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Abstract

Background: Accurate and timely electrocardiogram (ECG) interpretation is critical for diagnosing myocardial infarction
(MD) in emergency settings. Recent advances in multimodal large language models (LLMs), such as ChatGPT (OpenAl) and
Gemini (Google DeepMind), have shown promise in clinical interpretation for medical imaging. However, whether these
models analyze waveform patterns or simply rely on text cues remains unclear, underscoring the need for direct comparisons
with dedicated ECG artificial intelligence (AI) tools.

Objective: This study aimed to evaluate the diagnostic performance of ChatGPT and Gemini, a general-purpose LLM, in
detecting MI from ECG images and to compare its performance with that of ECG Buddy (ARPI Inc), a dedicated Al-driven
ECG analysis tool.

Methods: This retrospective study evaluated and compared Al models for classifying MI using a publicly available 12-lead
ECG dataset from Pakistan, categorizing cases into MI-positive (239 images) and MI-negative (689 images). ChatGPT
(GPT-40, version November 20, 2024) and Gemini (Gemini 2.5 pro) were queried with 5 MI confidence options, whereas
ECG Buddy for Microsoft Windows analyzed the images based on ST-elevation MI, acute coronary syndrome, and myocardial
injury biomarkers.

Results: Among 928 ECG recordings (239/928, 25.8% MI-positive), ChatGPT achieved an accuracy of 65.95% (95% CI
62.80-69.00), area under the curve (AUC) of 57.34% (95% CI 53.44-61.24), sensitivity of 36.40% (95% CI 30.30-42.85),
and specificity of 76.2% (95% CI 72.84-79.33). With Gemini 2.5 Pro, accuracy dropped to 29.63% (95% CI 26.71-32.69),
AUC to 51.63% (95% CI 50.22-53.04), and sensitivity rose to 97.07% (95% CI 94.06-98.81), but specificity fell sharply to
6.24% (95% CI 4.55-8.31). However, ECG Buddy reached an accuracy of 96.98% (95% CI 95.67-97.99), AUC of 98.8%
(95% CI 98.3-99.43), sensitivity of 96.65% (95% CI 93.51-98.54), and specificity of 97.10% (95% CI 95.55-98.22). DeLong
test confirmed that ECG Buddy significantly outperformed ChatGPT (all P<.001). In a qualitative error analysis of LLMs’
diagnostic explanations, GPT-40 produced fully accurate explanations in only 5% of cases (2/40), was partially accurate in
38% (15/40), and completely inaccurate in 58% (23/40). By contrast, Gemini 2.5 Pro yielded fully accurate explanations in
32% of cases (12/37), was partially accurate in 14% (5/37), and completely inaccurate in 54% (20/37).

https:/ai.jmir.org/2025/1/e75910 JMIR AI20251vol.41e759101p. 1
(page number not for citation purposes)


https://ai.jmir.org/2025/1/e75910

JMIR Al

Lee et al

Conclusions: LLMs, such as ChatGPT and Gemini, underperform relative to specialized tools such as ECG Buddy in ECG
image—based MI diagnosis. Further training may improve LLMs; however, domain-specific Al remains essential for clinical
accuracy. The high performance of ECG Buddy underscores the importance of specialized models for achieving reliable and

robust diagnostic outcomes.
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Introduction

Electrocardiogram (ECG) interpretation is a fundamental
skill in cardiovascular medicine, playing a crucial role
in diagnosing conditions such as ST-elevation myocardial
infarction (STEMI), arrhythmias, and electrolyte imbalances
[1]. Accurate and timely ECG analysis is critical in clinical
decision-making, particularly in emergency settings where
rapid interventions impact patient outcomes.

With advancements in artificial intelligence (Al),
researchers have explored using various deep learning
techniques, including convolutional neural networks and
transformer-based models, to automate ECG interpretation
by extracting clinically relevant features from ECG signal or
image data [2-5].

Recently, multimodal large language models (LLMs)
trained on textual and imaging data have gained attention
in the medical field [6]. These models have demonstrated
the ability to generate diagnostic reports, highlighting their
potential for medical image interpretation [7]. As LLMs have
become increasingly sophisticated, the interest in applying
similar multimodal architectures to ECG interpretation has
also grown.

General-purpose LLMs, such as ChatGPT (OpenAl),
have recently demonstrated some capabilities in assisting
with image interpretation and text-based medical assess-
ments [8.,9]. Unlike traditional Al models specifically trained
for ECG signal processing, these models leverage exten-
sive general knowledge and are now being considered for
processing visual medical data, including ECG images. For
example, Zaboli et al [10] investigated the ECG interpre-
tation ability and outcome prediction of ChatGPT in the
emergency department and found moderate agreement with
cardiologists, but with notable discrepancies in major adverse
cardiac event risk assessment. Zhu et al [11] reported that
GPT-4 achieved approximately 83% accuracy in multiple-
choice ECG diagnostic questions. Giinay et al [12] compared
GPT-4, GPT-40, and Gemini Advanced (Google DeepMind)
against cardiologists and emergency medicine specialists
using routine and challenging ECG cases. Although all
LLMs underperformed compared to cardiologists, GPT-40
showed relatively better accuracy and moderate agreement,
suggesting potential as a supportive tool in clinical settings.
Similarly, Avidan et al [13] examined the ability of GPT-40
to detect atrial fibrillation in ECGs with confounding factors.
Their findings indicated that while the overall accuracy of
GPT-40 was comparable to that of internists and primary
care physicians, it fell short of cardiologists’ performance,
particularly in challenging scenarios. In contrast, Giinay et al
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[14] reported that GPT-4 outperformed emergency medicine
specialists in interpreting everyday ECG cases and performed
on par with cardiologists when facing more complex ECG
challenges. However, a key limitation of their study is
that ECG descriptions rather than actual ECG images were
evaluated by GPT-4, potentially limiting its applicability in
clinical settings.

Collectively, these studies highlight that although LLM-
based approaches in ECG interpretation hold promise, their
reliability in complex cases remains limited. Moreover, it
remains unclear whether these models truly analyze wave-
form patterns or simply rely on text-based cues, such as
machine-readable annotations. This raises concerns about the
reproducibility of the models’ interpretations when presented
with raw ECG images alone.

To date, no study has systematically compared the
performance of LLMs against specialized ECG diagnostic
Al tools. This comparison is becoming increasingly rele-
vant, as general-purpose LLMs are not specifically designed
for cardiovascular medicine. However, speculation about
their potential applications in ECG interpretation is already
widespread. Thus, a comparative evaluation with dedicated
ECG AI software is necessary to determine the feasibility of
LLM-based ECG interpretation in clinical practice.

Recent studies comparing ChatGPT-40 with Gemini on
ECG interpretation tasks identify both models as suitable
reference LLMs, so we included them in our evaluation [12].
We then benchmarked their performance against ECG Buddy
(ARPI Inc.), a commercially available, domain-specific Al
tool for ECG analysis.

ECG Buddy is approved by the Korean Ministry of
Food and Drug Safety, South Korea’s regulatory agency for
medical device oversight, responsible for thorough examina-
tions and continuous supervision, and is currently in routine
clinical use at multiple hospitals, including tertiary care
centers. ECG Buddy has been validated in multiple studies,
demonstrating superior diagnostic accuracy to clinical experts
in detecting conditions such as myocardial infarction (MI),
hyperkalemia, and right ventricular (RV) dysfunction [15-18].

This study aimed to evaluate the diagnostic performance
of ChatGPT and Gemini relative to a dedicated ECG Al
(ECG Buddy) in analyzing ECG images for MI detection.
MI interpretation is one of the most essential aspects of
ECG analysis. Through this comparative study, we aimed to
determine whether LLMs could currently be used for ECG
interpretation in clinical practice.
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Methods
Study Design and Data Preparation

In this retrospective study, we evaluated the performance of
ChatGPT, Gemini, and ECG Buddy in classifying MI from
ECG images. A publicly available 12-lead ECG image dataset
compiled by the Ch. Pervaiz Elahi Institute of Cardiology
in Multan, Pakistan, was used [19]. The dataset includes
ECG images categorized into the following 4 groups: patients
with MI (239 images), patients with abnormal heartbeats
(233 images), patients with a history of MI (172 images),
and healthy controls (284 images). This publicly available,
fully deidentified ECG image dataset was chosen to enable
reproducible benchmarking without privacy constraints and is
frequently referenced in prior studies. The dataset does not
provide additional patient information beyond these labels.
It lacks metadata such as infarct territory or cardiac bio-
marker data needed to differentiate STEMI from non-STEMI
(NSTEMI). Therefore, further analyses by infarct location or
NSTEMI status were not possible.

This study was designed and reported in accordance with
the TRIPOD-LLM (Transparent Reporting of a Multivaria-
ble Prediction Model for Individual Prognosis Or Diagnosis
specifically tailored for LLM) guidelines, a comprehensive
reporting framework for studies involving LLMs in health
care, to ensure that every step, from data processing and
image-to-text conversion to Al querying and performance
evaluation, was transparently and reproducibly documented
[20]. To ensure consistency in data processing, extraneous
areas of the images, including any supplementary text not
related to patient information or diagnosis, were cropped,

Textbox 1. GPT-40 prompt design.

Lee et al

retaining only the waveform regions. No raster-to-signal
conversion was applied, and all analyses were performed
directly on the image data. For classification, only the
images labeled as “patients with myocardial infarction” were
designated as MI-positive, representing active MI cases.
The remaining 689 images, comprising abnormal heartbeats,
history of MI, and healthy cases, were classified as MI-nega-
tive.

Al Query and Output (ChatGPT and
Gemini)

The identical workflow was applied to 2 multimodal LLMs—
GPT-40 (OpenAl, version November 20, 2024) and Gemini
2.5 Pro (Google, May 2025 release). To assess the ability
of LLMs to classify MI from ECG images, we designed
a structured prompt aimed at systematically capturing the
model’s diagnostic rationale and confidence in detecting MI.
Before querying, ECG images were converted into base64
format, a lossless binary-to-text format required by both
application programming interfaces (APIs) and one that
preserves every pixel and ensures no loss of ECG signal
fidelity.

Each LLM received the base64-encoded images and
prompted explicitly to analyze them, determine the likeli-
hood of MI, and select from 5 predefined response catego-
ries—unknown, unlikely, possible, probable, and definite—
representing increasing diagnostic certainty. Both LLMs were
queried with the prompt shown in Textbox 1, which presents
the ChatGPT-40 version; the Gemini 2.5 Pro prompt was
identical, differing only in that the model name was replaced
with “GPT-40.”

SYSTEM_TEXT = (

explanation for your choice.”
pathological Q waves).”

differential diagnoses.”

)
CONFIDENCE_TEXT = (

“Confidence Levels for MI Diagnosis:\n”

)

try:
messages = [
{*role”: “system”, “content”: SYSTEM_TEXT},

{

https://ai.jmir.org/2025/1/€75910

“Analyze the provided ECG image in base64 format and assess the likelihood of Myocardial Infarction (MI).”
“Based on your analysis, select the most appropriate confidence level regarding the presence of MI and provide a detailed

“Specify which leads exhibit abnormalities and describe the observed changes (eg, ST-segment elevation, T-wave inversion,

“If no abnormalities are present, explain why the ECG appears normal. If the findings are ambiguous, discuss potential

“Definitely Not — No ECG evidence or extremely low probability of MI; clearly normal waveform patterns.\n”
“Unlikely — Minimal or questionable evidence making MI improbable; non-specific changes.\n”

“Possible — Moderate suspicion with mixed findings; abnormalities with alternative explanations possible \n”
“Probable — Strongly suggestive findings (ST-segment elevation, pathological Q waves, T-wave inversion).\n”
“Definite — Conclusive evidence: clear ST elevation in contiguous leads, significant Q waves, reciprocal changes.\n\n”
“Respond in JSON with keys: confidence, explanation, abnormal_leads.”

data = [] for idx, (file_name, base64_image) in enumerate(tqdm(image_results, desc="ECG”)):
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99, ¢

“role”: “user”,

“content”: [

{

“type”: “image_url”,

“image_url”: {

“url”: f"data:image/png;base64,{base64_image}",
“detail”: “high”

¥

¥

{

“type”: “text”,

“text”: CONFIDENCE_TEXT,

¥

I

¥

1

response =client.chat.completions.create(

model="gpt-40”,

messages =messages,

temperature =0.0,

max_tokens =300,

)

chatgpt_result =response.choices[0].message.content.strip()
except Exception as e:

print(f’[Error] {file_name}: {e}")

chatgpt_result = None

data.append({*“File Name”: file_name, “ChatGPT Result”: chatgpt_result})

Lee et al

To define a positive MI diagnosis based on this likelihood
measure, the Youden index was applied to determine an
optimal cutoff. Specifically, ChatGPT was instructed to
identify and specify which ECG leads exhibited abnormal-
ities, describe the changes observed (such as ST-segment
elevation, T-wave inversion, or pathological Q waves), and
provide detailed reasoning supporting its diagnostic conclu-
sion. In cases where no abnormalities were noted or the
ECG findings were ambiguous, the model was prompted

https://ai.jmir.org/2025/1/€75910

to discuss potential alternative diagnoses or clearly explain
why the ECG appeared normal. All queries were conduc-
ted using GPT-40 via the ChatGPT API. An example of
a typical ChatGPT response is illustrated in Figure 1. All
inferences were conducted as single-turn prompts, since each
case consisted only of a deidentified ECG image with no
ancillary clinical or serial ECG data that could support further
interaction, and our study aimed to evaluate the models’ final
diagnostic performance.
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Figure 1. Example electrocardiogram images and ChatGPT model output for myocardial infarction detection. ECG: electrocardiogram.

Qualitative Assessment of Diagnostic
Explanations—ChatGPT and Gemini

In addition, a qualitative assessment of the diagnostic
explanations of LLMs was performed to further evaluate the
ability to accurately interpret ECG images. For GPT-4o0, 40
cases were randomly selected: 10 true-positive, 10 true-neg-
ative, 10 false-positive, and 10 false-negative. For Gemini
2.5 Pro, the same procedure yielded 37 cases (10 true-pos-
itive, 10 true-negative, 10 false-positive, and 7 false-nega-
tive) owing to the model’s smaller false-negative pool. Two
board-certified clinicians, an emergency medicine special-
ist and a cardiologist, each with more than 10 years of
ECG interpretation experience, independently reviewed the
diagnostic explanations to assess whether the model provided
clinically appropriate rationales for their classification. They
then reconciled any discrepancies by consensus, and the
final consensus ratings, together with per-reviewer tallies, are
reported in the Results section.

Al-Powered Image Analysis (ECG Buddy)

ECG Buddy is a deep learning—based ECG analysis plat-
form designed for 12-lead ECG image interpretation. The

https://ai.jmir.org/2025/1/e75910

Based on the provided ECG image, the confidence level regarding
the presence of Myocardial Infarction (MI) is "Possible.™ Hesre's
the detailed explanation for this choice:

1. **Lead Abnormalities*=: The ECG image shows some abnormalities
that could be suggestive of an MI, but they are not definitive.
The leads that might exhibit changes include the anterior leads
(V1-v4) and possibly the inferior leads (II, III, &VF).

2. *#*0bserved Changes**:

- #*5T-Segment Elevation®*: There appears to be some elevation
in the ST-segment in the anterior lesds, which can be indicatiwve
of an antericr MI. However, the elevation is not proncunced
enough to be conclusive without further clinical correlation.

- #*=T-lave Inversion**: There might be some T-wave inversions
in the inferior leads, which can be associated with ischemia or
infarction, but these changes are not definitive on their own.

- **Pathological ( Waves**: There are no clear pathological @
waves observed, which are typically indicative of a previous MI.

3. **#Ambiguities and Differential Diagnoses**:

- The ECG findings are ambiguous and could be due to other
conditions such as early repolarization, pericarditis, or left
ventricular hypertrophy, which can mimic MI patterns.

- Clinical correlation with patient symptoms, history, and
additional tests (e.g., cardiac biomarkers, imaging) would be
necessary to confirm or rule cut MI.

In conclusion, while there are some ECG changes that could
suggest an ML, they are not definitive, and further clinical
evaluation is needed to establish a diagnosis.

software is available for both smartphones and Microsoft
Windows—based desktop personal computers. In this study,
ECG Buddy for Microsoft Windows [21] was used to perform
bulk analysis of ECG data (Figure 2). It is approved by
the Korean Ministry of Food and Drug Safety and freely
available for download in Korean app stores and can analyze
12-lead ECGs by taking pictures of ECG outputs to produce
10 digital biomarkers. The software automatically detects
the ECG image displayed on the desktop and provides the
analysis results within 10-15 seconds. Figure 2A shows
the operating screen of ECG Buddy for Microsoft Win-
dows, while Figure 2B shows the ECG image analysis
output. ECG Buddy generates 10 digital biomarkers that
assess a range of cardiac conditions, including STEMI,
acute coronary syndrome (ACS), myocardial injury (Myolnj),
critical condition, pulmonary edema, pericardial effusion,
left ventricular dysfunction, RV dysfunction, pulmonary
hypertension, and severe hyperkalemia. This study analyzed
only the STEMI, ACS, and Myolnj biomarkers owing to their
direct relevance to MI classification.

JMIR AI 2025 | vol.41e75910 1 p. 5
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Figure 2. The operating screen of ECG Buddy for Microsoft Windows. (A) ECG input image and (B) ECG image analysis result.
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Statistical Analysis

Model performance was evaluated using accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV). The Youden index was used
to determine optimal classification thresholds. In addition,
model performance was evaluated using the area under the
receiver operating characteristic curve (AUROC), and the
AUC values were compared using the DeLong method,
with statistical significance set at P<.05. All analyses were
conducted using R software version 4.1.0 (RStudio) [22],
with ChatGPT API responses obtained using Python (Python
Software Foundation).

Ethical Considerations

The study design was approved by the Institutional Review
Board of Seoul National University Bundang Hospital
(IRBX-2504-966-902). Given the public availability of the
dataset, the Institutional Review Board of Seoul National
University Bundang Hospital granted a waiver for the
requirement of informed consent.

Results

Performance of ChatGPT and ECG
Buddy

In total, 928 ECG recordings (239/928, 25.8% MI-posi-
tive cases) were analyzed, and all were successfully pro-
cessed by both Al models. ChatGPT demonstrated limited
discriminative ability in MI detection, achieving an AUC

https://ai.jmir.org/2025/1/€75910
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of 57.34% (95% CI 53.44-61.24). Using the Youden index,
the optimal cutoff was determined as the category “definite.”
At this cutoff, the model’s sensitivity, specificity, PPV, and
NPV were 36.40% (95% CI 30.30-42.85), 76.20% (95% CI
72.84-79.33), 34.66% (95% CI 28.79-40.90), and 77.55%
(95% CI 74.21-80.64), respectively (Figure 3A and Table 1).
Gemini 2.5 Pro showed even weaker overall discrimination,
with an AUC of 51.63% (95% CI 50.22-53.04). Applying the
same Youden index procedure, the optimal cutoff correspon-
ded to the “definite” category. At this threshold, sensitivity
rose to 97.07% (95% CI 94.06-98.81) but at the expense
of specificity, which fell to 6.24% (95% CI 4.55-8.31); the
resulting PPV and NPV were 26.42% (95% CI 23.53-29.47)
and 86.00% (95% CI 73.26-94.18), respectively (Figure 3A
and Table 1).

The dedicated ECG Al software ECG Buddy exhibited
highly accurate MI classification across the STEMI, ACS,
and Myolnj markers. The AUC for detecting MI-positive
cases for the STEMI biomarker was 98.87% (95% CI
98.30-99.43), for the ACS biomarker was 98.78% (95% CI
98.05-99.50), and for the Myolnj biomarker was 98.88%
(95% CI 98.24-99.51). Using the STEMI biomarker, ECG
Buddy achieved the best accuracy of 96.98% (95% CI
95.67-97.99), with a sensitivity of 96.65% (95% CI 93.51-
98.54), specificity of 97.10% (95% CI 95.55-98.22), and
Fi-score of 9427% (95% CI 91.86-96.28). DeLong test
confirmed that ChatGPT (AUC 53.63%) performed signifi-
cantly worse than ECG Buddy across all biomarkers (all
P<.001; Figure 3B and Table 1).
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Figure 3. Diagnostic performance of large language models and ECG Buddy. (A) ChatGPT-40 and Gemini 2.5 Pro and (B) ECG Buddy. ACS: acute
coronary syndrome; MYOINJ: myocardial injury; STEMI: ST-elevation myocardial infarction.
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Table 1. Diagnostic performance of ChatGPT-40, Gemini 2.5 Pro, and ECG Buddy. Data are expressed as values and 95% CI.

Metrics ChatGPT-40 Gemini 2.5 Pro ECG Buddy
ST-elevation myocardial Acute coronary syndrome Myocardial injury
infarction
Sensitivity  36.40 (30.30-42.85)  97.07 (94.06-98.81)  96.65 (93.50-98.54) 96.65 (93.51-98.54) 96.65 (93.51-98.54)
(95% CI)
Specificity ~ 76.20 (72.84-79.33)  6.24 (4.55-8.31) 97.10 (95.55-98.22) 96.66 (95.03-97.87) 97.24 (95.73-98.33)
(95% CI)
PPV? (95%  34.66 (28.79-40.90) 26.42 (23.53-29.47)  92.03 (87.96-95.07) 90.94 (86.72-94.17) 92.40 (88.39-95.36)
CI)
NPVP (95%  77.55 (74.21-80.64)  86.00 (73.26-94.18)  98.82 (97.68-99.49) 98.81 (97.67-99.49) 98.82 (97.69-99.49)
CI)
AUROC* 57.34 (53.44-61.24)  51.63 (50.22-53.04)  98.87 (98.30-99.43) 98.78 (98.05-99.50) 98.88 (98.24-99.51)
(95% CI)
Accuracy 65.95 (62.80-69.00)  29.63 (26.71-32.69)  96.98 (95.67-97.99) 96.66 (95.29-97.72) 97.09 (95.79-98.07)
(95% CI)

4PPV: positive predictive value.
bNPV: negative predictive value.
CAUROC: area under the receiver operating curve.

Qualitative Assessment of Diagnostic
Explanations of ChatGPT and Gemini

Two board-certified clinicians independently reviewed every
explanation generated by the 2 LLMs. For GPT-40, reviewer
1 judged 5% (2/40) explanations fully correct, 40% (16/40)
partially correct, and 55% (22/40) completely incorrect.
Reviewer 2 judged 5% (2/40) fully correct, 37.5% (15/40)
partially correct, and 57.5% (23/40) completely incorrect.
The reviewers concurred in 87.5% of GPT-4o0 cases (35/40;
weighted %#=0.76). After consensus, GPT-40 explanations
were fully correct in 5% (2/40), partially correct in 37.5%
(15/40), and completely incorrect in 57.5% (23/40; Table 2).

https://ai.jmir.org/2025/1/e75910

For Gemini 2.5 Pro, the 2 clinicians showed high interrater
agreement (91.9%, 34/37; weighted » = 0.67) while follow-
ing the identical review procedure. Consensus ratings were
324% (12/37) fully correct, 13.5% (5/37) partially correct,
and 54.1% (20/37) completely incorrect. Although Gemini
produced a higher proportion of fully correct statements
than GPT-40, more than half of its explanations remained
completely inaccurate, underscoring the need for expert
oversight. The detailed per-rater counts are provided in
Multimedia Appendix 1.
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Table 2. Consensus qualitative assessment of large language model diagnostic explanations. Interrater agreement before consensus: ®=0.76 (GPT-40)

and 0.67 (Gemini).

Correct, n (%)

Partially correct, n (%) Completely incorrect, n (%)

GPT-40 (n=40)
Gemini 2.5 Pro (n=37)

2(5)
12 (32.4)

15 (37.5)
5(13.5)

23 (57.5)
20 (54.1)

Discussion

Principal Results

This study directly compared ChatGPT and Gemini, general-
purpose multimodal LLMs, with ECG Buddy, a specialized
deep-learning tool for ECG analysis. While ECG Buddy
achieved high accuracy in detecting MI from ECG images,
ChatGPT’s performance was significantly inferior. Gemini
2.5 Pro, the latest vision-language model from Google,
showed even lower overall accuracy than GPT-4o, reinforc-
ing the conclusion that current general-purpose LLMs remain
unsuitable for primary ECG interpretation.

The considerable performance gap between the dedicated
ECG Buddy and LLMs underscores a difference in their
architecture and training methodologies. LLMs are primar-
ily optimized for textual understanding and general visual
recognition tasks and lack the specific training necessary
for detailed ECG waveform interpretation. As a result, it
may generate contextually plausible yet inaccurate responses,
which could lead to potentially dangerous diagnostic errors if
relied upon in clinical settings. Moreover, the performance of
LLMs is highly sensitive to prompt design and the spe-
cific model version used, resulting in inconsistent outcomes.
Clinical studies have reported that while LLMs perform
moderately well in common clinical cases, they deviate
significantly from evaluations in critical scenarios [10-12].
Conversely, ECG Buddy is optimized through targeted
domain-specific training, resulting in superior performance
and reliability compared to LLMs.

The findings of this study indicate that current general-
purpose multimodal LLM architectures may primarily rely
on textual annotations or explicit labels rather than on
directly analyzing waveform patterns. Due to these structural
limitations, current LLLMs cannot be considered reliable as
primary diagnostic tools for detecting STEMI. Accordingly,
LLMs should be confined to a supplementary decision-sup-
port role, where they can supply guideline-based contex-
tual information, augment the interpretations generated by
specialized tools such as ECG Buddy, and propose clinically
appropriate follow-up options. Although recent advances
in LLMs have broadened the applications of medical Al,
domain-specific models remain indispensable, as the inherent
limitations of general-purpose LLMs still compromise clinical
utility and reproducibility.

Limitations

This study has some limitations. First, the study was
conducted retrospectively using a publicly available ECG
dataset, which lacked detailed clinical context or patient
demographic information. The absence of comprehensive

https://ai.jmir.org/2025/1/€75910

clinical data may limit the generalizability of these find-
ings to diverse patient populations or different clinical
settings. In addition, the dataset comprised only deidentified
ECG images lacking infarct-territory labels and lab results,
location-specific and STEMI or NSTEMI analyses were not
possible. Second, the qualitative assessments were performed
independently by 2 board-certified clinicians—1 emergency
physician and 1 cardiologist. While providing useful insight,
interpretations by multiple clinicians across various special-
ties might yield different assessments of diagnostic appropri-
ateness or accuracy. To address this limitation and confirm
its clinical utility, we plan to initiate prospective validation
studies that will evaluate ECG Buddy’s diagnostic accuracy
and workflow integration in emergency department settings
across hospitals.

Comparison With Prior Work

Our findings are consistent with those of prior research,
highlighting that ECG-specialized AI models regularly
outperform general-purpose models. Previous studies have
demonstrated that deep learning models trained extensively
on ECG-specific datasets accurately detect subtle waveform
changes indicative of asymptomatic ventricular dysfunction
and cirrhosis [23,24]. Similar to these specialized ECG
models, ECG Buddy undergoes targeted optimization tailored
specifically to ECG images, ensuring consistent predictive
performance and stable error margins essential for clinical
reliability. Notably, users only need to provide an ECG image
or screenshot; both the smartphone and desktop versions
feature an intuitive interface that requires no extra training
or expertise. In addition to MI, ECG Buddy demonstrates
robust diagnostic capabilities across diverse cardiac condi-
tions, including STEMI, hyperkalemia, and RV dysfunction,
validating its efficacy in various clinical settings [15-18].
Moreover, it has outperformed human experts in diagnosing
STEMI and hyperkalemia.

Conclusions

To our knowledge, this study provides the first direct
comparative assessment between ChatGPT, Gemini, and ECG
Buddy for detecting MI from ECG images. Our findings
reveal that, despite the accelerating use of LLM-based Al,
current LLMs do not meet the clinical performance and
accuracy requirements for ECG interpretation. Herein, the
ability of a general-purpose multimodal LLM (ChatGPT
and Gemini) to detect ECG abnormalities fell short of that
achieved by board-certified emergency physicians, rendering
it insufficient for use in interpreting critical ECG readings
in clinical practice. In contrast, the specialized ECG Al tool
(ECG Buddy), which has been trained and validated, achieved
high diagnostic accuracy and reproducibility, suggesting its
utility in clinical settings. These results, consistent with
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those of several other studies, underscore the superiority of importance of specialized models in the field of medical Al
medical domain-specific Al programs over general-purpose development.
LLMs for ECG analysis and interpretation and emphasize the
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