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Abstract
Shared decision-making is central to patient-centered care but is often hampered by artificial intelligence (AI) systems that
focus on technical transparency rather than delivering context-rich, clinically meaningful reasoning. Although AI explainability
methods elucidate how decisions are made, they fall short of addressing the “why” that supports effective patient-clinician
dialogue. To bridge this gap, we introduce artificial intelligence–supported shared decision-making (AI-SDM), a conceptual
framework designed to integrate AI-based reasoning into shared decision-making to enhance care quality while preserving
patient autonomy. AI-SDM is a structured, multimodel framework that synthesizes predictive modeling, evidence-based
recommendations, and generative AI techniques to produce adaptive, context-sensitive explanations. The framework distin-
guishes conventional AI explainability from AI reasoning—prioritizing the generation of tailored, narrative justifications that
inform shared decisions. A hypothetical clinical scenario in stroke management is used to illustrate how AI-SDM facilitates
an iterative, triadic deliberation process between health care providers, patients, and AI outputs. This integration is intended to
transform raw algorithmic data into actionable insights that directly support the decision-making process without supplanting
human judgment.
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Introduction
Shared decision-making (SDM) is characterized by collabora-
tion between health care professionals (HCPs) and patients
to align with patient values [1]. It has become central
to patient-centered care, marking a shift from historical
paternalism [2]. Concurrently, artificial intelligence (AI) is
increasingly integrated into health care, offering powerful
tools for diagnosis, prognostication, and treatment planning
[3,4], thereby augmenting clinical capabilities through the
analysis of vast datasets [5]. Despite the potential synergies,
effectively integrating AI insights into the established SDM
process remains a critical challenge.

A key barrier lies in the distinction between artificial
intelligence explainability (XAI) and AI reasoning. While
XAI focuses on rendering algorithmic processes transpar-
ent, primarily for technical validation [6], it often fails
to produce justifications that are clinically meaningful and
readily communicable within the patient-HCP dialogue. This
technical transparency, though important for trust [6], does
not equate to the human-centered, contextual reasoning
required for SDM. Consequently, there is a disconnect:
AI may be explainable technically but not communicable
clinically, and traditional SDM frameworks lack mechanisms
to incorporate AI-generated reasoning [7].

This paper introduces artificial intelligence-supported
shared decision-making (AI-SDM), a conceptual framework
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designed to bridge this gap. AI-SDM leverages predictive
modeling, evidence synthesis, and generative AI to embed
AI reasoning, contextual, human-interpretable justifications,
directly into the SDM workflow. The framework facilitates
collaborative deliberation among HCPs, patients, and AI
systems, ensuring AI insights are transparent, contestable, and
tailored to individual patient circumstances. By positioning
AI as a reasoning facilitator rather than a decision maker,
AI-SDM aims to enhance decision quality and evidence-
based practice while preserving patient autonomy. Herein,
we differentiate AI reasoning from explainability, detail the
AI-SDM model and its multimodal AI integration, illustrate
its potential application in a clinical scenario, and discuss
implementation challenges and future directions.

AI Reasoning Versus Explainability
Integrating AI effectively into SDM demands clarity on key
distinctions between AI transparency, XAI, and AI reasoning.
AI transparency provides fundamental visibility into the AI’s
process and data, aiming for openness and enabling auditabil-
ity. This primarily serves regulators, developers, and users
needing to understand “What did the system do?”, often via
access to code or data flow [6].

Building on this, XAI focuses specifically on illuminating
the internal algorithmic logic. Its goal is primarily technical—
model validation, debugging, and fairness checks—targeted at
developers, data scientists, and auditors’ fairness [6,8]. XAI
answers “How did the system produce the output?” using
techniques like feature importance scores (Shapley Additive
Explanation), heatmaps, or local models (Local Interpretable
Model-Agnostic Explanations) [8]. While vital for technical
trust and validation [9,10], this technical transparency alone
is insufficient for clinical application, as a weight vector or
probability score does not equate to a usable explanation for
SDM.

AI reasoning, central to the proposed AI-SDM framework,
shifts the focus decisively to clinical relevance and justifica-
tion within the specific patient context. Its goal is to facilitate
understanding and deliberation among the key audience:
HCPs and patients. It addresses the crucial question, “Why is
this output relevant for the patient?” by generating clinically
meaningful outputs, such as contextual narratives and risk/
benefit summaries, rather than raw algorithmic data [8]. Table
1 summarizes these core distinctions.

Table 1. Distinctions among artificial intelligence (AI) transparency, artificial intelligence explainability (XAI), and AI reasoning.
Feature AI transparency XAI AI reasoning (for AI-SDM)a

Focus Visibility of process/data Internal algorithmic logic Clinical relevance and justification
Goal Openness and auditability Model validation, debugging, and fairness

check
Facilitate understanding and deliberation

Audience Regulators, developers, and
users

Developers, data scientists, and auditors HCPb and patients

Answers “What did the system do?” “How did the system produce the output?” “Why is this output relevant for the
patient?”

Example output Access to code/data flow Feature importance (SHAP)c, heatmaps, LIMEd Contextual narrative and risk/benefit
summary

aAI-SDM: artificial intelligence–supported shared decision-making.
bHCP: health care professional.
cSHAP: Shapley Additive Explanations.
dLIME: Local Interpretable Model-Agnostic Explanations.

The capacity for AI reasoning has evolved significantly.
Historically, clinical decision-making relied on human
cognition, later supplemented by early rule-based or
probabilistic clinical decision support systems offering
limited reasoning capabilities [4,11]. The integration of
machine learning and, more recently, advanced large
language models (LLMs) has transformed AI’s poten-
tial [12-15]. Modern AI can now perform multistep,
domain-specific inference [16,17], moving beyond mere
pattern recognition to simulate aspects of human deduc-
tive, inductive, abductive, and case-based reasoning [18].
AI systems draw on diverse reasoning approaches—from
symbolic logic (transparent but less flexible) and statistical
methods (probabilistic and less intuitive causality) to opaque
neural networks and hybrid neuro-symbolic or knowledge-
infused systems aiming for interpretability and semantic
alignment [19-21].

This advanced AI reasoning is crucial for SDM, align-
ing with principles of evidence-based practice and precision
medicine [7,22]. SDM requires more than accurate predic-
tions; it demands justifications grounded in clinical work-
flows, patient history, and anticipated outcomes, enabling
deliberation on values and trade-offs [18,23]. AI reasoning
provides this by synthesizing large-scale, heterogeneous data
(genomic, clinical, real-world evidence) [24] and articulating
not just what is predicted, but why it applies to the individ-
ual, considering complex risk-benefit profiles and personal
priorities [19,21,24-26]. AI reasoning thus acts as a com-
municative, human-centered layer built upon, but distinct
from XAI’s technical foundations [10,23,27]. This distinction
reshapes trust: while XAI builds trust via technical valida-
tion, AI reasoning fosters interpersonal trust through semantic
clarity, contextual relevance, and value alignment within the
clinical encounter—prerequisites for meaningful SDM.
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The Role of AI Reasoning in SDM
SDM as a Process
SDM is a structured yet flexible process in which HCPs and
patients collaboratively determine the best course of action,
integrating medical evidence with the patient’s values and
preferences. Recognizing that many clinical decisions involve
multiple valid options, SDM ensures that the chosen path
reflects what matters most to an informed patient. The process
unfolds in distinct stages [1]. Information exchange serves as
the foundation, with HCP presenting viable options, detailing
their benefits, risks, and uncertainties. Traditionally, this stage
is often supported by static Patient Decision Aids, such
as those developed guided by frameworks like the Ottawa
Decision Support Framework [28]. The aim is to prepare
patients by increasing knowledge and helping clarify values.
Deliberation follows, allowing the patient and HCP to explore
these options in the context of the patient’s goals, concerns,
and circumstances. This phase encourages active dialogue,
where patients seek clarification and HCPs ensure compre-
hension. Decision-making emerges from this discussion, as
both parties reach a consensus that aligns clinical exper-
tise with patient priorities. Finally, implementation trans-
lates the decision into action, requiring commitment from
both patient and HCP. Adherence depends on confidence in
the decision, reinforced by clear communication, trust, and
continued support through follow-up. While SDM enhances
patient engagement and clinical outcomes, its integration into
routine practice remains inconsistent. Effective implementa-
tion demands a cultural shift in clinical workflows, supported
by training, institutional commitment, and tools that facilitate
meaningful participation rather than tokenistic involvement.
Challenges in SDM Addressed by AI and
Generative AI
Despite the established benefits of SDM, practical imple-
mentation faces substantial barriers that AI, particularly
generative AI, can effectively address. The contemporary
medical environment presents HCPs and patients with
increasingly complex information that can impede effec-
tive communication. While traditional AI models provide
structured risk stratification and evidence-based recommen-
dations, generative AI complements these by transforming
clinical data into adaptive, natural language explanations that
facilitate interactive engagement.

A significant barrier is varying health literacy, with
many adults struggling to comprehend complex medical
information. Generative AI addresses this by converting
dense medical reasoning into accessible narratives, calibra-
ted to individual literacy levels through techniques like
reading-level adaptation, while preserving clinical accu-
racy. This supports more meaningful engagement across
diverse patient populations without sacrificing informational
integrity. Furthermore, AI reasoning can synthesize informa-
tion related to multiple conditions or comorbidities, present-
ing a holistic view tailored to the patient’s overall health

status, which is often difficult with standard, single-condition
PDAs.

Time constraints consistently limit comprehensive SDM
implementation. Generative AI streamlines this process by
autonomously producing structured, real-time summaries
of clinical options and responding dynamically to patient
queries. This capability allows HCPs to allocate consulta-
tion time to value-based discussions rather than manual data
synthesis, enhancing clinical efficiency without compromis-
ing decision quality.

Patient heterogeneity in clinical priorities and out-
come preferences necessitates personalized communication.
Generative AI enables interactive dialogue that adapts to
individual concerns. For example, it can restructure treat-
ment comparisons to emphasize nonsurgical alternatives
when patients express concerns about operative interven-
tions or highlight specific risks and benefits relevant to
the patient’s unique circumstances (eg, comorbidities). This
responsive adaptation ensures explanations evolve according
to articulated preferences, supporting truly patient-centered
communication. To ensure consistency and interoperability,
the output generated by AI reasoning systems could be
grounded in standardized clinical terminologies, such as
Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT). SNOMED CT provides a comprehensive,
computer-processable vocabulary for clinical terms used in
EHRs globally. Aligning AI-generated explanations with
SNOMED CT could help ensure the terminology used is
consistent with the patient’s record and potentially compati-
ble with existing structured decision support tools or clinical
information systems.
AI Reasoning Versus Explainability in
SDM
In clinical decision support, AI reasoning aims to deliver
tailored rationales specific to a patient’s context and values,
going beyond technical transparency. Conventional explain-
ability methods, such as feature-importance plots or proba-
bility distributions, may reveal how a model arrives at its
outputs, yet rarely clarify why a recommendation is meaning-
ful for this patient. By contrast, AI reasoning situates those
outputs within clinical logic and patient priorities, generat-
ing user-friendly justifications that directly facilitate SDM
conversations. In this way, generative AI can transform raw
model outputs into narrative explanations relevant to each
patient’s unique goals, thus enabling a richer, more interactive
exchange than code-level transparency can provide.

The value of AI in SDM lies not in technical transparency
but in delivering clear, relevant, and actionable explana-
tions that support informed decision-making. Generative AI
enhances this process by enabling real-time refinement of
reasoning based on HCP modifications and patient queries.
This dynamic responsiveness allows the system to restructure
explanations according to evolving priorities, for instance,
shifting focus when patients express preferences regarding
quality versus length of life, or adjusting the complex-
ity based on literacy needs. Human-level AI reasoning,
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augmented by generative AI’s capacity to produce adaptive,
context-aware explanations, surpasses abstract explainabil-
ity in clinical relevance and utility, directly supporting the
fundamental objectives of SDM in contemporary health care
practice.

The Intersection of AI Reasoning and
SDM
Overlapping Elements of AI Reasoning
and SDM
For AI to effectively support SDM, its reasoning processes
must align with the communicative and deliberative nature
of HCP-patient interactions. Both AI reasoning and SDM
inherently demand clarity, transparency, justification, and

personalization. For instance, when an AI provides clinically
aligned logic, it directly supports the information exchange
step by framing recommendations in medical terms that HCPs
can relay and discuss with patients. Transparent recommenda-
tions facilitate the deliberation phase by clearly presenting
options alongside their respective pros and cons. Similarly,
a clear justification for AI-generated outputs bolsters the
decision-making step, providing concrete, evidence-based
rationales. Additionally, AI adaptability to individual patient
contexts, values, and literacy levels emulates the tailored
communication essential for effective SDM. An AI system
capable of communicating through clinical reasoning can
seamlessly integrate into the SDM dialogue. In contrast,
an AI that provides only raw recommendations without
explanations offers limited value in collaborative clinical
interactions (Table 2).

Table 2. Overlap between artificial intelligence (AI) reasoning components and shared decision-making (SDM) process steps.
AI reasoning component SDM component Overlap
Clinically aligned logic Information exchange AI must explain decisions in terms of medical reasoning HCPsa can share with

patients.
Transparent recommendations Deliberation AI reasoning should present options openly, helping patients and doctors compare

choices.
Justification of AI outputs Decision-making AI should provide clear rationale (“why”) to support the chosen option.
Adaptability to patient context Tailored communication AI should adjust its explanations to the individual patient’s needs and values.

aHCP: health care professional.

What SDM Lacks Without AI Reasoning
When AI reasoning is absent, HCPs and patients are left with
raw scores or black-box outputs that fail to address indi-
vidual preferences and concerns. Moreover, merely disclos-
ing the technical details of a system’s predictions does not
sufficiently enable patients to evaluate personal trade-offs.
Similarly, it does not help them understand how a recom-
mendation aligns with their health objectives. Consequently,
lacking coherent, patient-centered logic, these AI suggestions
may appear arbitrary, eroding trust and undermining SDM’s
commitment to collaborative, value-sensitive decision-mak-
ing. Ultimately, advice that lacks contextual reasoning, which
both the HCP and patient can discuss meaningfully, turns
into top-down instructions. Thus, this approach limits the
opportunity for a shared dialogue.
Bridging AI Reasoning and SDM: Toward
AI-SDM
Bridging the gap between AI capabilities and SDM needs
requires a shift toward a new paradigm: AI-SDM. This model
emphasizes practical integration and technical feasibility in
real-world care. AI-generated explanations must be tailored to
the clinical context [29,30]. Just as experienced HCPs adjust
communication to different scenarios and patient profiles,
AI systems should generate context-sensitive justifications.
These must reflect clinical reasoning and align with patient
values. For example, in chemotherapy decisions, AI reasoning
should emphasize expected efficacy based on tumor type,
potential side effects, and survival projections—framed
according to the patient’s values, such as prioritizing quality

of life over longevity. In chronic disease management, such
as lifestyle interventions, explanations may instead highlight
long-term risk reduction and adherence support. Tailoring AI
reasoning to clinical context ensures its explanations are both
relevant and usable [30].

Integrating AI-SDM into clinical practice requires
alignment with existing health IT infrastructure. A feasible
workflow might involve the AI-SDM system being triggered
within the electronic health record (EHR) during a patient
encounter. The system could leverage modern interoperabil-
ity standards, such as Health Level Seven International Fast
Health care Interoperability Resources application program-
ming interfaces, to interface with the EHR [31]. These
standards enable secure retrieval of up-to-date patient data,
including diagnoses, medications, lab results, and problem
lists coded using SNOMED CT [32]. Predictive AI compo-
nents would then analyze this data to generate context-spe-
cific risk assessments, outcome probabilities, or treatment
comparisons based on established models and guidelines.
Subsequently, a generative AI component would synthesize
these complex outputs into patient-friendly language, creating
tailored explanations, summaries, and potentially visual aids.
These can be presented directly within the EHR interface for
the HCP and patient to review and discuss together.

Successful adoption hinges not only on technical integra-
tion but also on stakeholder readiness. Key hurdles include
ensuring robust IT infrastructure and establishing privacy-
compliant data governance protocols. Providing adequate
training for HCPs is also key. This helps them effectively
use and critically appraise AI outputs within the SDM
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context. Strong leadership and organizational commitment
are essential to address these challenges, supporting integra-
tion and promoting AI as a collaborative tool. This tool
enhances, rather than replaces, clinical judgment and patient
partnership. Such a standards-based foundation is a prerequi-
site for reliable data retrieval, consistent interpretation, and
effective AI-SDM deployment across diverse clinical settings
and platforms.

Defining AI-SDM: A New Conceptual
Model
Theoretical Foundations of AI-SDM
Dual-process theory of clinical cognition proposes that
clinicians alternate between fast, intuitive pattern recognition
(system 1) and slower, analytical reasoning (system 2) when
diagnosing and selecting treatments [33]. AI-SDM mirrors
this architecture by pairing predictive and recommendation
models, which emulate System 2’s probabilistic deliberation,
with a generative reasoning layer that approximates System
1’s narrative synthesis. This pairing enables the framework
to deliver quantitative risk estimates while simultaneously
providing context-sensitive justifications that fuel real-time
dialogue. The model is further anchored in the Ottawa
Decision Support Framework, which conceptualizes SDM
as a sequence of need identification, values clarification,
and decision support [34]. By embedding adaptive values-
clarification prompts within the generative layer, AI-SDM
operationalizes these stages and ensures that explanations
evolve in response to patient priorities. Principles of patient-
centered communication likewise inform system design:
explanations are calibrated to individual literacy, emotional
state, and cultural context to preserve relational autonomy and
encourage bidirectional questioning [35]. Empirical evidence
shows that decision aids incorporating tailored narratives
and explicit values clarification improve decisional quality
and patient trust, particularly when powered by AI-driven
reasoning engines that maintain transparency and contestabil-
ity [36,37]. Synthesizing these theoretical strands positions

AI-SDM not merely as a technological overlay but as a
cognitive and communicative scaffold that aligns algorith-
mic inference with the epistemic norms of evidence-based,
patient-centered care.
What Is AI-SDM?
AI-SDM is a comprehensive, multimodel conceptual
framework developed to incorporate AI-driven reasoning
into clinical decision-making. It explicitly ensures HCP
oversight and preserves patient autonomy. Unlike conven-
tional AI-based decision-support tools that often focus solely
on algorithmic outputs or technical explainability, AI-SDM
introduces a collaborative reasoning approach. It enables
real-time interaction and deliberation among HCPs, patients,
and AI-generated insights. AI-SDM is built upon a multilay-
ered AI system where different AI models contribute distinct
functionalities: predictive AI performs risk stratification and
outcome modeling; recommendation AI retrieves evidence-
based guidelines and treatment options; natural language
processing (NLP) AI extracts relevant data from clinical
records; and generative AI functions as the crucial reason-
ing facilitator, transforming complex, structured AI outputs
into interactive, patient-specific explanations. Through this
synergistic integration, AI-SDM ensures that AI remains an
adaptive and justifiable tool. It allows HCPs and patients to
engage in structured deliberation while preserving the core
principles of SDM.

AI-SDM builds on advances from sophisticated clinical
decision support systems and incorporates Human-Computer
Interaction principles for usability. It distinguishes itself
fundamentally by its primary goal. That is to generate
adaptive, narrative clinical reasoning specifically designed to
facilitate the triadic deliberation (HCP-patient-AI) inherent in
the SDM process. It shifts the focus from mere prediction or
transparency toward context-rich, personalized justifications
that clinicians can explore, modify, and communicate in
natural language. While Table 1 compared technical forms
of AI interpretation, Table 3 expands the comparison to full
clinical decision frameworks, contrasting how SDM, XAI,
and AI-SDM function at the bedside.

Table 3. Comparison of traditional shared decision-making (SDM), artificial intelligence explainability (XAI), and artificial intelligence–supported
shared decision-making (AI-SDM) framework.
Dimension Traditional SDM XAI AI-SDM framework (proposed)
Purpose Aligning decisions with patient

values
Explain algorithm outputs Generate contextual and patient-specific

reasoning
Output format Human dialogue and evidence

summaries
SHAPa values, LIMEb, and
saliency maps

Adaptive narrative, visual, and verbal
reasoning

Workflow integration Manual and time-intensive External to workflow Embedded within clinical encounter
workflow

Personalization Based on clinician skill/time Minimal; generalized models High; tailored to clinical context and patient
data

Patient role Dialogue partner Passive receiver Active participant in AI-drivenc deliberation
Clinician role Central guide Interpreter of AI outputs Deliberation lead, with modifiable AI input
Use of AI None Explanatory only Multimodel: predictive, generative, NLPd,

and recommendation
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Dimension Traditional SDM XAI AI-SDM framework (proposed)
Transparency Human-led discussion Technical interpretability Justifiable clinical reasoning in natural

language
Limitations Time, consistency, and cognitive

load
Low usability in clinical
conversations

Dependent on quality of AI design and
integration

Example scenario Stroke decision made via verbal
counseling

Feature weights for “recommend
thrombectomy”

Narrative of options, risks, and priorities
generated in-session

aSHAP: Shapley Additive Explanation.
bLIME: Local Interpretable Model-Agnostic Explanations.
cAI: artificial intelligence.
dNLP: natural language processing.

AI-SDM Workflow and Multimodel AI
Integration
AI-SDM operates through 4 integrated phases. Each phase
leverages specialized AI models while preserving HCP
oversight and patient autonomy (Figure 1).

The decision process begins with structured data acquis-
ition. This involves gathering information from 3 essen-
tial sources: HCP-provided medical history and diagnostic
considerations; patient-articulated values, goals, and risk
preferences; and AI-derived evidence from clinical guide-
lines and research findings. During this phase, 3 specific
AI functions are used. Predictive AI performs personalized
risk assessment and outcomes analysis. Recommendation
AI determines evidence-based treatment paths. Additionally,
NLP with LLMs extracts unstructured data from health
records and literature.

Following data integration, AI-SDM synthesizes statisti-
cal models, clinical best practices, and individual patient
characteristics into a structured decision model. This model
then generates 2 distinct outputs. First, HCPs receive a
comprehensive, evidence-based report detailing risk-adjusted
treatment pathways, complete with probability estimates and
confidence intervals. Second, patients receive an interac-
tive explanation, which may include visual aids, tailored
to their understanding. Generative AI plays a crucial role
by transforming these structured outputs into context-spe-
cific explanations. These explanations are adaptable to user
engagement, thereby surpassing the limitations of static AI
summaries.

An important conceptual consideration in this multimodel
integration is the potential for conflicting or inconsistent
outputs. Such conflicts can arise between the predictive,
recommendation, and NLP components. For example, a
high predicted risk from the predictive model might con-
flict with a standard guideline recommendation from the
recommendation module. To address these conflicts, the
AI-SDM framework incorporates a dedicated reconciliation
layer. This layer automatically applies a clinically priori-
tized weighting mechanism. If a conflict occurs, the system
assigns greater weight to validated risk factors while flagging

any unresolved discrepancies for HCP review. This proc-
ess ensures full transparency regarding potential ambiguities
within the underlying data. Moreover, it maintains a robust
foundation that supports subsequent generative AI reasoning.
This ensures both transparency and audibility of any data
ambiguities.

A central innovation in the AI-SDM workflow involves
converting structured algorithmic output into adaptive,
human-centered reasoning. Instead of static recommenda-
tions, generative AI produces dynamic, context-sensitive
explanations that evolve based on HCP and patient inter-
action. These explanations are explicitly grounded in the
underlying evidence and are safeguarded against potential
biases or hallucinations (details of this implementation are
beyond the scope of this paper). The AI component is
designed for adaptability in both content and timing. It can,
for instance, provide concise, rapid summaries for acute
scenarios or more detailed rationales for planned consulta-
tions. The AI delivers reasoning, rather than merely out-
comes, through dual channels tailored specifically to HCP
and patient needs. This transforms the AI from a data
synthesizer into a deliberation partner, supporting more
justifiable clinical decisions.

The AI-SDM model facilitates real-time modification
of AI-generated reasoning through continuous HCP evalua-
tion and patient engagement. HCPs can adjust recommenda-
tions based on their expertise and contextual factors that
extend beyond algorithmic reach. Simultaneously, patients
can interrogate specific risks and refine their preferen-
ces. In response to these inputs, generative AI dynami-
cally updates explanations. This iterative adaptation process
ensures continuous alignment with both clinical judgment and
evolving patient priorities.

The culmination of this process is a human-controlled,
AI-assisted decision that aligns clinical evidence with patient
values. AI-enhanced documentation captures the delibera-
tive process, preserving transparency and accountability in
medical records. The system can then generate personalized
educational materials to support treatment adherence and
follow-up strategies, ensuring continuity of care beyond the
initial decision point.
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Figure 1. AI-supported SDM conceptual model: a structured, multiphase workflow for integrating AI-generated reasoning into SDM. The model
begins with input collection from health care professionals (HCPs; medical context), patients (values, preferences), and AI-derived sources (clinical
data and guidelines). Core AI functions, predictive modeling, clinical recommendation, and NLP support contextual risk stratification and evidence
synthesis. Generative AI then produces adaptive, human-centered explanations tailored separately for HCPs and patients. The system supports
real-time refinement of reasoning through HCP adjustments and patient queries, culminating in a human-controlled shared decision and follow-up
planning. Color key: blue boxes within the diagram indicate processes or stages that generate multiple distinct outputs or lead to multiple subsequent
steps in the workflow; pink boxes represent processes or outputs that are directly driven or generated by AI components. AI: artificial intelligence;
CDSS: clinical decision support system; EHR: electronic health record; NLP: natural language processing; SDM: shared decision-making.

Hypothetical Application: AI-SDM in
Stroke Management

Overview
The decision to perform mechanical thrombectomy or pursue
medical therapy in elderly patients with acute ischemic stroke
presents a complex, high-risk clinical scenario requiring rapid
yet nuanced deliberation. While thrombectomy significantly
improves functional outcomes in patients with large-ves-
sel occlusion, older adults face unique challenges such as
increased procedural risks, pre-existing comorbidities, and
varied rehabilitation potential [38]. AI-SDM enhances this
decision-making process by integrating predictive modeling,

evidence-based recommendations, NLP for context extrac-
tion, and generative AI to facilitate structured, adaptive
reasoning.

Scenario
A patient, aged 82 years, presents with an acute ischemic
stroke due to an occlusion of the middle cerebral artery.
Neuroimaging confirms a substantial penumbral salvageable
region with a small infarct core, indicating potential eligibility
for thrombectomy based on current criteria [39]. However,
the patient has a history of hypertension, mild cognitive
impairment, and prior minor strokes, all of which influ-
ence the potential for meaningful neurological recovery and
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postprocedure rehabilitation. The AI-SDM workflow guides
the decision-making process by structuring the evaluation into
distinct phases, ensuring that clinicians and patients engage in
a transparent and data-driven discussion.

Phase 1: Input and Context Collection
This phase initiates the process by consolidating patient,
clinician, and AI-derived inputs. The clinician provides an
assessment of the patient’s neurological status, prestroke
function, and imaging results, while the patient and fam-
ily articulate treatment priorities (eg, maximizing independ-
ence) and risk tolerance. AI synthesizes these inputs through
distinct subcomponents: predictive AI generates probabil-
ity-adjusted functional outcome estimates (eg, modified
Rankin Scale scores) based on real-world stroke registries
and thrombectomy trials [40]; recommendation AI retrieves
current stroke management guidelines. Additionally, NLP
integrated with LLM extracts relevant historical data from
the patient’s records, such as identifying and categorizing
symptoms, diagnoses, and treatment plans, which helps
clinicians make informed decisions [41]. This comprehensive
dataset serves as the foundation for AI-generated reasoning.

Phase 2: AI Reasoning Generation
Here, AI-SDM integrates structured insights into a clinical
model. It facilitates individualized decision support. The AI
synthesizes statistical models predicting outcomes with or
without thrombectomy. It incorporates clinical best practi-
ces based on guideline recommendations. It also includes
patient-specific variables such as age, comorbidities, and
imaging findings. These are combined into a structured
analysis adapted for clinicians and patient needs. Drawing
from studies such as DAWN and DEFUSE-3, the system
provides outcome and risk projections [42,43]. It may show
based on such studies that thrombectomy increases independ-
ence, for example, from 25% to 50%. It may also show a
10% chance of symptomatic intracerebral hemorrhage. The
clinician’s view presents a quantitative comparison of 90-day
functional outcomes. For patients, generative AI transforms
these insights into a simplified, interactive format. It presents
recovery trajectories and risks using visual aids and clear
language.

Phase 3: Interactive Clinician-Patient
Deliberation
This phase enables real-time clinician-patient engagement
with the AI-generated insights via a dedicated interface
supporting both voice and text-based interactions. The patient
might query the AI about expected recovery timelines or
independence, prompting generative AI to adjust explana-
tions using refined predictive models. The interface simulta-
neously displays the original and updated outputs side by
side, enabling the clinician to review, modify, and discuss
these results with the patient. By recalibrating the risk-benefit
summary in response to each query, the system keeps every
explanation grounded in evidence-based data. This process
occurs within a structured deliberation framework where AI
is a support, not a decision maker. Because these updates
happen in near real time, clinicians and patients remain
actively involved in refining the decision until they reach
a fully informed consensus. Patient feedback is integrated,
and clinicians may review and adjust AI reasoning accord-
ingly. This iterative loop allows both parties to deepen their
understanding before reaching a decision.

Phase 4: Shared Decision Implementation and
Documentation
The process concludes with the clinician and patient reaching
a shared decision informed by the AI-assisted deliberation. In
this scenario, the patient, having engaged with the structured
reasoning, opts for mechanical thrombectomy after weighing
the potential benefits against the articulated risks. AI then
facilitates implementation by generating structured documen-
tation of the decision rationale for the medical record,
ensuring transparency. The shared decision is fully clini-
cian- and patient-controlled, with AI strictly supporting the
process. Generative AI can also assist in drafting personalized
postprocedure care recommendations, outlining rehabilitation
expectations, and follow-up plans. The system continues
to support follow-up planning and adaptation, ensuring the
implementation remains aligned with patient needs. Through-
out, the AI acts as a facilitator, ensuring the decision is guided
by evidence and patient values under clinician oversight.
Table 4 summarizes these 4 phases using the acute ischemic
stroke scenario.

Table 4. Summary of artificial intelligence–supported shared decision-making (AI-SDM) phases in the stroke scenario.
AI-SDM phase Application in acute stroke scenario example
Input and context collection Patient aged 82 years with MCAa occlusion. Imaging shows salvageable penumbra and small infarct core.

Clinician assesses neurological status, prestroke function, and imaging. Patient/family expresses independ-
ence goals and risk tolerance. Predictive AIb generates probability-adjusted functional outcome estimates
from stroke registries and thrombectomy trials. Recommendation AI retrieves current stroke management
guidelines. NLPc+LLMd extracts relevant historical data, including symptoms, diagnoses, and treatment
plans.

AI reasoning generation AI integrates predictions, guidelines, and patient variables into structured analysis. Based on DAWN/
DEFUSE-3, it estimates outcomes (eg, 25%‐50% independence, 10% hemorrhage risk). Clinician’s view
presents a quantitative comparison of 90-day outcomes. Generative AI presents simplified, interactive
patient explanations using visual aids and clear language.
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AI-SDM phase Application in acute stroke scenario example
Interactive decision refinement Patient queries recovery timelines or independence. Clinician adjusts AI outputs based on rehab and support.

Occurs within a structured deliberation framework where AI is a support tool. Generative AI updates
reasoning dynamically. Patient feedback is integrated. Clinicians may review and adjust AI reasoning.

Final decision and implementation Shared decision made after AI-assisted deliberation. Patient selects thrombectomy. AI documents rationale
and generates personalized postprocedure recommendations, including rehab expectations and follow-up.
System supports ongoing adaptation. The decision is fully clinician- and patient-controlled.

aMCA: middle cerebral artery.
bAI: artificial intelligence.
cNLP: natural language processing.
dLLM: large language model.

Through this structured AI-SDM approach, complex stroke
treatment decisions can remain data-driven, transparent, and
patient-centered, leveraging advanced analytics and adaptive
explanations within a collaborative framework.

While the stroke scenario illustrates AI-SDM in an acute,
time-sensitive setting, the framework’s principles also apply
to complex, preference-sensitive decisions in chronic disease
management. In advanced chronic kidney disease, particu-
larly among older adults, patients often face substantial
burdens and uncertain benefits from dialysis and may remain
uninformed about conservative kidney management as a
treatment choice [44,45]. Likewise, in cardiology, decisions
such as whether to pursue left atrial appendage occlusion
instead of long-term anticoagulation for atrial fibrillation,
or how to manage advanced heart failure in line with
patient goals, frequently require nuanced SDM discussions
[46]. AI-SDM can help address these challenges by inte-
grating longitudinal data, evidence-based predictions, and
patient-reported outcomes, thus facilitating more individual-
ized deliberation around what matters most to each patient
over the course of their illness trajectory.
Ensuring AI-SDM Preserves Patient
Autonomy
A fundamental requirement for AI-SDM is that it must
safeguard patient autonomy and uphold the ethos of SDM
at every step. To this end, the model is designed such that
the AI’s outputs are always transparent, open to question,
and subordinate to human input. Both the HCP and the
patient should be empowered to challenge or adjust the AI’s
suggestions freely. For example, if the AI’s analysis seems to
favor a particular treatment strongly, the patient can ask for
clarification or express discomfort, and the HCP can probe
the AI’s reasoning for validity—in both cases, the AI must
accommodate these challenges by explaining its rationale or
recalibrating its advice. This contestability is deliberate: the
AI is not a black box oracle handing down decisions, but
a tool that invites scrutiny. Transparency is crucial here;
the AI-SDM system should clearly communicate why it is
highlighting certain options (eg, “Option A is supported by
X study for patients with your profile”) so that the human
participants can critically evaluate the reasoning. By avoiding
opaque or one-sided recommendations, the AI prevents any
undue influence or bias that could pressure the patient. In
practice, this means AI-SDM will present multiple options

with evidence rather than a singular “do this” directive, and
it will explicitly incorporate the patient’s own goals into its
analysis. The HCP retains ultimate responsibility to interpret
and, if necessary, correct the AI’s output before any action.
In sum, AI-SDM is constructed as a facilitator, not a decision
maker: it expands the information and reasoning available
to the patient and HCP, but it never replaces their agency.
The patient’s values and the HCP’s professional judgment
remain at the center of every decision, thereby preserving the
autonomy and individualized nature of care.

Challenges and Future Directions
The successful integration of AI into SDM requires proac-
tively addressing critical implementation barriers to ensure
clinical uptake, effectiveness, and ethical deployment.
HCP Adoption and Trust
Adoption hinges on transparent, interpretable AI systems
that avoid “black box” functionality. In AI-SDM, generative
AI transforms complex algorithmic outputs into verifiable
explanations with clear references to clinical guidelines and
explicit confidence levels. Implementation requires structured
reasoning pathways that allow HCPs to interrogate AI-
derived conclusions and understand their evidentiary basis,
particularly when recommendations diverge from conven-
tional practice.
Regulatory Landscape and Liability
Navigating the evolving regulatory frameworks for AI-assis-
ted clinical decision-making is crucial. AI-SDM systems,
particularly those providing diagnostic or therapeutic
recommendations, would likely be considered software as
a medical device and need to align with guidelines from
regulatory bodies like the US Food and Drug Administration
or equivalent authorities globally. Key considerations include
rigorous validation, demonstrating safety and effectiveness,
ensuring transparency (allowing HCPs to independently
review the basis for recommendations), and implementing
robust quality management systems, including postmarket
surveillance. While AI-SDM preserves human oversight by
positioning AI as decision support rather than the ulti-
mate decision maker, clear governance policies are needed
to delineate responsibility among developers, HCPs, and
health care institutions, especially concerning liability if AI
suggestions deviate from the standard of care.
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Ethical Considerations and Equity
AI-SDM must be implemented ethically, safeguarding patient
rights and promoting equity. This includes strict adherence
to data privacy regulations pertinent to health information,
such as the principles outlined in the Health Insurance
Portability and Accountability Act in the United States or
the General Data Protection Regulation in Europe, as well as
relevant national or local regulations (eg, in Saudi Arabia).
Systems must be designed to accommodate diverse health
literacy levels, cultural contexts, and cognitive abilities, and
generative AI interfaces should dynamically adjust explan-
ation complexity based on individual needs while preserv-
ing clinical accuracy. Furthermore, proactive measures are
essential to address potential algorithmic biases, which could
arise from training data used in the predictive or recommen-
dation models. To prevent AI hallucinations and preserve
clinical integrity, each generative output is anchored to
explicit citations from validated guidelines or peer-reviewed
studies. An automated audit protocol continuously monitors
real-time outputs for discrepancies, flagging any deviations
from established evidence standards so that HCPs can rapidly
override or adjust the AI’s recommendations. This includes
rigorous auditing of the underlying predictive and recommen-
dation models for fairness across demographic groups and
designing the generative AI reasoning layer to explicitly
surface significant uncertainties or conflicting evidence that
might stem from data limitations or potential biases.

Building on these safeguards, future deployments
will institute a 4-layer governance loop for continuous
bias mitigation. First, training pipelines will use fairness-
aware algorithms—such as reweighting and equalized-odds
postprocessing—to correct calibration disparities before
clinical deployment, an approach recommended by Rajko-
mar et al [47] for advancing health equity in machine-
learning systems. Second, the production environment will
stream model outputs into a real-time dashboard that audits
performance by age, sex, ethnicity, and socioeconomic
status; similar bias-auditing infrastructures have been shown
to reveal hidden performance gaps in widely used clin-
ical algorithms [48]. Third, quarterly ethical-compliance
reviews will examine data provenance, feature attribution,
and workflow impact to maintain regulatory alignment, and
finally, all bias metrics and remediation actions will be logged
in a version-controlled registry to support external audit
and public transparency. Together, these stages create an
auditable feedback loop that limits drift, documents remedia-
tion, and embeds fairness governance directly into routine
system maintenance.

The sociotechnical impact of AI-SDM also depends
on how clinicians and patients adopt, negotiate, and con-
test its recommendations. Rogers’ Diffusion of Innova-
tions theory explains variability in uptake by highlighting
perceived complexity, relative advantage, and trialability,
whereas technological-determinist perspectives warn that
overly authoritative AI may erode clinician agency, and
social-constructivist analyses emphasize that users actively
reshape technology through practice [49]. To preserve

balanced doctor-patient dynamics, AI-SDM therefore labels
the scope and limitations of every recommendation, requires
explicit clinician confirmation before any automated action,
and provides a “why-question” interface so both parties
can interrogate underlying evidence or override sugges-
tions. Empirical work on person-centered AI indicates that
transparent, assistive designs strengthen trust when clinicians
retain control, while unmoderated reliance can attenuate
empathy and SDM [50]. Embedding these sociological
insights into interface rules and governance policies anchors
AI-SDM in relational autonomy and guards against power
imbalances.
Technical Integration and Workflow
The clinical utility of AI-SDM depends on seamless
integration with existing EHR systems and clinical work-
flows. Implementation requires user-friendly interfaces that
generate concise, contextually relevant insights without
increasing cognitive burden or documentation requirements
for HCPs. However, seamlessly embedding this potentially
complex, multistep interaction, particularly the deliberative
refinement phase, into time-constrained and varied clini-
cal workflows represents a significant practical and design
hurdle. Achieving this without disrupting clinical practice or
unduly lengthening consultations will be critical for success-
ful adoption. As discussed earlier (in section “Bridging
AI Reasoning and SDM: Toward AI-SDM”), leveraging
interoperability standards like Fast Health care Interoperabil-
ity Resources and terminologies like SNOMED CT is vital.
Ultimately, AI-SDM must demonstrate measurable improve-
ments in decision quality, patient experience, or efficiency to
justify the technological investment and workflow adjust-
ments required for widespread adoption.

Addressing these multifaceted challenges necessitates
an iterative implementation approach, combining continu-
ous HCP and patient feedback with rigorous validation.
Validating the efficacy and safety of the AI-SDM frame-
work itself would require a phased approach, progressing
from algorithmic validation of individual AI components
and rigorous usability testing of the interface and explana-
tion formats, through simulation studies assessing decision
quality, to eventual pilot clinical trials evaluating real-world
impacts on patient engagement, decision concordance, and
outcomes. Successful deployment will ultimately depend on
collaborative governance structures that balance technologi-
cal innovation with clinical pragmatism, ethical principles,
patient safety, and regulatory compliance.
Future Directions
Realizing the potential of AI-SDM necessitates substantial
future research and development. Key priorities include
the rigorous development and refinement of the generative
reasoning component, incorporating robust mechanisms for
clinical validity, grounding, and bias mitigation, alongside
effective strategies for reconciling outputs from disparate
AI models. While this paper introduces AI-SDM as a
conceptual framework, future work could explore empirical
validation, such as usability studies, workflow simulations,
or clinical implementation pilots, to assess its impact on
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decision quality, patient engagement, and workflow inte-
gration. Further research grounded in HCI principles may
also inform how the model could integrate seamlessly
into clinical environments without increasing HCP burden.
Finally, ongoing investigation into dynamic fairness auditing,
evolving regulatory pathways for AI-driven SDM tools, and
establishing clear governance structures will be crucial for
responsible and equitable deployment.

Building on the dual-process and patient-centered theories
outlined above, future iterations of AI-SDM will deepen its
affective intelligence by coupling multimodal emotion‐rec-
ognition pipelines with the existing generative explanation
layer. Recent work demonstrates that equipping decision-sup-
port systems with emotional capabilities can reduce affective
bias and improve user trust when complex trade-offs are
discussed [51]. To operationalize this insight, we plan to
integrate a multimodal deep learning model that fuses facial
microexpressions, vocal prosody, and lexical sentiment—an
approach shown to outperform unimodal affect detectors in
health care contexts and to strengthen access trust between
patients and clinicians [52]. Continuous emotion streams will
inform dynamic values-clarification prompts generated by
the narrative engine, ensuring that explanations adapt when
signs of confusion, anxiety, or decisional conflict emerge. A
recent systematic review of emotion-recognition AI iden-
tifies transparent feature attribution and dataset diversity
as prerequisites for reliable affective computing in clinical
environments; these requirements will guide our data-gover-
nance and model-validation strategy [52]. Finally, evidence
from a randomized trial of an AI-enabled decision aid shows
that personalized, empathetic narratives significantly improve
decisional quality and shared-decision metrics compared with

static educational material. By embedding such adaptive
affective feedback into AI-SDM, we not only enhance
the emotional-computing module but also further align the
framework with the Ottawa Decision Support and patient-
centered communication theories that underpin its interdisci-
plinary foundation.

Conclusions
Integrating AI into clinical practice requires more than
predictive accuracy; it demands alignment with patient-
centered care principles like SDM. This paper introdu-
ces AI-SDM, a conceptual framework designed to bridge
this gap. AI-SDM leverages predictive modeling, evidence
synthesis, and generative AI to embed AI reasoning,
contextual, human-interpretable justifications, directly into
the SDM workflow, facilitating collaborative deliberation
among HCPs, patients, and AI, ensuring insights are tailored.
However, several limitations warrant attention, including the
need for pilot studies to test real-world feasibility, clear
protocols for reconciling conflicting model outputs, and
safeguards against AI hallucinations. Immediate next steps
will involve simulation-based validation and user-centered
design iterations to refine how AI-SDM integrates with
existing clinical workflows. While significant implementation
challenges remain, including ethical considerations, regula-
tory alignment, and workflow integration, AI-SDM offers a
promising pathway. By synergizing AI’s analytical power
with the personalized approach of SDM, this model can
potentially enhance decision quality, foster patient autonomy,
and advance evidence-based, patient-centered care in the era
of intelligent health systems.

Authors’ Contributions
The study was conceptualized by MA (lead), with support from NF and HJ. The methodology and visualization were led by
MA. MA also took the lead in writing the original draft of the manuscript. The review and editing of the manuscript were
carried out by MA (lead), with contributions from NF and HJ. Project administration was also led by MA.
Conflicts of Interest
None declared.
References
1. Elwyn G, Frosch D, Thomson R, et al. Shared decision making: a model for clinical practice. J Gen Intern Med. Oct

2012;27(10):1361-1367. [doi: 10.1007/s11606-012-2077-6] [Medline: 22618581]
2. Kilbride MK, Joffe S. The new age of patient autonomy: implications for the patient-physician relationship. JAMA. Nov

20, 2018;320(19):1973-1974. [doi: 10.1001/jama.2018.14382] [Medline: 30326026]
3. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine.

Future Healthc J. Jul 2021;8(2):e188-e194. [doi: 10.7861/fhj.2021-0095] [Medline: 34286183]
4. Chen Z, Liang N, Zhang H, et al. Harnessing the power of clinical decision support systems: challenges and

opportunities. Open Heart. Nov 2023;10(2):e002432. [doi: 10.1136/openhrt-2023-002432]
5. Dixon D, Sattar H, Moros N, et al. Unveiling the influence of AI predictive analytics on patient outcomes: a

comprehensive narrative review. Cureus. 2024;16(5). [doi: 10.7759/cureus.59954]
6. Amann J, Vetter D, Blomberg SN, et al. To explain or not to explain?-artificial intelligence explainability in clinical

decision support systems. PLOS Digit Health. Feb 2022;1(2):e0000016. [doi: 10.1371/journal.pdig.0000016] [Medline:
36812545]

7. Abbasgholizadeh Rahimi S, Cwintal M, Huang Y, et al. Application of artificial intelligence in shared decision making:
scoping review. JMIR Med Inform. Aug 9, 2022;10(8):e36199. [doi: 10.2196/36199] [Medline: 35943793]

JMIR AI As'ad et al

https://ai.jmir.org/2025/1/e75866 JMIR AI 2025 | vol. 4 | e75866 | p. 11
(page number not for citation purposes)

https://doi.org/10.1007/s11606-012-2077-6
http://www.ncbi.nlm.nih.gov/pubmed/22618581
https://doi.org/10.1001/jama.2018.14382
http://www.ncbi.nlm.nih.gov/pubmed/30326026
https://doi.org/10.7861/fhj.2021-0095
http://www.ncbi.nlm.nih.gov/pubmed/34286183
https://doi.org/10.1136/openhrt-2023-002432
https://doi.org/10.7759/cureus.59954
https://doi.org/10.1371/journal.pdig.0000016
http://www.ncbi.nlm.nih.gov/pubmed/36812545
https://doi.org/10.2196/36199
http://www.ncbi.nlm.nih.gov/pubmed/35943793
https://ai.jmir.org/2025/1/e75866


8. van Leersum CM, Maathuis C. Human centred explainable AI decision-making in healthcare. J Responsible Technol.
Mar 2025;21:100108. [doi: 10.1016/j.jrt.2025.100108]

9. Bouderhem R. A comprehensive framework for transparent and explainable AI sensors in healthcare. Presented at: The
11th International Electronic Conference on Sensors and Applications; Nov 26-28, 2024. [doi: 10.3390/ecsa-11-20524]

10. Petkovic D. It is not “Accuracy vs. Explainability”—we need both for trustworthy AI systems. IEEE Trans Technol Soc.
2023;4(1):46-53. [doi: 10.1109/TTS.2023.3239921]

11. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support
systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3(1):17. [doi: 10.1038/s41746-020-0221-y]
[Medline: 32047862]

12. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. Sep
29, 2016;375(13):1216-1219. [doi: 10.1056/NEJMp1606181] [Medline: 27682033]

13. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. Apr 4, 2019;380(14):1347-1358. [doi: 10.
1056/NEJMra1814259] [Medline: 30943338]

14. Li ZZ, Zhang D, Zhang ML, Zhang J, Liu Z, Yao Y, et al. From system 1 to system 2: a survey of reasoning large
language models. arXiv. Preprint posted online on Feb 24, 2025. [doi: 10.48550/arXiv.2502.17419]

15. Patil A, Jadon A. Advancing reasoning in large language models: promising methods and approaches. arXiv. Preprint
posted online on May 28, 2025. [doi: 10.48550/arXiv.2502.03671]

16. Temsah MH, Jamal A, Alhasan K, Temsah AA, Malki KH. OpenAI o1-preview vs. ChatGPT in healthcare: a new
frontier in medical AI reasoning. Cureus. Oct 2024;16(10):e70640. [doi: 10.7759/cureus.70640] [Medline: 39359332]

17. McIntosh TR, Susnjak T, Liu T, et al. From Google Gemini to OpenAI Q* (Q-Star): a survey on reshaping the
generative artificial intelligence (AI) research landscape. Technologies (Basel). 2025;13(2):51. [doi: 10.3390/
technologies13020051]

18. Almadani B, Kaisar H, Thoker IR, Aliyu F. A systematic survey of distributed decision support systems in healthcare.
Systems. 2025;13(3):157. [doi: 10.3390/systems13030157]

19. Choudhury S, Agarwal K, Ham C, Tamang S. Tamang S, editor. MediSage: An Ai Assistant for Healthcare via
Composition of Neural-Symbolic Reasoning Operators. Association for Computing Machinery; 2023. [doi: 10.1145/
3543873.3587361]

20. Machot FA, Horsch MT, Ullah H. Symbolic-AI-fusion deep learning (SAIF-DL): encoding knowledge into training with
answer set programming loss penalties by a novel loss function approach. arXiv. Preprint posted online on Nov 13, 2024.
[doi: 10.48550/arXiv.2411.08463]

21. Garg S, Parikh S, Garg S. Navigating healthcare insights: a bird’s eye view of explainability with knowledge graphs. In:
Garg S, Parikh S, Garg S, editors. Presented at: 2023 IEEE Sixth International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE); Sep 25-27, 2023; Laguna Hills, CA, USA. [doi: 10.1109/AIKE59827.2023.00016]

22. Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial intelligence and decision-making in healthcare: a thematic
analysis of a systematic review of reviews. Health Serv Res Manag Epidemiol. 2024;11:23333928241234863. [doi: 10.
1177/23333928241234863] [Medline: 38449840]

23. Nguyen KN, Le-Duc K, Tat BP, Vo-Dang L, Hy TS. Sentiment reasoning for healthcare. arXiv. Preprint posted online
on May 27, 2024. [doi: 10.48550/arXiv.2407.21054]

24. Beaubier N, Bontrager M, Huether R, et al. Integrated genomic profiling expands clinical options for patients with
cancer. Nat Biotechnol. Nov 2019;37(11):1351-1360. [doi: 10.1038/s41587-019-0259-z] [Medline: 31570899]

25. Deliu N, Chakraborty B. Artificial intelligence-based decision support systems for precision and digital health. arXiv.
Preprint posted online on Jul 22, 2024. [doi: 10.48550/arXiv.2407.16062]

26. NIH findings shed light on risks and benefits of integrating AI into medical decision-making. National Institutes of
Health. 2024. URL: https://www.nih.gov/news-events/news-releases/nih-findings-shed-light-risks-benefits-integrating-
ai-into-medical-decision-making [Accessed 2025-03-08]

27. Rajabi E, Kafaie S. Knowledge graphs and explainable AI in healthcare. Information. 2022;13(10):459. [doi: 10.3390/
info13100459]

28. Légaré F, O’Connor AC, Graham I, et al. Supporting patients facing difficult health care decisions: use of the Ottawa
decision support framework. Can Fam Physician. Apr 2006;52(4):476-477. [Medline: 17327891]

29. Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q consortium. Explainability for artificial intelligence in
healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. Nov 30, 2020;20(1):310. [doi: 10.1186/
s12911-020-01332-6] [Medline: 33256715]

30. Gerdes A. The role of explainability in AI-supported medical decision-making. Discov Artif Intell. 2024;4(1):29. [doi:
10.1007/s44163-024-00119-2]

JMIR AI As'ad et al

https://ai.jmir.org/2025/1/e75866 JMIR AI 2025 | vol. 4 | e75866 | p. 12
(page number not for citation purposes)

https://doi.org/10.1016/j.jrt.2025.100108
https://doi.org/10.3390/ecsa-11-20524
https://doi.org/10.1109/TTS.2023.3239921
https://doi.org/10.1038/s41746-020-0221-y
http://www.ncbi.nlm.nih.gov/pubmed/32047862
https://doi.org/10.1056/NEJMp1606181
http://www.ncbi.nlm.nih.gov/pubmed/27682033
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1056/NEJMra1814259
http://www.ncbi.nlm.nih.gov/pubmed/30943338
https://doi.org/10.48550/arXiv.2502.17419
https://doi.org/10.48550/arXiv.2502.03671
https://doi.org/10.7759/cureus.70640
http://www.ncbi.nlm.nih.gov/pubmed/39359332
https://doi.org/10.3390/technologies13020051
https://doi.org/10.3390/technologies13020051
https://doi.org/10.3390/systems13030157
https://doi.org/10.1145/3543873.3587361
https://doi.org/10.1145/3543873.3587361
https://doi.org/10.48550/arXiv.2411.08463
https://doi.org/10.1109/AIKE59827.2023.00016
https://doi.org/10.1177/23333928241234863
https://doi.org/10.1177/23333928241234863
http://www.ncbi.nlm.nih.gov/pubmed/38449840
https://doi.org/10.48550/arXiv.2407.21054
https://doi.org/10.1038/s41587-019-0259-z
http://www.ncbi.nlm.nih.gov/pubmed/31570899
https://doi.org/10.48550/arXiv.2407.16062
https://www.nih.gov/news-events/news-releases/nih-findings-shed-light-risks-benefits-integrating-ai-into-medical-decision-making
https://www.nih.gov/news-events/news-releases/nih-findings-shed-light-risks-benefits-integrating-ai-into-medical-decision-making
https://doi.org/10.3390/info13100459
https://doi.org/10.3390/info13100459
http://www.ncbi.nlm.nih.gov/pubmed/17327891
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
http://www.ncbi.nlm.nih.gov/pubmed/33256715
https://doi.org/10.1007/s44163-024-00119-2
https://ai.jmir.org/2025/1/e75866


31. Borna S, Maniaci MJ, Haider CR, et al. Artificial intelligence models in health information exchange: a systematic
review of clinical implications. Healthcare (Basel). Sep 19, 2023;11(18):2584. [doi: 10.3390/healthcare11182584]
[Medline: 37761781]

32. Chatterjee A, Pahari N, Prinz A. HL7 FHIR with SNOMED-CT to achieve semantic and structural interoperability in
personal health data: a proof-of-concept study. Sensors (Basel). May 15, 2022;22(10):3756. [doi: 10.3390/s22103756]
[Medline: 35632165]

33. Croskerry P. A universal model of diagnostic reasoning. Acad Med. Aug 2009;84(8):1022-1028. [doi: 10.1097/ACM.
0b013e3181ace703] [Medline: 19638766]

34. Hoefel L, Lewis KB, O’Connor A, Stacey D. 20th anniversary update of the Ottawa decision support framework: part 2
subanalysis of a systematic review of patient decision aids. Med Decis Making. May 2020;40(4):522-539. [doi: 10.1177/
0272989X20924645] [Medline: 32522091]

35. Epstein RM, Street RL. The values and value of patient-centered care. Ann Fam Med. 2011;9(2):100-103. [doi: 10.1370/
afm.1239] [Medline: 21403134]

36. Witteman HO, Maki KG, Vaisson G, et al. Systematic development of patient decision aids: an update from the IPDAS
collaboration. Med Decis Making. Oct 2021;41(7):736-754. [doi: 10.1177/0272989X211014163] [Medline: 34148384]

37. Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an artificial intelligence-enabled patient decision aid vs
educational material on decision quality, shared decision-making, patient experience, and functional outcomes in adults
with knee osteoarthritis: a randomized clinical trial. JAMA Netw Open. Feb 1, 2021;4(2):e2037107. [doi: 10.1001/
jamanetworkopen.2020.37107] [Medline: 33599773]

38. Warner JJ, Harrington RA, Sacco RL, Elkind MSV. Guidelines for the early management of patients with acute ischemic
stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke. Stroke. Dec
2019;50(12):3331-3332. [doi: 10.1161/STROKEAHA.119.027708] [Medline: 31662117]

39. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N
Engl J Med. Feb 22, 2018;378(8):708-718. [doi: 10.1056/NEJMoa1713973]

40. Broderick JP, Adeoye O, Elm J. Evolution of the modified rankin scale and its use in future stroke trials. Stroke. Jul
2017;48(7):2007-2012. [doi: 10.1161/STROKEAHA.117.017866] [Medline: 28626052]

41. Dagli MM, Ghenbot Y, Ahmad HS, et al. Development and validation of a novel AI framework using NLP with LLM
integration for relevant clinical data extraction through automated chart review. Sci Rep. Nov 5, 2024;14(1):26783. [doi:
10.1038/s41598-024-77535-y] [Medline: 39500759]

42. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-
analysis of individual patient data from five randomised trials. Lancet. Apr 2016;387(10029):1723-1731. [doi: 10.1016/
S0140-6736(16)00163-X]

43. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit
and infarct. N Engl J Med. Jan 4, 2018;378(1):11-21. [doi: 10.1056/NEJMoa1706442] [Medline: 29129157]

44. Saeed F, Schell JO. Shared decision making for older adults: time to move beyond dialysis as a default. Ann Intern Med.
Jan 2023;176(1):129-130. [doi: 10.7326/M22-3431] [Medline: 36534979]

45. Rayner HC, Thomas ME, Dasgupta I, Lalayiannis AD, Hameed MA. Planning treatment: when and how to prepare for a
life with kidney disease. In: Rayner HC, Thomas ME, Dasgupta I, Lalayiannis AD, Hameed MA, editors. Understanding
Kidney Diseases. 3rd ed. Springer Nature Switzerland; 2024:381-408. ISBN: 9783031663499

46. Perpetua EM, Palmer R, Le VT, et al. JACC: Advances expert panel perspective: shared decision-making in
multidisciplinary team-based cardiovascular care. JACC Adv. Jul 2024;3(7):100981. [doi: 10.1016/j.jacadv.2024.
100981] [Medline: 39130036]

47. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health
equity. Ann Intern Med. Dec 18, 2018;169(12):866-872. [doi: 10.7326/M18-1990] [Medline: 30508424]

48. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of
populations. Science. Oct 25, 2019;366(6464):447-453. [doi: 10.1126/science.aax2342] [Medline: 31649194]

49. Wurster F, Di Gion P, Goldberg N, et al. Roger’s diffusion of innovations theory and the adoption of a patient portal’s
digital anamnesis collection tool: study protocol for the MAiBest project. Implement Sci Commun. Jul 15, 2024;5(1):74.
[doi: 10.1186/s43058-024-00614-8] [Medline: 39010236]

50. Sauerbrei A, Kerasidou A, Lucivero F, Hallowell N. The impact of artificial intelligence on the person-centred, doctor-
patient relationship: some problems and solutions. BMC Med Inform Decis Mak. Apr 20, 2023;23(1):73. [doi: 10.1186/
s12911-023-02162-y] [Medline: 37081503]

51. Tretter M. Equipping AI-decision-support-systems with emotional capabilities? ethical perspectives. Front Artif Intell.
2024;7:1398395. [doi: 10.3389/frai.2024.1398395] [Medline: 38881951]

JMIR AI As'ad et al

https://ai.jmir.org/2025/1/e75866 JMIR AI 2025 | vol. 4 | e75866 | p. 13
(page number not for citation purposes)

https://doi.org/10.3390/healthcare11182584
http://www.ncbi.nlm.nih.gov/pubmed/37761781
https://doi.org/10.3390/s22103756
http://www.ncbi.nlm.nih.gov/pubmed/35632165
https://doi.org/10.1097/ACM.0b013e3181ace703
https://doi.org/10.1097/ACM.0b013e3181ace703
http://www.ncbi.nlm.nih.gov/pubmed/19638766
https://doi.org/10.1177/0272989X20924645
https://doi.org/10.1177/0272989X20924645
http://www.ncbi.nlm.nih.gov/pubmed/32522091
https://doi.org/10.1370/afm.1239
https://doi.org/10.1370/afm.1239
http://www.ncbi.nlm.nih.gov/pubmed/21403134
https://doi.org/10.1177/0272989X211014163
http://www.ncbi.nlm.nih.gov/pubmed/34148384
https://doi.org/10.1001/jamanetworkopen.2020.37107
https://doi.org/10.1001/jamanetworkopen.2020.37107
http://www.ncbi.nlm.nih.gov/pubmed/33599773
https://doi.org/10.1161/STROKEAHA.119.027708
http://www.ncbi.nlm.nih.gov/pubmed/31662117
https://doi.org/10.1056/NEJMoa1713973
https://doi.org/10.1161/STROKEAHA.117.017866
http://www.ncbi.nlm.nih.gov/pubmed/28626052
https://doi.org/10.1038/s41598-024-77535-y
http://www.ncbi.nlm.nih.gov/pubmed/39500759
https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1056/NEJMoa1706442
http://www.ncbi.nlm.nih.gov/pubmed/29129157
https://doi.org/10.7326/M22-3431
http://www.ncbi.nlm.nih.gov/pubmed/36534979
https://doi.org/10.1016/j.jacadv.2024.100981
https://doi.org/10.1016/j.jacadv.2024.100981
http://www.ncbi.nlm.nih.gov/pubmed/39130036
https://doi.org/10.7326/M18-1990
http://www.ncbi.nlm.nih.gov/pubmed/30508424
https://doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/pubmed/31649194
https://doi.org/10.1186/s43058-024-00614-8
http://www.ncbi.nlm.nih.gov/pubmed/39010236
https://doi.org/10.1186/s12911-023-02162-y
https://doi.org/10.1186/s12911-023-02162-y
http://www.ncbi.nlm.nih.gov/pubmed/37081503
https://doi.org/10.3389/frai.2024.1398395
http://www.ncbi.nlm.nih.gov/pubmed/38881951
https://ai.jmir.org/2025/1/e75866


52. Sakthidevi I, Fathima G. Improving access trust in healthcare through multimodal deep learning for affective computing.
Hum-Cent Intell Syst. 2024;4(4):511-526. [doi: 10.1007/s44230-024-00080-4]

Abbreviations:
AI: artificial intelligence
AI-SDM: artificial intelligence–supported shared decision-making
EHR: electronic health record
HCP: health care professional
LLM: large language model
NLP: natural language processing
SDM: shared decision-making
SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms
XAI: artificial intelligence explainability
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