JMIR Al Lineta

Original Paper

Aiding Large Language Models Using Clinical Scoresheets for
Neurobehavioral Diagnostic Classification From Text: Algorithm
Development and Validation

Kaiying Lin', PhD; Abdur Rasool?, PhD; Saimourya Surabhi®, PhD; Cezmi Mutlu®, PhD; Haopeng Zhang?, PhD;
Dennis P Wall®, PhD; Peter Washington®, PhD

Linstitute of Li nguistics, Academia Sinica, Taipel, Taiwan

2University of Hawai i at Manoa, Honolulu, HI, United States
Sstanford University, Stanford, CA, United States

4University of California, San Francisco, San Francisco, United States

Corresponding Author:

Peter Washington, PhD

University of California, San Francisco
10 Koret Way, #323 San Francisco CA
San Francisco, 94117

United States

Phone: 1 415 353 2067

Email: Peter.Washington@ucsf.edu

Abstract

Background: Large language models (LLMs) have demonstrated the ability to perform complex tasks traditionally requiring
human intelligence. However, their use in automated diagnostics for psychiatry and behavioral sciences remains under-studied.

Objective: This study aimed to evaluate whether incorporating structured clinical assessment scales improved the diagnostic
performance of LLM-based chatbots for neuropsychiatric conditions (we evaluated autism spectrum disorder, aphasia, and
depression datasets) across two prompting strategies: (1) direct diagnosis and (2) code generation. We aimed to contextualize
LLM-based diagnostic performance by benchmarking it against prior work that applied traditional machine learning classifiers
to the same datasets, allowing usto assesswhether LLMs offer competitive or complementary capabilitiesin clinical classification
tasks.

Methods: We tested two approaches using ChatGPT, Gemini, and Claude models: (1) direct diagnostic querying and (2)
execution of chatbot-generated code for classification. Three diagnostic datasets were used: ASDBank (autism spectrum disorder),
AphasiaBank (aphasia), and Distress Analysis Interview Corpus-Wizard-of-Oz interviews (depression and related conditions).
Each approach was evaluated with and without the aid of clinical assessment scales. Performance was compared to existing
machine learning benchmarks on these datasets.

Results: Across al 3 datasets, incorporating clinical assessment scales led to little improvement in performance, and results
remained inconsistent and generally below those reported in previous studies. On the AphasiaBank dataset, the direct diagnosis
approach using ChatGPT with GPT-4 produced a low F;-score of 65.6% and specificity of 33%. The code generation method

improved results, with ChatGPT with GPT-40 reaching an F;-score of 81.4%, specificity of 78.6%, and sensitivity of 84.3%.
ChatGPT with GPT-03 and Gemini 2.5 Pro performed even better, with F;-scores of 86.5% and 84.3%, respectively. For the
ASDBank dataset, direct diagnosis results were lower, with F;-scores of 56% for ChatGPT with GPT-4 and 54% for ChatGPT

with GPT-40. Under code generation, ChatGPT with GPT-03 reached 67.9%, and Claude 3.5 performed reasonably well with
60%. Gemini 2.5 Pro failed to respond under this assessment condition. In the Distress Analysis Interview Corpus-Wizard-of-Oz
dataset, direct diagnosis yielded high accuracy (70.9%) but poor F,-scores of 8% using ChatGPT with GPT-40. Code generation

improved specificity—88.6% with ChatGPT with GPT-40—but F;-scores remained low overall. These findings suggest that,
while clinical scales may help structure outputs, prompting alone remains insufficient for consistent diagnostic accuracy.
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Conclusions:

Linetd

Current LLM-based chatbots, when prompted naively, underperform on psychiatric and behavioral diagnostic

tasks compared to specialized machine learning models. Clinical assessment scales might modestly aid chatbot performance, but
more sophisticated prompt engineering and domain integration are likely required to reach clinically actionable standards.

(IMIR Al 2025;4:€75030) doi: 10.2196/75030
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Introduction

Background

Large language models (LLMs) have recently demonstrated
capabilitiesthat closely approximate or exceed human cognitive
functions in various domains [1-3]. Given their efficacy in
executing complex tasks, there is a burgeoning interest in
exploring the potential applicationsof LLMsinclinical settings,
including in areas such as providing emotiona support [4,5]
and mental health diagnoses [6-10]. The diagnostic process for
neurobehavioral conditions  typically encompasses
comprehensive clinical assessmentsand longitudinal behavioral
observations[11,12]. Theintegration of LLMs (aswell asother
machine learning [ML] models) into this process could
potentialy streamline this complex and time-consuming
diagnostic procedure by facilitating automated screening
processes [13,14]. While some research highlights some of the
potential challenges of using LLMsfor these tasks[15-18], they
are emerging as a promising avenue for developing scalable
and accessible screening services.

ChatGPT [19], Gemini [20], and Claude [21], prominent
LLM-based conversational agents, have been the subject of
evauation for their potential in digita neurobehaviora
diagnostics. Previous studies have indicated that the capabilities
of chatbots for neurobehavioral classification remain limited
even when assessing specific conditions or smaller patient
cohorts [10,22,23]. In response to these findings, subsequent
research efforts have focused on enhancing ChatGPT's
performance in this domain [6,22], typicaly using varied
prompting strategies such astheformulation of preciseinquiries
and the provision of relevant contextual information.

https://ai.jmir.org/2025/1/€75030

Objectives

Building on these foundational works, we aimed to evaluate the
use of LLM-based chatbotsto aid in automated diagnostics for
neuropsychiatric conditions using assessment scales. We
evaluated two paradigms: (1) directly deriving diagnoses from
textual data and (2) chatbot-generated code executed in alocal
environment for diagnostic classification. Asan attempt to reach
clinical relevance, we instructed the chatbots to either provide
ratings on standardized clinical assessment scales which were
then used to derive a fina diagnosis or to incorporate these
ratings into their diagnostic decision making. This approach
aimed to leverage established clinical approachesto diagnosis
while harnessing the analytical capabilities of LLMs. We
hypothesized that offering this clinically grounded method for
automated diagnosis would lead to improved diagnostic
performance.

Methods

Overview

We implemented 4 distinct methodologies to evaluate the
diagnostic capabilities of the chatbots (Figure 1). In the direct
diagnosis approach without assessment scales, we directly input
data into the conversational artificial intelligence (Al) model,
which then generated classification results. This process
involved providing the chatbot with the processed dataset as
input data and defining its primary task as providing
neurobehavioral classification results for the condition of
interest. We instructed the chatbot to derive diagnostic
classifications for all participants using the text data from the
entire processed dataset. If the chatbot indicated an inability to
perform this task and requested to run in our environment, we
directed it to useits pretrained knowledge to complete the task
(see Multimedia Appendix 1 for the detailed prompts of each
condition).
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Figure 1. The 4 methods we explored in this study. The top 2 panels illustrate the direct diagnosis approach with and without the use of assessment
scales, which require the chatbots to directly provide predictions or ratings on assessment scales. The bottom 2 panels, consisting of the code generation
approach with and without assessment scales, require the chatbots to generate code that is subsequently executed in a Python environment.
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Thedirect diagnosis approach using assessment scalesinvolved
inputting both data and a clinical assessment scale into the
model; the model was subsequently tasked with rating itemson
the scale and providing these ratings as output. We then applied
predefined thresholds from the clinical assessment scales to
each data subject’s ratings to derive final neurobehavioral
diagnoses.

For both direct diagnosis conditions, we performed zero-shot
classification without conducting training and testing splits, as
we amed to evaluate the models' ability to generalize from
their pretrained knowledge. This process was repeated 5 times
for each condition, with results averaged across iterations to
improve robustness.

In addition to direct diagnosis, we explored a code generation
approach to determine whether LLM-based chatbots could
perform automated neurobehavioral classification by

https://ai.jmir.org/2025/1/€75030

RenderX

externalizing their reasoning into executable models. The
motivation for the code generation condition stemmed from the
observation that LLMs such as ChatGPT often struggle with
directly solving complex reasoning tasks (at the time of our
experiments) but can excel at generating codethat reliably solves
these problems. A notable example is that while ChatGPT
frequently fails to correctly solve math puzzles through direct
reasoning, it can generate Python code that solves them
efficiently when executed. Recent studies have examined this
phenomenon, revealing that LLMs perform poorly on complex
logic-based taskswhen relying solely on their internal reasoning
capabilities yet demonstrate improved performance when
prompted to generate code that encodes the required logic
[24,25]. Thissuggeststhat the reasoning and structure embedded
in generated code may enable LLMsto circumvent some of the
limitations they face during direct response generation. While
the diagnostic processes under the code generation condition
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differed fundamentally from those under the direct diagnosis
condition, they offer a complementary perspective on the
models’ capabilities. Notably, the chatbots frequently produced
executable code—even without explicit prompting—in our early
pilot tests.

In the code generation approach without assessment scales,
which served as a control condition, we fed the processed data
as input into the conversational Al model. Following the data
review, we instructed the chatbot to select what it deemed the
most appropriate algorithm for the task and output the
corresponding Python code. This code was subsequently
executed in an external Python environment (Python Software
Foundation). We tasked the chatbot with conducting stratified
5-fold cross-validation on the dataset, reporting F;-score,
specificity, sensitivity, and accuracy as performance metrics.
To optimize results, we engaged in an iterative process with the
chatbot, requesting performance improvements until the
generated code produced results consistent with its previous 2
iterations.

The code generation approach using assessment scales began
with providing the chatbot with the processed data as input
followed by a standardized assessment scal e. We then prompted

Linetd

the model to generate the code and apply established cutoff
thresholds from these scales as output to determine the final
diagnosis. However, observing that this often resulted in
unsatisfactory classifications, we next encouraged the chatbots
to incorporate these ratings into an ML algorithm of their own
design. The chatbots produced the algorithm, which we then
ran in our loca environment. If no further performance
improvements from the condition without assessment scales
were observed, we directed the chatbot to revert to the algorithm
used in the condition without the assessment scale and integrate
the assessment scale ratings into the training procedures. This
methodology facilitated a direct comparison of performance
between 2 code generation approaches, making any potential
improvements attributable to the assessment scale approach.
(seeMultimedia Appendix 2 for an example of generated code).

Table 1 showsthe final algorithm used in each code generation
condition. We ensured that the chatbots incorporated the
assessment scale ratings into their algorithms, requesting
integration if they were initially omitted. The iterative process
for each condition continued until the performance of the
generated code reached a plateau with no significant
improvement observed over 2 consecutive iterations.

Table 1. Machine learning algorithms produced by the chatbots in the 2 code generation conditions.

Approach Algorithms
AphasiaBank ASDBank DAIC-WOZ? database
Code generation—no assessment scale
GPT-4 TEIDEP+L R TF-IDF+LR CountVectorizer+LR
GPT-40 Word Count CountVectorizer+LR TF-IDF+XGBY classifier
Claude 3.5 Word Count TF-IDF+LR TF-IDF+LR
GPT-03 TFIDF+LR TF-IDF+LR TF-IDF+LinearSVC
Gemini 2.5 Pro TF-IDF+LR TF-IDF+LinearSVC Sentence embedding+LinearSVC

Code gener ation—assessment scale

GPT-4 TF-IDF+LR TF-IDF+LR CountVectorizer+LR

GPT-40 Word Count+LR CountVectorizer+LR TF-IDF+XGB classifier

Claude 3.5 Word Count+threshold TF-IDF+RF¢ TF-IDF+LR

GPT-03 TF-IDF+LR TFIDF+LR TF-IDF+LinearSVC

Gemini 2.5 Pro TF-IDF+LR _f Sentence embedding+LinearSVC

3DAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.
b TF-IDF: term frequency—inverse document frequency.

°LR: logistic regression.

IXGB: extreme gradient boosting.

€RF: random forest.

Not applicable.

To assess dtatistical significance, we conducted 1000-fold
permutation tests on the F,-score and accuracy to compare (1)
direct diagnosis and code generation in non—assessment scale
setups and (2) non—assessment scale and assessment scale
setups. For comparisons between direct diagnosis and code
generation, we aligned predictions by matching test sets across

https://ai.jmir.org/2025/1/€75030

folds, comparing the performance on the same data points in
both conditions and averaging the results across folds. For the
checklist comparison, we ran permutation tests over all
predictionsfrom the respective conditions, al so averaging across
folds. Comparisons were omitted in cases in which the
prediction patterns were apparently random or when
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performancein thelatter condition was lower than in theformer

(ie, assessment scale<non-assessment scale or code
generation<direct diagnosis).
Datasets

We used 3 distinct databases, each focusing on a specific
neurobehavioral condition. Two of these, ASDBank [26] and
AphasiaBank [27], are sourced from TalkBank [28] and contain
language samples for autism spectrum disorder (ASD) and
aphasia, respectively, whereas the third database, the Distress
Anaysis Interview Corpus-Wizard-of-Oz  (DAIC-WOZ)
database [29], contains textual data from patients with
depression, anxiety, and posttraumatic stress disorder.

AphasiaBank [27] is a repository containing multimedia
language samples from both participants with aphasia and
control participants. These samples were collected through
standardized discourse tasks, including unstructured speech
samples, picture descriptions, story narratives, and procedural
discourse.

Linetd

ASDBank [26] comprises acollection of language samplesand
interactions from individuals diagnosed with ASD. The data
within ASDBank include transcribed audio and video recordings
of clinical interviews and naturalistic interactions.

We used al available English-language transcripts from both
AphasiaBank and ASDBank. Data processing was performed
to consolidate all samples from a single participant into 1 data
point. The resulting dataset comprised 715 aphasia data points
and 352 control data points for AphasiaBank and 34 ASD data
points and 44 control data points for ASDBank.

The DAIC-WOZ database [29] consists of semistructured
interviews conducted by a simulated agent designed to identify
symptoms of depression and posttraumatic stress disorder. These
interviewsinclude questions about personal experiences, quality
of life, and emotions. We consolidated all samples from a
participant, including the interviewer’s input, into asingle data
point. The DAIC-WOZ databaseincludes 56 patient data points
and 133 control data points.

Table 2 providesasummary of the diagnosisdistribution across
each dataset.

Table 2. The number of control and patient data pointsin each of the datasets we evaluated.

Database Number of control data points Number of data points for condition of interest
AphasiaBank 352 715

ASDBank 44 34

DAIC-WOZ? 133 56

3DAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.

Aphasia, depression, and ASD each manifest distinct linguistic
characteristics that are both overlapping and unique. Aphasia,
typically resulting from brain damage, is characterized by
impaired language production and comprehension, often
including repetitive language and the frequent use of filler words
asindividuals struggleto retrieve or organize words effectively
[30]. Depression, while primarily a mood disorder, affects
language through reduced verbal output, monotone speech, and
a preference for negative or self-critical language patterns.
Depressive language, such as expressions of negativity, can be
akey symptom of the condition. Another characteristic linguistic
feature is an excessive number of sighs, reflecting physical or
emotional fatigue. ASD is marked by unique communication
challenges, including delayed speech development, echolalia
(repetition of phrases), difficulty with pragmatic language (eg,
understanding sarcasm or socia cues), and overly literal or
formal speech. Individuals with ASD may aso exhibit
fragmented sentences and frequent use of filler words, reflecting
challenges in organizing thoughts or navigating social
interactions [31].

Many previous studies have leveraged the datasets we used in
our research. However, much of the existing work has focused
on advanced tasks such as multimodal detection or severity
classification rather than simpler text-based binary classification
using chatbots. These studies have often achieved strong
(although not clinically trand atable) performances, frequently
exceeding 80% in F;-scores or accuracy. For example, Dinkel

https://ai.jmir.org/2025/1/€75030

et al [32] applied a text-based multitask network to the
DAIC-WOZ dataset, achieving an F;-score of 0.84 for binary
detection. Similarly, Agrawal and Mishra [33] used a fused
bidirectional encoder representation from transformers—a
bidirectional long short-term memory model integrated with
Extreme Gradient Boosting to perform binary classification,
achieving an F;-score of 91%.

For the AphasiaBank dataset, most previous studies have
focused on severity classification, making direct comparisons
with our binary classification study challenging. The only
relevant work, conducted by Cong et al [34], found that using
LLM-derived surprisal features facilitated detection, achieving
79% in both accuracy and F;-score. Similarly, studiesinvolving
the ASDBank dataset are limited, partly due to its recent
development. Chu et al [35] included another dataset, the Child
Language Data Exchange System, asasource of healthy control
data. By extracting a few linguistic features from these 2
datasets, their binary classification approaches reached an
F,-scores of over 80% [35].

These studies suggest that LLM-based models directly
diagnosing from the datasets used in this study should achieve
high performance if chatbots exhibit comparable classification
capabilities to those modelsin the previous studies.
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M odels

We evaluated 2 approaches using 3 types of state-of-the-art
conversational Al models: ChatGPT with GPT-4, ChatGPT
with GPT-40, and ChatGPT with GPT-03 (OpenAl); Gemini
2.5Pro (GoogleAl); and Claude 3.5 Sonnet (Anthropic). These
modelswere sel ected because they are some of the most widely
used modern LLMs and because their efficacy in
neurobehaviora classification tasks remains underexamined in
the current literature. Notably, models such as Gemini 2.5 Pro
and ChatGPT with GPT-03 incorporate built-in prompting
strategies such as chain-of-thought reasoning, alowing us to
examine how such strategies influence performance. We
excluded open models such as Llama because they do not
support file input and including them would require a different
approach from that used for the other models we tested.

Assessment Scales

We incorporated 3 widely recognized assessment scales and
checklistsusedin clinical settings. We selected scal esthat assess
behaviors at least tangentially related to language and that do
not require extended observation periods. For example, the
Autism Spectrum Quotient evaluates traits such as socia
preferences (“ S'he prefers to do things with others rather than
on her/hisown”), behavioral patterns (* S/he prefersto do things
the same way over and over again”), and attention capabilities
(“havedifficulty sustaining attention in tasksor fun activities”).
Therating system for this checklist—definitely disagree, dightly
disagree, dightly agree, and definitely agree—does not
necessitate longitudinal observation, unlike scales that use
time-sensitive ratings such as rarely, less often, very often, and
always.

The assessment scales and checklistsincluded in our study were
as follows: (1) the fluency test in the Western Aphasia

Linetd

Battery—Aphasia Quotient (AphasiaBank) [36], (2) the Autism
Spectrum Quotient (ASDBank) [37], and (3) Burn's Depression
Checklist [38] (DAIC-WOZ database).

In the 2 direct diagnosis conditions, we conducted the
experimental procedure 5 times and obtained results based on
the entirety of each dataset. We did not perform atraining and
testing split for these conditions, opting instead for a zero-shot
classification approach to assessthe models' ahility to generalize
from their pretrained knowledge. However, in the code
generation conditions, we instructed the chatbot to perform
stratified 5-fold cross-validation on the entire dataset. The
training and testing split ratio during each fold was 4:1. Results
were eval uated based on the test sets generated during each fold
and subsequently averaged.

Ethical Consider ations

Thisstudy did not involve the recruitment of human participants
or the collection of new data. All analyses were conducted on
publicly available, deidentified datasets—AphasiaBank, the
DAIC-WOZ database, and ASDBank—that are widely used in
research and do not contain personally identifiableinformation.
As such, no application for ethics review was submitted. This
approach is consistent with institutional and regional guidelines
that exempt studies using publicly available, deidentified data
from human subjects review.

Results

CoreResults
Tables 3 to 8 present the cross-validation results of the 2
approaches applied to each dataset, reporting accuracy, F4-score,

specificity, and sensitivity. Performance under the direct
diagnosis conditions varied across datasets.

Table 3. Results of 4 approaches on the AphasiaBank dataset in the direct diagnosis condition.

Accuracy F,-score Specificity Sensitivity
Results from Cong et al [34] 0.79 0.79 _a 0.79
No assessment scale, mean (SD)
GPT-4 0.567 (0.1) 0.6556 (0.136) 0.33(0.3) 0.684 (0.29)
GPT-40 0.561 (0.029) 0.648 (0.111) 0.397 (0.11) 0.642 (0.22)
GPT-03 0.49 (0.06) 0.544 (0.113) 0.328 (0.01) 0.665 (0.01)
Gemini 2.5 Pro 0.508 (0.01) 0.599 (0.012) 0.317 (0.02) 0.659 (0.013)
Assessment scale, mean (SD)
GPT-4 0.293 (0.34)° 0.358 (0.376)" 0.297 (0.187) 0.647 (0.09)
GPT-40 0.497 (0.01)P 055 (0.02)° 0577 (0.02) 0.458 (0.02)
GPT-03 0.555 (0.183)° 0.568 (0.4)° 0.108 (0.19) 0.645 (0.037)
Gemini 2.5 Pro 0.661 (0.07)° 0.792 (0.003)° 0.381 (0.08) 0.672 (0.003)
3Missing data.
PNo test conducted.

P<.001 for GPT-03 accuracy; P<.001 for F1-score (no assessment scale vs assessment scale).

https://ai.jmir.org/2025/1/€75030
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Table 4. Results of 4 approaches on the AphasiaBank dataset in the code generation condition.

Accuracy, mean (SD) F1-score, mean (SD) Specificity, mean (SD) Sensitivity, mean (SD)

No assessment scale

GPT-4 0,67 (0.16)2 0.74 (0172 0.79 (0.24) 0.40 (0.31)
GPT-40 0.67 (0.0113)2 0.802 (0.008)2 0.68(0.011) 1(0)
GPT-03 0.835 (0.035)% 0.865 (0.029) 0.920 (0.077) 0.793 (0.041)
Claude35 0.605 (0.034)° 0.623 (0.036)° 0.844 (0.037) 0.488 (0.033)
Gemini 2.5 Pro 0.7882 (0.02)% 0.8429 (0.016)% 0.6645 (0.057) 0.8490 (0.031)
Assessment scale
GPT-4 0,67 (0.16)° 0.74.(0.17)" 0.80 (0.25) 0.41 (0.30)
GPT-40 0.741 (0.022)° 0.814 (0.016)° 0.786 (0.024) 0.843 (0.007)
GPT-03 0.835 (0.035)° 0.865 (0.029)° 0.920 (0.077) 0.793 (0.041)
Claude35 0.608 (0.036)° 0.627 (0.039)° 0.844 (0.037) 0.492 (0.036)
Gemini 2.5 Pro 0.7891 (0.021)° 0.8437 (0.015)° 0.6674 (0.072) 0.8490 (0.024)

3p<.001 for GPT-4 accuracy; P<.001 for GPT-4 F4-score; P<.001 for GPT-40 accuracy; P<.001 for GPT-40 F-score; P<.001 for GPT-03 accuracy;
P<.001 for GPT-03 F1-score; P<.001 for Gemini 2.5 Pro accuracy; P<.001 for Gemini 2.5 Pro F;-score (direct diagnosis versus code generation in
non—assessment scal e setups when marked in the “No assessment scale” section)

PNo test conducted.

®P=.07 for GPT-40 accuracy; P=.06 for GPT-40 F1-score (assessment Vs no assessment).

Table 5. Results of 4 approaches on the ASDBank dataset in the direct diagnosis condition.

Accuracy F,-score Specificity Sensitivity
Results from Chu et a [35] 0.76 0.85 0.2 0.94
No assessment scale, mean (SD)
GPT-4 0.5 (0.00) 0.598 (0.00) 0.227 (0.00) 0.853 (0.00)
GPT-40 0.421 (0.03) 0.514 (0.129) 0.155 (0.212) 0.765 (0.323)
GPT-03 0.6026 (0.00) 0.575 (0.00) 0.667 (0.00) 0.575 (0.00)
Gemini 2.5 Pro 0.485 (0.08) 0.449 (0.09) 0.549 (0.08) 0.421 (0.08)
Assessment scale, mean (SD)
GPT-4 0.427 (0.01)2 056 (0.08) 0.09 (0.157) 0.863 (0.24)
GPT-40 0.491 (0.09) 0,542 (0.117)2 0.236 (0.39) 0.802 (0.342)
GPT-03 0.436 (0.00) 0.607 (0.00) 0.00 (0.00) 0.436 (0.00)
3o test conducted.
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Table 6. Results of 4 approaches on the ASDBank dataset in the code generation condition.

Linetd

Accuracy, mean (SD)

F1-score, mean (SD)

Specificity, mean (SD)

Sensitivity, mean (SD)

No assessment scale

GPT-4 0.618 (0.125) 0.616 (0.104) 0.55 (0.286) 0.71 (0.199)
GPT-40 0.653 (0.103) 0.55 (0.184)2 0.73(0.303) 0.576 (0.378)
GPT-03 0.679 (0.041)2 0.679 (0.041)2 0.864 (0.083) 0.433 (0.195)
Claude 3.5 0.68 (0.16)" 0.6 (0.22)° 0.67 (0.35) 0.69 (0.4)
Gemini 2.5 Pro 0.74 (0.09)% 0.63 (0.14)2 052 (0.16) 0.91 (0.08)
Assessment scale
GPT-4 0.642 (0.165)° 0,628 (0.17)° 0.6 (0.334) 0.695 (0.231)
GPT-40 0.628 (0.194)° 0,592 (0.1974)° 0.689 (0.325) 0.578 (0.257)
GPT-03 0.679 (0.041)° 0.679 (0.041)° 0.864 (0.083) 0.433 (0.195)
Claude 3.5 0.64 (0.13)° 0.6 (0.23)° 0.69 (0.41) 0.67 (0.36)

3p=.002 for GPT-4 accuracy; P=.001 for GPT-4 F;-score; P=.03 for GPT-40 accuracy; P=.015 for GPT-40 Fq-score; P=.009 for GPT-03 accuracy;
P=.005 for GPT-03 F1-score; P=.006 for Gemini 2.5 Pro accuracy; P=.003 for Gemini 2.5 Pro F1-score (direct diagnosis versus code generation in
non—assessment scal e setups when marked in the “No assessment scale” section)

bNo test conducted.

®P=.99 and P=.99 for GPT-4 accuracy and F1-score (assessment Vs non-assessment).

Table 7. Results of 4 approaches on the Distress Analysis Interview Corpus-Wizard-of-Oz (DAIC-WOZ) database in the direct diagnosis condition.

Accuracy Fq-score Specificity Sensitivity
Results from Dinkel et a [32] 0.86 0.84 — 0.83
Results from Agrawal and Mishra[33] — 0.91 — 0.89
No assessment scale, mean (SD)
GPT-4 0.333(0.04) 0.452 (0.04) 0.08 (0.51) 0.939 (0.039)
GPT-40 0.623 (0.01) 0.346 (0.176) 0.711 (0.168) 0.409 (0.347)
GPT-03 0.595 (0.05) 0.252 (0.12) 0.704 (0.02) 0.269 (0.05)
Gemini 2.5 Pro 0.616 (0.11) 0.222 (0.132) 0.700 (0.02) 0.294 (0.09)
Assessment scale, mean (SD)
GPT-4 0.56 (0.06)° 0.416 (0.07) 0.56 (0.08) 0516 (0.05)
GPT-40 0.709 (0.05) 0.08 (0.01) 1(0.00) 0.429 (0.006)
GPT-03 0.635 (0.05)° 0.281 (0.14)° 0.72 (0.01) 0.355 (0.08)
Gemini 2.5 Pro 0.54 (0.07)° 0.363 (0.09) 0.71(0.06) 0.306 (0.08)
8o test conducted.

bp=_44 for GPT-4 accuracy and P=.43 for F1-score (assessment vs no assessment).
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Table 8. Results of 4 approaches on the Distress Analysis Interview Corpus-Wizard-of-Oz (DAIC-WOZ) database in the code generation condition.

Accuracy, mean (SD)

F1-score, mean (SD)

Specificity, mean (SD) Sensitivity, mean (SD)

No assessment scale

GPT-4 0.624 (0.024)° 0.268 (0.047)° 0.79 (0.035) 0.233 (0.048)
GPT-40 0.681 (0.126)% 0.2038 (0.1474) 0.886 (0.087) 0.2286 (0.2382)
GPT-03 0.6667 (0.0572) 0.1472 (0.1636) 0.1091 (0.1185) 0.1091 (0.1185)
Claude 35 0.649 (0.103)" 0.2386 (0.113)° 0.7672 (0.0251) 0.2136 (0.1131)
Gemini 2.5 Pro 0.6138 (0.08)" 0.4037 (0.09)" 0.6846 (0.11) 0.4439 (0.11)
Assessment scale
GPT-4 0.63 (0.027)° 0271 (0.05)° 0.797 (0.036) 0.233 (0.048)
GPT-40 0.681 (0.1587)° 0.213 (0.1587)° 0.9 (0.073) 0.223(0.2389)
GPT-03 0.619 (0.06)" 0.283 (0.161)° 0.768 (0.09) 0.2682 (0.17)
Claude 35 0.657 (0.109)° 0.33 (0.1153)° 0.7738 (0.1) 0.328 (0.1153)
Gemini 2.5 Pro 0518 (0.068)" 0.4822 (0.037)° 0.5524 (0.13) 0.478 (0.03)

3p<.001 for GPT-4 accuracy; P<.001 for GPT-4 F4-score; P<.001 for GPT-40 accuracy; P<.001 for GPT-40 Fq-score; P<.001 for GPT-03 accuracy;
P<.001 for GPT-03 F4-score (direct diagnosi s versus code generation in non—assessment scal e setups when marked in the “ No assessment scale” section)

bNo test conducted.

®P=.80, P=.60 for GPT-4 accuracy and F1-score; P=.30, P=.20 for Claude 3.5 accuracy and F1-score (assessment vs non-assessment).

Tables 3 and 4 [34] compare approaches on the AphasiaBank
dataset against a baseline performance of 79% across metrics
in the study by Cong et a [34]. All of our direct diagnosis
conditions yielded alower performance than this baseline. Our
code generation conditions improved results significantly, with
ChatGPT with GPT-03 achieving the highest F;-score (0.865)
and balanced specificity (0.92) and sensitivity (0.793),
surpassing the baseline by Cong et al [34].

Theresultsonthe ASDBank dataset were compared against the
baseline results from Chu et a [35], who achieved an F;-score
of 0.85 and a high sensitivity of 0.94, although specificity was
notably low at 0.2. Our direct diagnosis approaches struggled
in comparison, with ChatGPT with GPT-4 and ChatGPT with
GPT-03 producing lower F;-scores (0.598 and 0.575,
respectively) and poor specificity. The code generation condition
significantly improved overall performance, with Claude 3.5
achieving the highest accuracy (0.68) and F;-score (0.6). The
other models a so showed improvement, but their performance
on specificity and sensitivity was less consistent. Gemini 2.5
Pro was unableto provide ratings on the checklist dueto content
restrictions related to ethical guidelines.

For the DAIC-WOZ dataset, the studies by Dinkel et al [32]
and Agrawal and Mishra [33] established strong baselines,
achieving F;-scores of 0.84 and 0.91, respectively, along with
high accuracy and sensitivity. In comparison, our direct
diagnosis approaches showed inconsistent performance, with
ChatGPT with GPT-40 and ChatGPT with GPT-4 achieving
the highest accuracy (0.623) and F;-score (0.452)—notably low
values—with even poorer results on the other metrics. While
the code generation approachesyielded higher accuracy in some
cases, they did not meaningfully improve overall performance

https://ai.jmir.org/2025/1/€75030

as their F;-scores were significantly lower than those of the
direct diagnosis condition.

We also note that most comparisons between assessment scale
and no assessment scale conditions did not yield statistically
significant differences except for ChatGPT with GPT-03 and
Gemini 2.5 Pro in the AphasiaBank direct diagnosis condition,
which showed significant improvements in both accuracy and
F;-score.

Overal, our findings reveal asubstantial gap when using the 2
different approaches: code generation and direct diagnosis.
While code generation and newer model s seem to haveimproved
performance compared to direct prompting, they still did not
reach thelevelsreported in previous studiesin most cases. Both
approaches fell short of established benchmarks, underscoring
the limitations of current LLM-based diagnostic methods that
rely solely on prompting without model fine-tuning.

Error Analysis

Overview

We first address the errors in the direct diagnosis approach,
which did not appear to work well. We observed that most
roundsof classification yielded close-to-random performances,
especially for older models (ChatGPT with GPT-4 and ChatGPT
with GPT-40). Interestingly, we noticed patterns in the
classification ratings produced, such as digits limited to only
multiples of 3 or repeating sequences(eg, 3,2, 1,0, 3,2, 1, 0).
We present the percentage of rounds over 5 rounds of
classification that followed such patterns in Table 9. This
demonstrates that a direct diagnosis prompting strategy does
not work well if models are presented with the entire dataset at
once.
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Database and approach GPT-4random predictionsn=5 GPT-40 random predic- GPT-03 random predic-  Gemini 2.5 Pro random
(%) tions n=5 (%) tions n=5 (%) predictions (%)

AphasiaBank

Without assessment scale 80 60 0 0

With assessment scale 20 60 100 80
ASDBank

Without assessment scale 20 100 0 80

With assessment scale 100 100 0 _a
DAIC-WOZP database

Without assessment scale 40 80 0 20

With assessment scale 20 100 20 0

aNot applicable.
bDAIC-WOZ: Distress Analysis Interview Corpus-Wizard-of-Oz.

For the code generation approach, we found some exampl es of
text archetypes (ie, typica examples) that were frequently
misclassified. These archetypes often reflect characteristics of
the conditions. Common errors we observed are described in
the following sections.

Repetitive Language and Filler Words (Aphasia)

The presence of repetitive language patterns and an increased
frequency of filler words led to misclassification as a high
proportion of false positives for aphasia. Control participants
responsestypically exhibited minimal repetition and filler word
use. However, even adlight elevation in these linguistic elements
frequently resulted in misclassification, with the chatbots
erroneoudly classifying control participants as positives.
Notably, misclassified fase positives from amost all the
chatbots contained these features.

Fragmented Sentences and Filler Words (ASD)

Transcripts containing filler words or fragmented sentences
were misclassified in aimost 100% of cases as false positives
originating from individuals with ASD. With generative
pretrained transformer models, this archetype was observed in
most false-positive data points, indicating a consistent
misclassification pattern. In contrast, Claude 3.5 exhibited a
different trend because most misclassified points were false

https://ai.jmir.org/2025/1/€75030

negatives. Claude 3.5 did not appear to excessively use the
linguistic feature characteristic of this archetype.

Lack of Depressive Language (Depression)

Text lacking overt depressiveindicators and conveying generally
positive sentiments accounted for a large amount of false
negatives. For instance, statements such as “uh I'd say maybe
the fact that it's alot different than it was about ten years ago”
and “1 am pretty happy with the level of education I’ ve gotten”
often led to false negatives.

Excessive Amount of Laughter (Depression)

Texts containing instances of laughter were classified as false
negativesin >70% of cases originating from control participants
rather than individuals with depression.

Excessive Number of Sighs (Depression)

Texts containing referencesto sighing were categorized asfalse
positives originating from individuals with depression. Over
30% of false-positive casesincluded this feature, indicating its
disproportionate influence on the classification process.

Freguency of Occurrence of Archetypes

Table 10 detailsthe frequency of occurrence of these archetypes.
The observed misclassifications highlight the inherent
constraints of relying on text-based methodsfor neurobehavioral
diagnosis.
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Table 10. Percentage of each text archetype in false-positive or false-negative data points in the code generation conditions averaged across folds.

Archetype and approach GPT-4 (%) GPT-40 (%) GPT-03 (%) Claude3.5 Gemini 2.5Pro
(%) (%)
Repetitive language and filler words (false positives)
Without assessment scale 100 100 100 100 90
With assessment scale 100 100 0 100 85
Fragmented sentences and filler wor ds (false positives)
Without assessment scale 100 100 66.67 0 100
With assessment scale 100 100 66.67 0 _a
L ack of depressive language (false negatives)
Without assessment scale 87.67 89.02 30 85 100
With assessment scale 87.67 89.09 100 79.09 100
Excessive amount of laughter (false negatives)
Without assessment scale 88.36 88.34 78 90.7 96.77
With assessment scale 88.36 88.9 80.5 90.7 100
Excessive number of sighs (false positives)
Without assessment scale 67.44 69.23 30.8 52 60.61
With assessment scale 65.12 74.19 29 52.17 100
ot available.
Discussion Regarding the code generation condition, our findings suggest

Principal Findings

This study revealsthe limitations of using LLMsfor automated
neurobehavioral classification. In both direct diagnosis
conditions, we encountered significant limitations with these
models, which tended to generate random or close-to-random
predictions. The models occasionally refused to offer diagnoses,
and when compelled to complete the tasks, the resulting
classifications were not accurate. These challenges were even
more pronounced with Claude 3.5 and Gemini 2.5 Pro, with
which wefaced difficulties generating any classification results
or ratingsin some conditions. Theinclusion of assessment scales
did not substantially improve performance as the ratings on
scale items also appeared to be randomly assigned in most
situations. Notably, in many of these conditions, we observed
aconcerning trend in which assessment scal e ratings were often
identical across participants regardless of individual differences
in their text data.

It is important to note that previous studies have successfully
achieved F;-scores of 70% to 80% using subsets of the
ASDBank dataset and high performance (F;-scores of
80%-90%) using various methods on at least portions of the
other 2 datasets [32-35]. In contrast, our results indicate that
most direct diagnosis approaches and the code generated by
these models were not able to attain similar results to those of
previous studies. This discrepancy suggests a gap between the
performance that ML models can potentially achieve and the
outcomes observed in our study. This may be due to our
relatively straightforward methodological approach.

https://ai.jmir.org/2025/1/€75030

that LLM-generated ML pipelines show promising potential
for improving diagnostic performance. Notably, on the
AphasiaBank dataset, ChatGPT with GPT-03 produced code
that outperformed resultsreported in previous studies, although
the choice of learning algorithms sometimes varied across
conditions and lacked a clear rationale.

In the code generation condition using assessment scales, we
observed that the code from the chatbots did not apply diagnostic
thresholds as defined by the assessment scales but, instead,
directly incorporated the ratings as ML features. The rating
methods were simplistic, and the chatbots frequently
implemented a keyword-counting algorithm to provide ratings
for ASDBank and DAIC-WOZ. These ratings were then
concatenated with features extracted from the feature extractor.
This direct concatenation of features without sophisticated
integration of diagnostic logic may explain why the assessment
scale conditions did not lead to improved performance. More
effective integration of these ratingsin the generated code may
help enhance future model performance.

We also observed that models with built-in chain-of-thought
reasoning capabilities such as ChatGPT with GPT-03 and
Gemini 2.5 Pro exhibited improved performance under certain
conditions. For instance, in the code generation tasks on the
AphasiaBank dataset, these chain-of -thought model s consistently
outperformed others. Permutation tests conducted on the test
sets across 5 cross-validation folds reveded statisticaly
significant differences between models that used
chain-of-thought reasoning and those that did not (ChatGPT
with GPT-4vs Gemini 2.5 Pro: accuracy P=.01, F;-score P=.03;
ChatGPT with GPT-4 vs ChatGPT with GPT-03: accuracy
P<.001, F;-score P<.001; ChatGPT with GPT-40 vs Gemini
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2.5 Pro: accuracy P=.01, F;-score P=.002; ChatGPT with
GPT-40 vs ChatGPT with GPT-03: accuracy P<.001, F;-score
P<.001). While this improvement was not observed across al
datasets (ie, DAIC-WOZ and ASDBank), the integration of
structured prompting strategies appears to be a promising
direction for future research.

In previous studies, human-in-the-loop processes have
demonstrated promisefor diagnostic classification tasks[39,40].
However, in such approaches, the human must remain more
involved in the computational diagnosis procedure than simply
prompting the LLM to generate a direct diagnosis, clinica
rating, or classification code. In prior work for autism
diagnostics, for example, humans have extracted the behavioral
features—atask that requires the ability to interpret relatively
subjective human behavior—leaving the ML modelsto perform
the simpler task of the fina classification given the
human-derived features [41,42]. It is likely that humans
performing at least some level of analysis of the datawill need
to continueto achieve clinically useful performance, and future
prompt engineering approaches should explore theseideas more
thoroughly.

Limitations

We acknowledge several limitations of this study beyond the
observed performance gaps.

First, the scope of our investigation was limited to 3 datasets,
each representing a distinct neurobehavioral condition with
relatively small sample sizes. This may constrain both the
robustness and generalizability of our findings, as well as the
models capacity to learn effectively.

Acknowledgments
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Second, another limitation liesin the selection and applicability
of theclinical checklists used in the assessment scal e approach.
In many cases, the patient transcripts lacked sufficient
information to reliably rate all items on the scales, potentially
resulting in random or invalid scores. Future work may consider
using longer or more comprehensive patient transcripts or
choosing assessment tools that are more tolerant of limited
inputs.

Third, additional prompting strategies warrant exploration.
While we observed performance gains from models that
incorporated chain-of-thought reasoning by default, other
prompting techniques may also enhance diagnostic accuracy.

Finally, al input data were presented to the models at once in
asinglefile. Thismay have hindered their ability to processthe
content effectively. Presenting the data incrementaly one
instance at a time could reduce noise and improve prediction
consistency.

Conclusions

This study demonstrates that popular LLM-based chatbots
remain inadequate for classifying neurobehavioral conditions
from text transcripts even when prompted to incorporateclinical
assessment scalesinto their eval uation strategy. We recommend
that future research further investigate the limitationsidentified
in this study and examine whether incorporating structured
tools—such as assessment scal es—can serve asaviable method
to improve diagnostic accuracy for neurobehavioral conditions
when using more sophisticated prompting strategies.
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