entire processed dataset. If the chatbot indicated an inability to
perform this task and requested to run in our environment, we
directed it to use its pretrained knowledge to complete the task
(see Multimedia Appendix 1 for the detailed prompts of each
condition).
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Figure 1. The 4 methods we explored in this study. The top 2 panels illustrate the direct diagnosis approach with and without the use of assessment
scales, which require the chatbots to directly provide predictions or ratings on assessment scales. The bottom 2 panels, consisting of the code generation
approach with and without assessment scales, require the chatbots to generate code that is subsequently executed in a Python environment.

The direct diagnosis approach using assessment scales involved
inputting both data and a clinical assessment scale into the
model; the model was subsequently tasked with rating items on
the scale and providing these ratings as output. We then applied
predefined thresholds from the clinical assessment scales to
each data subject’s ratings to derive final neurobehavioral
diagnoses.

For both direct diagnosis conditions, we performed zero-shot
classification without conducting training and testing splits, as
we aimed to evaluate the models’ ability to generalize from
their pretrained knowledge. This process was repeated 5 times
for each condition, with results averaged across iterations to
improve robustness.

In addition to direct diagnosis, we explored a code generation
approach to determine whether LLM-based chatbots could
perform automated neurobehavioral classification by

externalizing their reasoning into executable models. The
motivation for the code generation condition stemmed from the
observation that LLMs such as ChatGPT often struggle with
directly solving complex reasoning tasks (at the time of our
experiments) but can excel at generating code that reliably solves
these problems. A notable example is that while ChatGPT
frequently fails to correctly solve math puzzles through direct
reasoning, it can generate Python code that solves them
efficiently when executed. Recent studies have examined this
phenomenon, revealing that LLMs perform poorly on complex
logic-based tasks when relying solely on their internal reasoning
capabilities yet demonstrate improved performance when
prompted to generate code that encodes the required logic
[24,25]. This suggests that the reasoning and structure embedded
in generated code may enable LLMs to circumvent some of the
limitations they face during direct response generation. While
the diagnostic processes under the code generation condition
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differed fundamentally from those under the direct diagnosis
condition, they offer a complementary perspective on the
models’capabilities. Notably, the chatbots frequently produced
executable code—even without explicit prompting—in our early
pilot tests.

In the code generation approach without assessment scales,
which served as a control condition, we fed the processed data
as input into the conversational AI model. Following the data
review, we instructed the chatbot to select what it deemed the
most appropriate algorithm for the task and output the
corresponding Python code. This code was subsequently
executed in an external Python environment (Python Software
Foundation). We tasked the chatbot with conducting stratified
5-fold cross-validation on the dataset, reporting F1-score,
specificity, sensitivity, and accuracy as performance metrics.
To optimize results, we engaged in an iterative process with the
chatbot, requesting performance improvements until the
generated code produced results consistent with its previous 2
iterations.

The code generation approach using assessment scales began
with providing the chatbot with the processed data as input
followed by a standardized assessment scale. We then prompted

the model to generate the code and apply established cutoff
thresholds from these scales as output to determine the final
diagnosis. However, observing that this often resulted in
unsatisfactory classifications, we next encouraged the chatbots
to incorporate these ratings into an ML algorithm of their own
design. The chatbots produced the algorithm, which we then
ran in our local environment. If no further performance
improvements from the condition without assessment scales
were observed, we directed the chatbot to revert to the algorithm
used in the condition without the assessment scale and integrate
the assessment scale ratings into the training procedures. This
methodology facilitated a direct comparison of performance
between 2 code generation approaches, making any potential
improvements attributable to the assessment scale approach.
(see Multimedia Appendix 2 for an example of generated code).

Table 1 shows the final algorithm used in each code generation
condition. We ensured that the chatbots incorporated the
assessment scale ratings into their algorithms, requesting
integration if they were initially omitted. The iterative process
for each condition continued until the performance of the
generated code reached a plateau with no significant
improvement observed over 2 consecutive iterations.

Table 1. Machine learning algorithms produced by the chatbots in the 2 code generation conditions.

AlgorithmsApproach

DAIC-WOZa databaseASDBankAphasiaBank

Code generation―no assessment scale

CountVectorizer+LRTF-IDF+LRTF-IDFb+LRcGPT-4

TF-IDF+XGBd classifierCountVectorizer+LRWord CountGPT-4o

TF-IDF+LRTF-IDF+LRWord CountClaude 3.5

TF-IDF+LinearSVCTF-IDF+LRTF-IDF+LRGPT-o3

Sentence embedding+LinearSVCTF-IDF+LinearSVCTF-IDF+LRGemini 2.5 Pro

Code generation―assessment scale

CountVectorizer+LRTF-IDF+LRTF-IDF+LRGPT-4

TF-IDF+XGB classifierCountVectorizer+LRWord Count+LRGPT-4o

TF-IDF+LRTF-IDF+RFeWord Count+thresholdClaude 3.5

TF-IDF+LinearSVCTF-IDF+LRTF-IDF+LRGPT-o3

Sentence embedding+LinearSVC—fTF-IDF+LRGemini 2.5 Pro

aDAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.
bTF-IDF: term frequency–inverse document frequency.
cLR: logistic regression.
dXGB: extreme gradient boosting.
eRF: random forest.
fNot applicable.

To assess statistical significance, we conducted 1000-fold
permutation tests on the F1-score and accuracy to compare (1)
direct diagnosis and code generation in non–assessment scale
setups and (2) non–assessment scale and assessment scale
setups. For comparisons between direct diagnosis and code
generation, we aligned predictions by matching test sets across

folds, comparing the performance on the same data points in
both conditions and averaging the results across folds. For the
checklist comparison, we ran permutation tests over all
predictions from the respective conditions, also averaging across
folds. Comparisons were omitted in cases in which the
prediction patterns were apparently random or when
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performance in the latter condition was lower than in the former
(ie, assessment scale<non–assessment scale or code
generation<direct diagnosis).

Datasets
We used 3 distinct databases, each focusing on a specific
neurobehavioral condition. Two of these, ASDBank [26] and
AphasiaBank [27], are sourced from TalkBank [28] and contain
language samples for autism spectrum disorder (ASD) and
aphasia, respectively, whereas the third database, the Distress
Analysis Interview Corpus-Wizard-of-Oz (DAIC-WOZ)
database [29], contains textual data from patients with
depression, anxiety, and posttraumatic stress disorder.

AphasiaBank [27] is a repository containing multimedia
language samples from both participants with aphasia and
control participants. These samples were collected through
standardized discourse tasks, including unstructured speech
samples, picture descriptions, story narratives, and procedural
discourse.

ASDBank [26] comprises a collection of language samples and
interactions from individuals diagnosed with ASD. The data
within ASDBank include transcribed audio and video recordings
of clinical interviews and naturalistic interactions.

We used all available English-language transcripts from both
AphasiaBank and ASDBank. Data processing was performed
to consolidate all samples from a single participant into 1 data
point. The resulting dataset comprised 715 aphasia data points
and 352 control data points for AphasiaBank and 34 ASD data
points and 44 control data points for ASDBank.

The DAIC-WOZ database [29] consists of semistructured
interviews conducted by a simulated agent designed to identify
symptoms of depression and posttraumatic stress disorder. These
interviews include questions about personal experiences, quality
of life, and emotions. We consolidated all samples from a
participant, including the interviewer’s input, into a single data
point. The DAIC-WOZ database includes 56 patient data points
and 133 control data points.

Table 2 provides a summary of the diagnosis distribution across
each dataset.

Table 2. The number of control and patient data points in each of the datasets we evaluated.

Number of data points for condition of interestNumber of control data pointsDatabase

715352AphasiaBank

3444ASDBank

56133DAIC-WOZa

aDAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.

Aphasia, depression, and ASD each manifest distinct linguistic
characteristics that are both overlapping and unique. Aphasia,
typically resulting from brain damage, is characterized by
impaired language production and comprehension, often
including repetitive language and the frequent use of filler words
as individuals struggle to retrieve or organize words effectively
[30]. Depression, while primarily a mood disorder, affects
language through reduced verbal output, monotone speech, and
a preference for negative or self-critical language patterns.
Depressive language, such as expressions of negativity, can be
a key symptom of the condition. Another characteristic linguistic
feature is an excessive number of sighs, reflecting physical or
emotional fatigue. ASD is marked by unique communication
challenges, including delayed speech development, echolalia
(repetition of phrases), difficulty with pragmatic language (eg,
understanding sarcasm or social cues), and overly literal or
formal speech. Individuals with ASD may also exhibit
fragmented sentences and frequent use of filler words, reflecting
challenges in organizing thoughts or navigating social
interactions [31].

Many previous studies have leveraged the datasets we used in
our research. However, much of the existing work has focused
on advanced tasks such as multimodal detection or severity
classification rather than simpler text-based binary classification
using chatbots. These studies have often achieved strong
(although not clinically translatable) performances, frequently
exceeding 80% in F1-scores or accuracy. For example, Dinkel

et al [32] applied a text-based multitask network to the
DAIC-WOZ dataset, achieving an F1-score of 0.84 for binary
detection. Similarly, Agrawal and Mishra [33] used a fused
bidirectional encoder representation from transformers–a
bidirectional long short-term memory model integrated with
Extreme Gradient Boosting to perform binary classification,
achieving an F1-score of 91%.

For the AphasiaBank dataset, most previous studies have
focused on severity classification, making direct comparisons
with our binary classification study challenging. The only
relevant work, conducted by Cong et al [34], found that using
LLM-derived surprisal features facilitated detection, achieving
79% in both accuracy and F1-score. Similarly, studies involving
the ASDBank dataset are limited, partly due to its recent
development. Chu et al [35] included another dataset, the Child
Language Data Exchange System, as a source of healthy control
data. By extracting a few linguistic features from these 2
datasets, their binary classification approaches reached an
F1-scores of over 80% [35].

These studies suggest that LLM-based models directly
diagnosing from the datasets used in this study should achieve
high performance if chatbots exhibit comparable classification
capabilities to those models in the previous studies.
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Models
We evaluated 2 approaches using 3 types of state-of-the-art
conversational AI models: ChatGPT with GPT-4, ChatGPT
with GPT-4o, and ChatGPT with GPT-o3 (OpenAI); Gemini
2.5 Pro (Google AI); and Claude 3.5 Sonnet (Anthropic). These
models were selected because they are some of the most widely
used modern LLMs and because their efficacy in
neurobehavioral classification tasks remains underexamined in
the current literature. Notably, models such as Gemini 2.5 Pro
and ChatGPT with GPT-o3 incorporate built-in prompting
strategies such as chain-of-thought reasoning, allowing us to
examine how such strategies influence performance. We
excluded open models such as Llama because they do not
support file input and including them would require a different
approach from that used for the other models we tested.

Assessment Scales
We incorporated 3 widely recognized assessment scales and
checklists used in clinical settings. We selected scales that assess
behaviors at least tangentially related to language and that do
not require extended observation periods. For example, the
Autism Spectrum Quotient evaluates traits such as social
preferences (“S/he prefers to do things with others rather than
on her/his own”), behavioral patterns (“S/he prefers to do things
the same way over and over again”), and attention capabilities
(“have difficulty sustaining attention in tasks or fun activities”).
The rating system for this checklist—definitely disagree, slightly
disagree, slightly agree, and definitely agree—does not
necessitate longitudinal observation, unlike scales that use
time-sensitive ratings such as rarely, less often, very often, and
always.

The assessment scales and checklists included in our study were
as follows: (1) the fluency test in the Western Aphasia

Battery–Aphasia Quotient (AphasiaBank) [36], (2) the Autism
Spectrum Quotient (ASDBank) [37], and (3) Burn’s Depression
Checklist [38] (DAIC-WOZ database).

In the 2 direct diagnosis conditions, we conducted the
experimental procedure 5 times and obtained results based on
the entirety of each dataset. We did not perform a training and
testing split for these conditions, opting instead for a zero-shot
classification approach to assess the models’ability to generalize
from their pretrained knowledge. However, in the code
generation conditions, we instructed the chatbot to perform
stratified 5-fold cross-validation on the entire dataset. The
training and testing split ratio during each fold was 4:1. Results
were evaluated based on the test sets generated during each fold
and subsequently averaged.

Ethical Considerations
This study did not involve the recruitment of human participants
or the collection of new data. All analyses were conducted on
publicly available, deidentified datasets―AphasiaBank, the
DAIC-WOZ database, and ASDBank―that are widely used in
research and do not contain personally identifiable information.
As such, no application for ethics review was submitted. This
approach is consistent with institutional and regional guidelines
that exempt studies using publicly available, deidentified data
from human subjects review.

Results

Core Results
Tables 3 to 8 present the cross-validation results of the 2
approaches applied to each dataset, reporting accuracy, F1-score,
specificity, and sensitivity. Performance under the direct
diagnosis conditions varied across datasets.

Table 3. Results of 4 approaches on the AphasiaBank dataset in the direct diagnosis condition.

SensitivitySpecificityF1-scoreAccuracy

0.79―a0.790.79Results from Cong et al [34]

No assessment scale, mean (SD)

0.684 (0.29)0.33 (0.3)0.6556 (0.136)0.567 (0.1)GPT-4

0.642 (0.22)0.397 (0.11)0.648 (0.111)0.561 (0.029)GPT-4o

0.665 (0.01)0.328 (0.01)0.544 (0.113)0.49 (0.06)GPT-o3

0.659 (0.013)0.317 (0.02)0.599 (0.012)0.508 (0.01)Gemini 2.5 Pro

Assessment scale, mean (SD)

0.647 (0.09)0.297 (0.187)0.358 (0.376)b0.293 (0.34)bGPT-4

0.458 (0.02)0.577 (0.02)0.55 (0.02)b0.497 (0.01)bGPT-4o

0.645 (0.037)0.108 (0.19)0.568 (0.4)c0.555 (0.183)cGPT-o3

0.672 (0.003)0.381 (0.08)0.792 (0.003)b0.661 (0.07)bGemini 2.5 Pro

aMissing data.
bNo test conducted.
cP<.001 for GPT-o3 accuracy; P<.001 for F1-score (no assessment scale vs assessment scale).
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Table 4. Results of 4 approaches on the AphasiaBank dataset in the code generation condition.

Sensitivity, mean (SD)Specificity, mean (SD)F1-score, mean (SD)Accuracy, mean (SD)

No assessment scale

0.40 (0.31)0.79 (0.24)0.74 (0.17)a0.67 (0.16)aGPT-4

1 (0)0.68 (0.011)0.802 (0.008)a0.67 (0.0113)aGPT-4o

0.793 (0.041)0.920 (0.077)0.865 (0.029)a0.835 (0.035)aGPT-o3

0.488 (0.033)0.844 (0.037)0.623 (0.036)b0.605 (0.034)bClaude 3.5

0.8490 (0.031)0.6645 (0.057)0.8429 (0.016)a0.7882 (0.02)aGemini 2.5 Pro

Assessment scale

0.41 (0.30)0.80 (0.25)0.74 (0.17)b0.67 (0.16)bGPT-4

0.843 (0.007)0.786 (0.024)0.814 (0.016)c0.741 (0.022)cGPT-4o

0.793 (0.041)0.920 (0.077)0.865 (0.029)b0.835 (0.035)bGPT-o3

0.492 (0.036)0.844 (0.037)0.627 (0.039)b0.608 (0.036)bClaude 3.5

0.8490 (0.024)0.6674 (0.072)0.8437 (0.015)b0.7891 (0.021)bGemini 2.5 Pro

aP<.001 for GPT-4 accuracy; P<.001 for GPT-4 F1-score; P<.001 for GPT-4o accuracy; P<.001 for GPT-4o F1-score; P<.001 for GPT-o3 accuracy;
P<.001 for GPT-o3 F1-score; P<.001 for Gemini 2.5 Pro accuracy; P<.001 for Gemini 2.5 Pro F1-score (direct diagnosis versus code generation in
non–assessment scale setups when marked in the “No assessment scale” section)
bNo test conducted.
cP=.07 for GPT-4o accuracy; P=.06 for GPT-4o F1-score (assessment vs no assessment).

Table 5. Results of 4 approaches on the ASDBank dataset in the direct diagnosis condition.

SensitivitySpecificityF1-scoreAccuracy

0.940.20.850.76Results from Chu et al [35]

No assessment scale, mean (SD)

0.853 (0.00)0.227 (0.00)0.598 (0.00)0.5 (0.00)GPT-4

0.765 (0.323)0.155 (0.212)0.514 (0.129)0.421 (0.03)GPT-4o

0.575 (0.00)0.667 (0.00)0.575 (0.00)0.6026 (0.00)GPT-o3

0.421 (0.08)0.549 (0.08)0.449 (0.09)0.485 (0.08)Gemini 2.5 Pro

Assessment scale, mean (SD)

0.863 (0.24)0.09 (0.157)0.56 (0.08)a0.427 (0.01)aGPT-4

0.802 (0.342)0.236 (0.39)0.542 (0.117)a0.491 (0.09)aGPT-4o

0.436 (0.00)0.00 (0.00)0.607 (0.00)a0.436 (0.00)aGPT-o3

aNo test conducted.
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Table 6. Results of 4 approaches on the ASDBank dataset in the code generation condition.

Sensitivity, mean (SD)Specificity, mean (SD)F1-score, mean (SD)Accuracy, mean (SD)

No assessment scale

0.71 (0.199)0.55 (0.286)0.616 (0.104)a0.618 (0.125)aGPT-4

0.576 (0.378)0.73 (0.303)0.55 (0.184)a0.653 (0.103)aGPT-4o

0.433 (0.195)0.864 (0.083)0.679 (0.041)a0.679 (0.041)aGPT-o3

0.69 (0.4)0.67 (0.35)0.6 (0.22)b0.68 (0.16)bClaude 3.5

0.91 (0.08)0.52 (0.16)0.63 (0.14)a0.74 (0.09)aGemini 2.5 Pro

Assessment scale

0.695 (0.231)0.6 (0.334)0.628 (0.17)c0.642 (0.165)cGPT-4

0.578 (0.257)0.689 (0.325)0.592 (0.1974)b0.628 (0.194)bGPT-4o

0.433 (0.195)0.864 (0.083)0.679 (0.041)b0.679 (0.041)bGPT-o3

0.67 (0.36)0.69 (0.41)0.6 (0.23)b0.64 (0.13)bClaude 3.5

aP=.002 for GPT-4 accuracy; P=.001 for GPT-4 F1-score; P=.03 for GPT-4o accuracy; P=.015 for GPT-4o F1-score; P=.009 for GPT-o3 accuracy;
P=.005 for GPT-o3 F1-score; P=.006 for Gemini 2.5 Pro accuracy; P=.003 for Gemini 2.5 Pro F1-score (direct diagnosis versus code generation in
non–assessment scale setups when marked in the “No assessment scale” section)
bNo test conducted.
cP=.99 and P=.99 for GPT-4 accuracy and F1-score (assessment vs non-assessment).

Table 7. Results of 4 approaches on the Distress Analysis Interview Corpus-Wizard-of-Oz (DAIC-WOZ) database in the direct diagnosis condition.

SensitivitySpecificityF1-scoreAccuracy

0.83―0.840.86Results from Dinkel et al [32]

0.89―0.91―Results from Agrawal and Mishra [33]

No assessment scale, mean (SD)

0.939 (0.039)0.08 (0.51)0.452 (0.04)0.333 (0.04)GPT-4

0.409 (0.347)0.711 (0.168)0.346 (0.176)0.623 (0.01)GPT-4o

0.269 (0.05)0.704 (0.02)0.252 (0.12)0.595 (0.05)GPT-o3

0.294 (0.09)0.700 (0.02)0.222 (0.132)0.616 (0.11)Gemini 2.5 Pro

Assessment scale, mean (SD)

0.516 (0.05)0.56 (0.08)0.416 (0.07)a0.56 (0.06)aGPT-4

0.429 (0.006)1 (0.00)0.08 (0.01)a0.709 (0.05)aGPT-4o

0.355 (0.08)0.72 (0.01)0.281 (0.14)b0.635 (0.05)bGPT-o3

0.306 (0.08)0.71 (0.06)0.363 (0.09)a0.54 (0.07)aGemini 2.5 Pro

aNo test conducted.
bP=.44 for GPT-4 accuracy and P=.43 for F1-score (assessment vs no assessment).
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Table 8. Results of 4 approaches on the Distress Analysis Interview Corpus-Wizard-of-Oz (DAIC-WOZ) database in the code generation condition.

Sensitivity, mean (SD)Specificity, mean (SD)F1-score, mean (SD)Accuracy, mean (SD)

No assessment scale

0.233 (0.048)0.79 (0.035)0.268 (0.047)a0.624 (0.024)aGPT-4

0.2286 (0.2382)0.886 (0.087)0.2038 (0.1474)a0.681 (0.126)aGPT-4o

0.1091 (0.1185)0.1091 (0.1185)0.1472 (0.1636)a0.6667 (0.0572)aGPT-o3

0.2136 (0.1131)0.7672 (0.0251)0.2386 (0.113)b0.649 (0.103)bClaude 3.5

0.4439 (0.11)0.6846 (0.11)0.4037 (0.09)b0.6138 (0.08)bGemini 2.5 Pro

Assessment scale

0.233 (0.048)0.797 (0.036)0.271 (0.05)c0.63 (0.027)cGPT-4

0.223 (0.2389)0.9 (0.073)0.213 (0.1587)b0.681 (0.1587)bGPT-4o

0.2682 (0.17)0.768 (0.09)0.283 (0.161)b0.619 (0.06)bGPT-o3

0.328 (0.1153)0.7738 (0.1)0.33 (0.1153)c0.657 (0.109)cClaude 3.5

0.478 (0.03)0.5524 (0.13)0.4822 (0.037)b0.518 (0.068)bGemini 2.5 Pro

aP<.001 for GPT-4 accuracy; P<.001 for GPT-4 F1-score; P<.001 for GPT-4o accuracy; P<.001 for GPT-4o F1-score; P<.001 for GPT-o3 accuracy;
P<.001 for GPT-o3 F1-score (direct diagnosis versus code generation in non–assessment scale setups when marked in the “No assessment scale” section)
bNo test conducted.
cP=.80, P=.60 for GPT-4 accuracy and F1-score; P=.30, P=.20 for Claude 3.5 accuracy and F1-score (assessment vs non-assessment).

Tables 3 and 4 [34] compare approaches on the AphasiaBank
dataset against a baseline performance of 79% across metrics
in the study by Cong et al [34]. All of our direct diagnosis
conditions yielded a lower performance than this baseline. Our
code generation conditions improved results significantly, with
ChatGPT with GPT-o3 achieving the highest F1-score (0.865)
and balanced specificity (0.92) and sensitivity (0.793),
surpassing the baseline by Cong et al [34].

The results on the ASDBank dataset were compared against the
baseline results from Chu et al [35], who achieved an F1-score
of 0.85 and a high sensitivity of 0.94, although specificity was
notably low at 0.2. Our direct diagnosis approaches struggled
in comparison, with ChatGPT with GPT-4 and ChatGPT with
GPT-o3 producing lower F1-scores (0.598 and 0.575,
respectively) and poor specificity. The code generation condition
significantly improved overall performance, with Claude 3.5
achieving the highest accuracy (0.68) and F1-score (0.6). The
other models also showed improvement, but their performance
on specificity and sensitivity was less consistent. Gemini 2.5
Pro was unable to provide ratings on the checklist due to content
restrictions related to ethical guidelines.

For the DAIC-WOZ dataset, the studies by Dinkel et al [32]
and Agrawal and Mishra [33] established strong baselines,
achieving F1-scores of 0.84 and 0.91, respectively, along with
high accuracy and sensitivity. In comparison, our direct
diagnosis approaches showed inconsistent performance, with
ChatGPT with GPT-4o and ChatGPT with GPT-4 achieving
the highest accuracy (0.623) and F1-score (0.452)—notably low
values—with even poorer results on the other metrics. While
the code generation approaches yielded higher accuracy in some
cases, they did not meaningfully improve overall performance

as their F1-scores were significantly lower than those of the
direct diagnosis condition.

We also note that most comparisons between assessment scale
and no assessment scale conditions did not yield statistically
significant differences except for ChatGPT with GPT-o3 and
Gemini 2.5 Pro in the AphasiaBank direct diagnosis condition,
which showed significant improvements in both accuracy and
F1-score.

Overall, our findings reveal a substantial gap when using the 2
different approaches: code generation and direct diagnosis.
While code generation and newer models seem to have improved
performance compared to direct prompting, they still did not
reach the levels reported in previous studies in most cases. Both
approaches fell short of established benchmarks, underscoring
the limitations of current LLM-based diagnostic methods that
rely solely on prompting without model fine-tuning.

Error Analysis

Overview
We first address the errors in the direct diagnosis approach,
which did not appear to work well. We observed that most
rounds of classification yielded close-to-random performances,
especially for older models (ChatGPT with GPT-4 and ChatGPT
with GPT-4o). Interestingly, we noticed patterns in the
classification ratings produced, such as digits limited to only
multiples of 3 or repeating sequences (eg, 3, 2, 1, 0, 3, 2, 1, 0).
We present the percentage of rounds over 5 rounds of
classification that followed such patterns in Table 9. This
demonstrates that a direct diagnosis prompting strategy does
not work well if models are presented with the entire dataset at
once.
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Table 9. Percentage of random predictions.

Gemini 2.5 Pro random
predictions (%)

GPT-o3 random predic-
tions n=5 (%)

GPT-4o random predic-
tions n=5 (%)

GPT-4 random predictions n=5
(%)

Database and approach

AphasiaBank

006080Without assessment scale

801006020With assessment scale

ASDBank

80010020Without assessment scale

―a0100100With assessment scale

DAIC-WOZb database

2008040Without assessment scale

02010020With assessment scale

aNot applicable.
bDAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.

For the code generation approach, we found some examples of
text archetypes (ie, typical examples) that were frequently
misclassified. These archetypes often reflect characteristics of
the conditions. Common errors we observed are described in
the following sections.

Repetitive Language and Filler Words (Aphasia)
The presence of repetitive language patterns and an increased
frequency of filler words led to misclassification as a high
proportion of false positives for aphasia. Control participants’
responses typically exhibited minimal repetition and filler word
use. However, even a slight elevation in these linguistic elements
frequently resulted in misclassification, with the chatbots
erroneously classifying control participants as positives.
Notably, misclassified false positives from almost all the
chatbots contained these features.

Fragmented Sentences and Filler Words (ASD)
Transcripts containing filler words or fragmented sentences
were misclassified in almost 100% of cases as false positives
originating from individuals with ASD. With generative
pretrained transformer models, this archetype was observed in
most false-positive data points, indicating a consistent
misclassification pattern. In contrast, Claude 3.5 exhibited a
different trend because most misclassified points were false

negatives. Claude 3.5 did not appear to excessively use the
linguistic feature characteristic of this archetype.

Lack of Depressive Language (Depression)
Text lacking overt depressive indicators and conveying generally
positive sentiments accounted for a large amount of false
negatives. For instance, statements such as “uh I’d say maybe
the fact that it’s a lot different than it was about ten years ago”
and “I am pretty happy with the level of education I’ve gotten”
often led to false negatives.

Excessive Amount of Laughter (Depression)
Texts containing instances of laughter were classified as false
negatives in >70% of cases originating from control participants
rather than individuals with depression.

Excessive Number of Sighs (Depression)
Texts containing references to sighing were categorized as false
positives originating from individuals with depression. Over
30% of false-positive cases included this feature, indicating its
disproportionate influence on the classification process.

Frequency of Occurrence of Archetypes
Table 10 details the frequency of occurrence of these archetypes.
The observed misclassifications highlight the inherent
constraints of relying on text-based methods for neurobehavioral
diagnosis.
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Table 10. Percentage of each text archetype in false-positive or false-negative data points in the code generation conditions averaged across folds.

Gemini 2.5 Pro
(%)

Claude 3.5
(%)

GPT-o3 (%)GPT-4o (%)GPT-4 (%)Archetype and approach

Repetitive language and filler words (false positives)

90100100100100Without assessment scale

851000100100With assessment scale

Fragmented sentences and filler words (false positives)

100066.67100100Without assessment scale

―a066.67100100With assessment scale

Lack of depressive language (false negatives)

100853089.0287.67Without assessment scale

10079.0910089.0987.67With assessment scale

Excessive amount of laughter (false negatives)

96.7790.77888.3488.36Without assessment scale

10090.780.588.988.36With assessment scale

Excessive number of sighs (false positives)

60.615230.869.2367.44Without assessment scale

10052.172974.1965.12With assessment scale

aNot available.

Discussion

Principal Findings
This study reveals the limitations of using LLMs for automated
neurobehavioral classification. In both direct diagnosis
conditions, we encountered significant limitations with these
models, which tended to generate random or close-to-random
predictions. The models occasionally refused to offer diagnoses,
and when compelled to complete the tasks, the resulting
classifications were not accurate. These challenges were even
more pronounced with Claude 3.5 and Gemini 2.5 Pro, with
which we faced difficulties generating any classification results
or ratings in some conditions. The inclusion of assessment scales
did not substantially improve performance as the ratings on
scale items also appeared to be randomly assigned in most
situations. Notably, in many of these conditions, we observed
a concerning trend in which assessment scale ratings were often
identical across participants regardless of individual differences
in their text data.

It is important to note that previous studies have successfully
achieved F1-scores of 70% to 80% using subsets of the
ASDBank dataset and high performance (F1-scores of
80%-90%) using various methods on at least portions of the
other 2 datasets [32-35]. In contrast, our results indicate that
most direct diagnosis approaches and the code generated by
these models were not able to attain similar results to those of
previous studies. This discrepancy suggests a gap between the
performance that ML models can potentially achieve and the
outcomes observed in our study. This may be due to our
relatively straightforward methodological approach.

Regarding the code generation condition, our findings suggest
that LLM-generated ML pipelines show promising potential
for improving diagnostic performance. Notably, on the
AphasiaBank dataset, ChatGPT with GPT-o3 produced code
that outperformed results reported in previous studies, although
the choice of learning algorithms sometimes varied across
conditions and lacked a clear rationale.

In the code generation condition using assessment scales, we
observed that the code from the chatbots did not apply diagnostic
thresholds as defined by the assessment scales but, instead,
directly incorporated the ratings as ML features. The rating
methods were simplistic, and the chatbots frequently
implemented a keyword-counting algorithm to provide ratings
for ASDBank and DAIC-WOZ. These ratings were then
concatenated with features extracted from the feature extractor.
This direct concatenation of features without sophisticated
integration of diagnostic logic may explain why the assessment
scale conditions did not lead to improved performance. More
effective integration of these ratings in the generated code may
help enhance future model performance.

We also observed that models with built-in chain-of-thought
reasoning capabilities such as ChatGPT with GPT-o3 and
Gemini 2.5 Pro exhibited improved performance under certain
conditions. For instance, in the code generation tasks on the
AphasiaBank dataset, these chain-of-thought models consistently
outperformed others. Permutation tests conducted on the test
sets across 5 cross-validation folds revealed statistically
significant differences between models that used
chain-of-thought reasoning and those that did not (ChatGPT
with GPT-4 vs Gemini 2.5 Pro: accuracy P=.01, F1-score P=.03;
ChatGPT with GPT-4 vs ChatGPT with GPT-o3: accuracy
P<.001, F1-score P<.001; ChatGPT with GPT-4o vs Gemini
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2.5 Pro: accuracy P=.01, F1-score P=.002; ChatGPT with
GPT-4o vs ChatGPT with GPT-o3: accuracy P<.001, F1-score
P<.001). While this improvement was not observed across all
datasets (ie, DAIC-WOZ and ASDBank), the integration of
structured prompting strategies appears to be a promising
direction for future research.

In previous studies, human-in-the-loop processes have
demonstrated promise for diagnostic classification tasks [39,40].
However, in such approaches, the human must remain more
involved in the computational diagnosis procedure than simply
prompting the LLM to generate a direct diagnosis, clinical
rating, or classification code. In prior work for autism
diagnostics, for example, humans have extracted the behavioral
features—a task that requires the ability to interpret relatively
subjective human behavior—leaving the ML models to perform
the simpler task of the final classification given the
human-derived features [41,42]. It is likely that humans
performing at least some level of analysis of the data will need
to continue to achieve clinically useful performance, and future
prompt engineering approaches should explore these ideas more
thoroughly.

Limitations
We acknowledge several limitations of this study beyond the
observed performance gaps.

First, the scope of our investigation was limited to 3 datasets,
each representing a distinct neurobehavioral condition with
relatively small sample sizes. This may constrain both the
robustness and generalizability of our findings, as well as the
models’ capacity to learn effectively.

Second, another limitation lies in the selection and applicability
of the clinical checklists used in the assessment scale approach.
In many cases, the patient transcripts lacked sufficient
information to reliably rate all items on the scales, potentially
resulting in random or invalid scores. Future work may consider
using longer or more comprehensive patient transcripts or
choosing assessment tools that are more tolerant of limited
inputs.

Third, additional prompting strategies warrant exploration.
While we observed performance gains from models that
incorporated chain-of-thought reasoning by default, other
prompting techniques may also enhance diagnostic accuracy.

Finally, all input data were presented to the models at once in
a single file. This may have hindered their ability to process the
content effectively. Presenting the data incrementally one
instance at a time could reduce noise and improve prediction
consistency.

Conclusions
This study demonstrates that popular LLM-based chatbots
remain inadequate for classifying neurobehavioral conditions
from text transcripts even when prompted to incorporate clinical
assessment scales into their evaluation strategy. We recommend
that future research further investigate the limitations identified
in this study and examine whether incorporating structured
tools—such as assessment scales—can serve as a viable method
to improve diagnostic accuracy for neurobehavioral conditions
when using more sophisticated prompting strategies.
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