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Abstract

Background: Medical image analysis plays a critical role in brain tumor detection, but training deep learning models often
requires large, labeled datasets, which can be time-consuming and costly. This study explores a comparative analysis of machine
learning and deep learning models for brain tumor classification, focusing on whether deep learning models are necessary for
small medical datasets and whether self-supervised learning can reduce annotation costs.

Objective: The primary goal is to evaluate trade-offs between traditional machine learning and deep learning, including
self-supervised models under small medical image data. The secondary goal is to assess model robustness, transferability, and
generalization through evaluation of unseen data within- and cross-domains.

Methods: Four models were compared: (1) support vector machine (SVM) with histogram of oriented gradients (HOG) features,
(2) a convolutional neural network based on ResNet18, (3) a transformer-based model using vision transformer (ViT-B/16), and
(4) a self-supervised learning approach using Simple Contrastive Learning of Visual Representations (SimCLR). These models
were selected to represent diverse paradigms. SVM+HOG represents traditional feature engineering with low computational cost,
ResNet18 serves as a well-established convolutional neural network with strong baseline performance, ViT-B/16 leverages
self-attention to capture long-range spatial features, and SimCLR enables learning from unlabeled data, potentially reducing
annotation costs. The primary dataset consisted of 2870 brain magnetic resonance images across 4 classes: glioma, meningioma,
pituitary, and nontumor. All models were trained under consistent settings, including data augmentation, early stopping, and 3
independent runs using the different random seeds to account for performance variability. Performance metrics included accuracy,
precision, recall, F1-score, and convergence. To assess robustness and generalization capability, evaluation was performed on
unseen test data from both the primary and cross datasets. No retraining or test augmentations were applied to the external data,
thereby reflecting realistic deployment conditions. The models demonstrated consistently strong performance in both within-domain
and cross-domain evaluations.

Results: The results revealed distinct trade-offs; ResNet18 achieved the highest validation accuracy (mean 99.77%, SD 0.00%)
and the lowest validation loss, along with a weighted test accuracy of 99% within-domain and 95% cross-domain. SimCLR
reached a mean validation accuracy of 97.29% (SD 0.86%) and achieved up to 97% weighted test accuracy within-domain and
91% cross-domain, despite requiring 2-stage training phases involving contrastive pretraining followed by linear evaluation.
ViT-B/16 reached a mean validation accuracy of 97.36% (SD 0.11%), with a weighted test accuracy of 98% within-domain and
93% cross-domain. SVM+HOG maintained a competitive validation accuracy of 96.51%, with 97% within-domain test accuracy,
though its accuracy dropped to 80% cross-domain.

Conclusions: The study reveals meaningful trade-offs between model complexity, annotation requirements, and deployment
feasibility—critical factors for selecting models in real-world medical imaging applications.
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Introduction

Brain tumors, characterized by the abnormal growth of brain
cells, pose significant health risks and can result in severe
neurological dysfunction or death if not detected early [1,2].
Timely and accurate diagnosis is essential for effective treatment
and improved patient outcomes [3]. Magnetic resonance imaging
(MRI) is the widely used modality for capturing high-resolution
brain images. However, the manual review of hundreds of MRI
scans to identify tumors is time-consuming and error-prone,
posing a considerable challenge for radiologists [3]. In this
context, machine learning and deep learning approaches have
demonstrated promising potential in improving diagnostic
accuracy and efficiency [3].

Recent studies have increasingly focused on leveraging machine
learning and deep learning for medical image classification
tasks, including brain tumor detection [3-5]. However, selecting
the appropriate type of model for small medical image datasets
remains a challenge.

To address this challenge, we conducted a comparative analysis
of 2 publicly and independent available MRI brain tumor
datasets; our study included 1 classical machine learning
model—support vector machine (SVM) with histogram of
oriented gradients (HOG) features [6,7], and 3 deep learning
models—convolutional neural network (CNN) based on
ResNet18 [8], a vision transformer (ViT) based on ViT-B/16
[9], and a self-supervised learning (SSL) model based on Simple
Contrastive Learning of Visual Representations (SimCLR) [10].
These models were selected to represent 4 distinct paradigms
in medical image classification. SVM+HOG represents
traditional feature engineering approaches with low
computational requirements. ResNet18, a well-established CNN,
is known for its strong baseline performance in small- to
medium-sized datasets. ViT-B/16 introduces global attention
mechanisms capable of capturing long-range dependencies.
SimCLR enables representation learning from unlabeled data,
offering potential benefits in annotation-scarce clinical settings.
Each type of model offers unique advantages and limitations
when applied to small medical image datasets [11], making
them ideal for a trade-off comparative analysis.

To assess the applicability of trade-offs in small medical image
datasets, five analytical perspectives were considered: (1)
training behavior and convergence [12], (2) train and validation
data performance [13], (3) generalization: within- and
cross-domains [14], (4) visual interpretation via saliency maps
[15], and (5) real-world cost, complexity, and deployment
feasibility [11,16].

This comparative study aims to provide practical insights for
both machine learning researchers and health care practitioners
by identifying reliable, scalable, and computationally efficient
artificial intelligence (AI) solutions for medical imaging
applications.

Methods

Study Overview
This study investigates the trade-offs between traditional
machine learning and deep learning approaches, including SSL,
for brain tumor classification. The analysis was conducted using
a primary medical imaging dataset [3,11]. To evaluate
robustness and generalization capabilities, the models were
assessed on unseen test data under both within-domain and
cross-domain scenarios, simulating real-world deployment
conditions.

Dataset Description
The primary dataset used for training and validation is the Brain
Tumor MRI Image Dataset (T1-weighted, 2D), an open-source
resource hosted on Figshare [17]. It comprises a total of 2870
magnetic resonance images, categorized into 4 subsets: glioma
(826 images), meningioma (822 images), pituitary (827 images),
and no tumor (395 images).

To assess cross-domain generalization, we used a cross dataset
of brain tumor magnetic resonance images (T1-weighted, 2D)
compiled from multiple publicly available repositories, including
Kaggle and Roboflow [18]. While the original dataset contains
a mixture of computed tomography and MRI scans, only the
MRI subset was retained for evaluation in this study. This cross
dataset introduced natural domain shifts due to variations in
image size, patient demographics, and file formats (eg, JPG and
JPEG), thereby providing a realistic benchmark for evaluating
generalization performance.

Data Processing
The primary image dataset was partitioned into training,
validation, and test sets. Within each partition, images were
further organized into “tumor” and “no tumor” categories.
Tumor (2475 images) was split into training, validation, and
test datasets in a 70:15:15 ratio, while no tumor (395 images)
was split using the same proportion.

The cross dataset was originally organized into “healthy” and
“tumor” folders; these were relabeled as “no tumor” and
“tumor,” respectively, to maintain consistency with the structure
of the primary dataset. To prevent data leakage and ensure
unbiased evaluation of generalization performance, the phash
algorithm [19] was applied to compare each cross-dataset image
with the training images; any visually identical or nearly
identical images were removed from the cross dataset. After
duplication, 3351 cross-dataset magnetic resonance images
remained, including 2123 tumor and 1228 no tumor. All images
were mapped to binary labels: 1 for “tumor” and 0 for “no
tumor” cross dataset.
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Model Designing

Support Vector Machine + Histogram of Oriented
Gradients
We applied an SVM classifier in combination with HOG feature
extraction to classify brain tumor images. HOG was used to
extract edge and shape information by analyzing the distribution
of gradient orientations across localized regions of the image
[6]. Because HOG effectively captures fine-grained structural
patterns, it is particularly suitable for identifying tumor
boundaries, which exhibit strong and localized gradient
variations.

Following HOG-based feature extraction, the resulting feature
vectors were fed into an SVM, a supervised learning algorithm
widely recognized for its effectiveness in binary classification
tasks [20]. In this study, we used a linear kernel since tumor
and nontumor images exhibit distinct and approximately linearly
separable gradient patterns in the HOG feature space [7].

Convolutional Neural Network (ResNet18)
A CNN based on ResNet18 was applied for brain tumor image
classification. ResNet18 is a widely used deep learning
architecture that integrates residual learning to mitigate the
vanishing gradient problem [8]. It comprises 17 convolutional
layers followed by a fully connected classification layer.
Compared to traditional CNN models, the key advantage of
ResNet18 lies in its use of 4 residual blocks, each consisting of
2 convolutional layers combined with batch normalization and
rectified linear unit activation. Residual connections directly
add the input of a block to its output, enabling the network to
learn residual mappings and maintain a strong gradient flow
during backpropagation [8,12] and mitigating the vanishing
gradient issue. This feature makes ResNet18 particularly suitable
for complex medical image tasks [21].

The residual block follows the logic: y=F(x)+x, where F(x)
represents the convolutional transformation applied to the input
x. The term x is passed directly to the next layer through a skip
connection, allowing the network to learn residual mappings
and maintain effective gradient flow.

To improve model generalization and mitigate overfitting, data
augmentation techniques were applied during the training
process [22]. These argumentations included random affine
transformations with shear up to ±5 degrees, random scaling
between 95% and 105%, and small random rotation up to ±3
degrees. In addition, 50% (n=866) of images were randomly
flipped horizontally and 30% (n=520) vertically, and a Gaussian
blur was applied using a kernel size of 3 with a sigma value
randomly selected from the range 0.1 to 1.0. Furthermore, the
images were resized on the shortest side to 224 pixels, followed
by a center crop to ensure a consistent input size of 224×224.
Finally, the images were converted to a tensor and normalized
to pixel intensity values, using a mean of 0.5 (SD 0.5).

The validation data were preprocessed with minimal
transformations, including resizing, center cropping, tensor
conversion, and normalization with the same parameters. For
fine-tuning, all pretrained layers except the last 3 residual blocks
and the fully connected layer were frozen; these 4 layers were

fine-tuned to adapt to the binary classification task. The fully
connected layer was modified with randomly incorporating a
40% dropout rate, followed by a linear layer with 2 outputs
corresponding to the tumor and no-tumor classes.

Vision Transformer (Vit-B/16)
ViT models are widely used in computer vision by leveraging
self-attention mechanisms to capture long-range dependencies
across an entire image [9]. Unlike CNNs, which learn
hierarchical feature representations via local receptive fields,
ViTs partition an image into nonoverlapping patches and process
them as flattened tokens [9]. Those tokens are then passed
through multiple transformer encoder layers, where multihead
self-attention models both local and global relationships within
the image.

In this study, we fine-tuned ViT-B/16 model by unfreezing the
last 5 transformer encoder layers along with the classification
head to better capture the complex long-range dependencies.
ViT-B/16 comprises 12 self-attention heads with a hidden
dimension of 768 [9]. Within each encoder layer, the
feed-forward network includes 2 fully connected layers with
Gaussian error linear unit activations, expanding the hidden
dimension from 768 to 3072 before projecting it back to 768
[23].

Self-Supervised Learning (SimCLR)
SSL enables models to learn robust feature representations
directly from unlabeled data. In this study, we applied SimCLR,
which learns meaningful feature representations by maximizing
agreement between different augmented views of the same
image (positive pairs) while minimizing similarity between
views of different images (negative pairs) through a contrastive
loss in the latent space [10]. This approach enables the encoder
to extract invariant and discriminative features, which are
subsequently leveraged for downstream classification tasks [24].

During the pretrained phase, we applied various augmentations
to generate 2 augmented views of the same image, denoted as
xi and xj. These augmented images were then passed through a
ResNet18-based encoder to extract feature representations. The
embeddings were mapped into a lower-dimensional space using
a projection head, which minimized the distance between the
positive pairs, xi and xj, while maximizing the similarity from
all other views using contrastive loss (normalized
temperature-scaled cross entropy loss) [25].

Following pretraining, we performed a linear evaluation: the
encoder was frozen, and a fully connected linear layer classifier
was trained on top using supervised labels to evaluate the
learned representations.

Model Training

Support Vector Machine + Histogram of Oriented
Gradients
The SVM+HOG model was trained and validated over 3
independent runs using different random seeds to ensure
robustness. For each run, the training and validation datasets
were first loaded and shuffled, and then, HOG was applied to
each image after resizing to 128×128 pixels. The images were
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divided into small cells with 16×16 pixels, and a histogram of
gradient orientations was computed per cell. Histograms were
normalized across blocks with 2×2 cells to improve contrast
robustness [6]. The resulting HOG feature vector was flattened
into a 1D array with a length of 1764 features (f1, f2, ... f1764),
representing the gradient information distribution captured from
different parts of the image, preserving local shape information.
No channel conversion was needed, as these tumor images were
in grayscale format.

A support vector classifier from scikit-learn was used, with the
default regularization parameters (C=1.0) and hinge loss [26].
Performance was evaluated on a validation dataset after each
run. The training process was repeated across 3 independent
runs, and accuracy was recorded for each run. The model with
the highest validation accuracy across the 3 runs was selected
and saved for testing.

Convolutional Neural Network (ResNet18)
The ResNet18 model was trained using Adam optimizer with

a learning rate of 1×10–4 and a weight decay of 1×10–5; the
classification task was optimized using a cross-entropy loss
function, with labeling smoothing set to 0.05 [27,28]. To
dynamically adjust the learning rate, a ReduceLROnPlateau
scheduler was applied, which reduced the learning rate by a
factor of 0.5 if the validation loss failed to improve over 3
consecutive epochs [29]. To prevent overfitting, early stopping
was used: training terminated if validation loss failed to improve
by at least 0.001 over 4 consecutive epochs. The model was
trained for up to 35 epochs with a batch size of 32.

Model performance was monitored at each epoch, and the
best-performing checkpoint based on the lowest validation loss
from each run was saved. To ensure robustness and
reproducibility, training was repeated across 3 independent runs
with different random seeds. The results were reported as the
mean and SD of accuracy and loss across the best-performance
models from each run. After completing all 3 runs, the model
with the best validation loss across runs was selected for
evaluation on the unseen test data.

Vision Transformer (Vit-B/16)
For the ViT-B/16 model, we adopted the same data
augmentation strategy used for ResNet18 to maintain
experimental consistency. Due to ViT-B/16’s higher parameter

count, the learning rate was increased to 3×10–4 to accelerate
convergence [9]. The CosineAnnealing scheduler was used
instead of ReduceLROnPlateau to achieve smoother decay,
which is typically advantageous for transformer architectures
[30]. The model was trained for up to 50 epochs, with early
stopping patience set to 6 and batch size set to 32. Training was
repeated 3 times with different seeds. The best checkpoint per
run based on validation loss was saved, and the overall
best-performing model was selected for testing.

Self-Supervised Learning (SimCLR)
SimCLR was pretrained to learn image representations using
contrastive learning [10]. The ResNet18-based encoder produced
a 512-dimensional embedding vector, which was then passed
through a projection head consisting of 2 linear layers and

rectified linear unit activation, reducing the vector to 128
dimensions. Pretraining used Adam optimizer, learning rate

1×10–4, weight decay 1×10–5, a batch size of 128, and up to 200
epochs. The Data Loader was configured with num_works equal
to 4 to parallelize data loading and accelerated training. A
ReduceLROnPlateau scheduler and early stopping were used
[29]. After pretraining, the encoder was frozen, and a linear
classifier was trained for 50 epochs with a batch size of 32.
Training was repeated 3 times with different seeds, and the best
checkpoint per run was saved. The overall best-performing
model across runs was used for evaluation on the unseen test
dataset.

Model Evaluation
To ensure a fair and reproducible comparison across all models,
we evaluated their performance from 5 perspectives: training
behavior and convergence, training and validation data
performance, generalization: within- and cross-domains, visual
interpretation via saliency maps, and real-world cost,
complexity, and deployment feasibility.

For training behavior and convergence, we monitored
epoch-wise training and validation accuracy and loss. Because
early stopping caused different runs to terminate at varying
epochs, shorter training runs were padded to match the
maximum number of epochs while excluding padded values
from the statistics. This approach enabled a consistent
assessment of convergence stability across models.

For training and validation data performance, we compared
training and validation accuracy, training and validation loss,
and training time across models on the primary dataset.
Accuracy and loss were computed on both the training and
validation sets to assess potential overfitting and robustness.
Training time was also recorded to evaluate computational
efficiency. Furthermore, classification performance on the
validation data was assessed using precision, recall, F1-score,
and support for each class (tumor and nontumor), along with
macro and weighted averages and overall accuracy.

For generalization within- and cross-domains, we assessed
classification performance and confusion matrices on the unseen
test datasets from both the primary and cross-domains. To better
simulate real-world conditions, no test-time augmentations or
artificial noise were applied during evaluation. To ensure
reproducibility of the test-time results, all random seeds were
fixed to 42 at the start of each model evaluation. Each model
was evaluated using the best-performing weights obtained during
training.

For visual interpretation via saliency maps, we examined model
interpretability and generalization by visualizing the regions of
the input images that most influenced classification decision.
Saliency maps were generated for the same tumor and nontumor
images from the primary dataset across all 4 models to ensure
consistency in comparison. Similarly, 1 tumor and nontumor
image from the cross dataset were used to examine how each
model attended to relevant features across models.

Finally, for real-world cost, complexity, and deployment
feasibility, we assessed each model’s computational resource

JMIR AI 2025 | vol. 4 | e76344 | p. 4https://ai.jmir.org/2025/1/e76344
(page number not for citation purposes)

TianJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


requirements, training and inference efficiency, and practicality
for integration into real-world clinical workflows.

Ethical Considerations
This study did not involve human or animal participants.
Institutional review board approval, informed consent, data
confidentiality, and participant compensation were not
applicable.

Results

Training Behavior and Convergence
Figure 1 shows the training and validation accuracy across
epochs for (A) ResNet18, (B) ViT-B/16, and (C) SimCLR,
while Figure 2 presents the corresponding training and validation
loss curves. Across the deep learning models, training and
validation accuracy increased steadily during early epochs and
gradually plateaued toward the later stages of training.
Additionally, the training and validation curves remained closely
aligned, with only small fluctuations, indicating stable learning
progress. Similarly, training and validation loss decreased

consistently over time, with validation loss typically remaining
slightly lower or close to training loss. These trends
demonstrated that ResNet18, ViT-B/16, and SimCLR achieved
stable convergence without significantly overfitting or
underfitting. The SVM+HOG does not have an epoch-based
training process; hence, no convergence curve was shown.

Additionally, due to early stopping, different runs of the same
deep learning models terminated at varying epochs, and the
maximum number of training epochs observed across the 3 runs
was 20 for ResNet18, 38 for ViT-B/16, and 48 for SimCLR.

Notably, across all deep learning models, training accuracy was
slightly lower than validation accuracy, and training loss was
slightly higher or close to the validation loss. This was due to
the use of data augmentation during training, which introduced
random transformations such as cropping, flipping, and Gaussian
blur to improve generalization. These argumentations made the
training more challenging, whereas validation data remained
nonaugmented, leading to relatively easier and more consistent
predictions.
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Figure 1. Training and validation accuracy curves for (A) ResNet18, (B) ViT-B/16, and (C) SimCLR. SimCLR: Simple Contrastive Learning of Visual
Representations; ViT: vision transformer.
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Figure 2. Training and validation loss curves for (A) ResNet18, (B) ViT-B/16, and (C) SimCLR. SimCLR: Simple Contrastive Learning of Visual
Representations; ViT: vision transformer.

Training and Validation Data Performance
Table 1 summarizes the training and validation performance
across 4 models. Among deep learning models, ResNet18
achieved the highest validation accuracy (mean 99.77%, SD
0.00%) with the lowest validation loss (mean 12.58%, SD
0.21%), demonstrated strong convergence and stability.

ViT-B/16 and SimCLR also performed well, achieving mean
validation accuracies of 97.36% (SD 11%) and 97.29% (SD
86%), respectively, though their slightly higher training and
validation losses indicated slower convergence compared to
ResNet18. For the classical model SVM+HOG, mean validation
accuracy reached 96.51% (SD 0.00), indicating no overfitting
or underfitting.
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Table 1. Training and validation performance comparison across 4 models.

Validation loss (%),
mean (SD)

Training loss (%),
mean (SD)

Validation accuracy (%),
mean (SD)

Training accuracy (%),
mean (SD)

Training time (sec-
onds)

Model

——96.51 (0.00)—c78SVMa+HOGb

12.58 (0.21)13.25 (0.19)99.77 (0.00)99.80 (0.08)529ResNet18

17.97 (0.21)19.12 (0.43)97.36 (0.11)97.05 (0.46)2014ViT-B/16d

17.84 (0.28)20.49 (0.38)97.29 (0.86)96.02 (0.22)2923SimCLRe

aSVM: support vector machine.
bHOG: histogram of oriented gradients.
cNot available.
dViT: vision transformer.
eSimCLR: Simple Contrastive Learning of Visual Representations.

Regarding computational efficiency, SimCLR required the
longest training time (2817 seconds), due to its self-supervised
pretraining and linear evaluation phases, followed by ViT-B/16
(912 seconds) and ResNet18 (474 seconds), while SVM+HOG
trained extremely fast (75 seconds) but lacked fine-tuning
capabilities. We used an NVIDIA RTX A6000 graphics
processing unit (GPU) during training, so the runtime may vary
depending on the reviewer’s GPU or central processing unit
setup and use, despite consistent code and hyperparameters.

Detailed visual comparisons of training and validation accuracy,
loss, and training time charts are provided in Multimedia

Appendix 1. In the figure, the top bar chart shows training and
validation accuracy across models, the middle bar chart shows
the training and validation loss across models, and the bottom
bar chart shows training time comparison across models.

Table 2 summarizes the validation classification table, showing
strong and consistent performance across all 4 models. Because
the primary brain tumor dataset was imbalanced, with 59 no
tumor samples and 371 tumor samples, we focused on weighted
average metrics, including precision, recall, and F1-score, which
accounted for class imbalance by weighting results based on
class size.

Table 2. Comparison of classification performance on the validation data.

Overall accuracyF1-score (weighted average)Recall (weighted average)Precision (weighted average)Model

0.970.960.970.96SVMa+HOGb

1.001.001.001.00ResNet18

0.970.970.970.97ViT-B/16c

0.980.980.980.98SimCLRd

aSVM: support vector machine.
bHOG: histogram of oriented gradients.
cViT: vision transformer.
dSimCLR: Simple Contrastive Learning of Visual Representations.

ResNet18 achieved the highest overall performance, with 100%
accuracy, 100% weighted precision, 100% weighted recall, and
100% weighted F1-score. SimCLR, ViT-B/16, and SVM+HOG
also demonstrated strong performance, with weighted F1-scores
ranging from 96% to 98%, precision between 96% and 98%,
and recall between 97% and 98%. These results demonstrated
strong discriminative ability across models on the validation
data and established a solid baseline for subsequent evaluations
on unseen test data within- and cross-domains.

For detailed classification table reports for all models on the
primary domain validation sets, please refer to Multimedia
Appendix 2. The figure presents classification metrics including

precision, recall, F1-score, and support for each class (tumor
and nontumor) across 4 models, along with macro and weighted
averages and overall accuracy. ResNet18 achieved perfect
classification performance, while ViT-B/16 and SimCLR
showed similarly high results. SVM+HOG showed slightly
lower performance, especially in recall for the nontumor class.

Generalization: Within- and Cross-Domains
Table 3 summarizes the comparison of classification
performance on the unseen test data within- and cross-domains,
demonstrating the strong and consistent performance across all
models for both primary and cross datasets.
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Table 3. Comparison of classification performance on the test data within- and cross-domains.

Overall accuracyF1-score (weighted average)Recall (weighted average)Precision (weighted average)Model and dataset

SVMa+HOGb

0.970.970.970.97Primary

0.800.800.800.80Cross dataset

ResNet18

0.990.990.990.99Primary

0.950.950.950.96Cross dataset

ViT-B/16c

0.980.980.980.98Primary

0.930.930.930.93Cross dataset

SimCLRd

0.970.970.970.97Primary

0.910.910.910.92Cross dataset

aSVM: support vector machine.
bHOG: histogram of oriented gradients.
cViT: vision transformer.
dSimCLR: Simple Contrastive Learning of Visual Representations.

Both test data have imbalanced class distributions, including
60 nontumor and 372 tumor cases in the primary dataset and
1228 nontumor and 2123 tumor cases in the cross dataset. We
applied weighted average metrics to evaluate the performance
of the classification results. Across both datasets, ResNet18
consistently outperformed the other models, achieving the
highest overall accuracy of 99%, along with the best weighted
precision, recall, and F1-score on the primary dataset. On the
cross dataset, these metrics slightly dropped to 95%. ViT-B/16
dropped from 98% within-domain to 93% cross-domain, and
SimCLR dropped from 97% to 91%.

In contrast, SVM+HOG showed a sharp performance drop, with
overall accuracy, precision, recall, and F1-score decreasing from
97% on the primary dataset to 80% on the cross dataset. This
decline indicated SVM+HOG’s limited ability to generalize to
new domains, likely due to its reliance on hand-crafted features
rather than deep learning representations.

Notably, the models’ training behavior showed no signs of
overfitting or underfitting as observed in Figures 1 and 2,
indicating that the performance dropped not due to poor
generalization during the training process but rather due to
domain shift, including differences in patient demographics,
imaging conditions, and equipment between the primary and
cross datasets. Overall, ResNet18, ViT-B/16, and SimCLR
maintained strong performance, demonstrating robust
generalization within- and cross-domains, whereas SVM+HOG
showed limited generalization under domain shift.

The detailed classification table reports for all models on the
primary domain test sets and the cross-domain test sets are
present in Multimedia Appendices 3 and 4, respectively.

Multimedia Appendix 3 represents classification metrics
including precision, recall, F1-score, and support for each class

(tumor and nontumor) on the test set across 4 models, along
with macro and weighted averages and overall accuracy on the
primary domain. ResNet18 also achieved the highest metrics
overall, with 99% overall accuracy. ViT-B/16 followed closely,
with a weighted average of 98% across precision, recall, and
F1-score. SVM+HOG also performed well in the test data, with
an overall accuracy of 97%, but slightly dropped on precision
and F1-score of the nontumor class. SimCLR achieved a
weighted average of 97% across metrics, still indicating strong
performance on the primary dataset.

Multimedia Appendix 4 represents classification metrics
including precision, recall, F1-score, and support for each class
(tumor and nontumor) across 4 models, along with macro and
weighted averages and overall accuracy on the cross-domain.
ResNet18 remained the best performer, achieving a weighted
precision, recall, and F1-score of 96% and an overall accuracy
of 95%. ViT-B/16 followed with a weighted average of 93%
for all metrics. SimCLR showed a moderate drop. SVM+HOG,
with all weighted metrics, dropped to 80%, especially the lower
recall on the nontumor class with 64%. These results indicated
the strong robustness of deep learning models.

Figure 3 shows the confusion matrices of the ResNet18
evaluation on test sets from both the (A) primary domain and
(B) cross-domain. On the primary domain, ResNet18 achieved
highly reliable predictions, correctly identifying 370 tumors
and 59 nontumors, with only 3 misclassified samples. However,
on the cross dataset, the number of false positive cases increased
sharply to 145 nontumor images that were incorrectly predicted
as tumor images, while false negative cases remained low, with
12 tumor images being mis-predicted as nontumor images. This
discrepancy may reflect shifts in data distribution that the cross
dataset was not exposed during the training and validation
process, and the model was trained and validated only on the
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primary dataset. Therefore, the cross dataset may contain
different imaging conditions, such as brightness, noise level,
and patient demographics, which can affect the appearance of

nontumor brain structures and could cause nontumor images to
be overdiagnosed as tumor images, even though the model’s
training behavior showed no signs of overfitting or underfitting.

Figure 3. The confusion matrices of the ResNet18 evaluation on the unseen test set from the (A) primary domain and (B) cross-domain.

To conserve space and avoid redundancy, we presented only
the confusion matrices on unseen test data of the best performing
on ResNet18 across both the primary and cross datasets in the
main text, while other confusion matrices for other models are
presented in Multimedia Appendix 5 (SVM+HOG), Multimedia
Appendix 6 (ViT-B/16), and Multimedia Appendix 7 (SimCLR).

Multimedia Appendix 5 presents the confusion matrices of the
SVM+HOG model evaluated on unseen test data from the (A)
primary and (B) cross datasets. On the primary dataset, the
model correctly classified 54 nontumors and 365 tumor images,
achieving good performance. However, its generalization
cross-domains was limited, and on the cross dataset,
performance dropped to 80% overall accuracy, and the number
of false positives increased to 436 and false negatives increased
to 226. This indicated that SVM+HOG performed well within

the primary domain but more sensitive to domain shift compared
to deep learning models, likely due to its reliance on
hand-crafted features.

Multimedia Appendix 6 presents the confusion matrices of the
ViT-B/16 model evaluated on unseen test data from the (A)
primary and (B) cross datasets. ViT-B/16 achieved strong
classification performance on both the primary and cross
datasets, though some domain shift was observed. The primary
dataset performed well with minimal false counts, and on the
cross dataset, the performance slightly dropped, with an overall
high accuracy of 93%, while the output retained high sensitivity
tumor detection. The increase in false positives indicated some
sensitivity to domain shift. Generally, ViT-B/16 generalized
reasonably well cross-domain.
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Multimedia Appendix 7 presents the confusion matrices of the
SimCLR model evaluated on unseen test data from the (A)
primary and (B) cross datasets. SimCLR showed solid
classification performance on the primary and cross datasets.
However, on the cross dataset, the number of false positives
increased and indicated that SimCLR’s generalization ability
is more sensitive to domain shifts compared to other deep
learning models.

Visual Interpretation via Saliency Maps
To better understand how each model identifies tumor-related
feature, we applied visual interpretation techniques on selected
images from both the primary and cross datasets. Saliency maps
were generated to highlight regions that are most influential to
model predictions. As SVM+HOG is a nondifferentiable model,
we did not apply gradient-based saliency map [15], as we used
for ResNet18 and SimCLR models, or attention rollout [31], as
we used for ViT-B/16 model. Instead, we applied occlusion
sensitivity [14] analysis for generating saliency maps on both
tumor and nontumor images.

On the primary dataset, we selected 1 tumor image “m1
(160).jpg” and 1 nontumor image “image (28).jpg.” On the
cross dataset, we chose 1 tumor image “tumor (49).jpg” and 1
nontumor image “mri_healthy (1853).jpg.” These 4 images
were unseen test images, and their predicted labels match the
true labels.

Figure 4 shows the visualization of SVM+HOG model features
and occlusion sensitivity maps. We applied occlusion sensitivity
[14] analysis to occlude patches of the input image to evaluate
the drop in the SVM’s prediction probability, indicating the
importance of each region for the classification prediction. In
the overlay image, localized red or yellow regions indicated
high sensitivity, which means occluding these regions
significantly reduced the predicted probability of the tumor
class. Blue and green regions indicated low sensitivity, which
means occluding these regions had little or no impact on the
model’s prediction.

Figure 4. Visualization of SVM+HOG model features and occlusion sensitivity maps. Each row showed an example from the primary or cross dataset,
categorized by tumor or nontumor class. The four columns displayed (1) the original magnetic resonance image, (2) the featural visualization, (3) the
computed heatmap, and (4) the overlay of the heatmap on the original image. HOG: histogram of oriented gradients; SVM: support vector machine.
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For the tumor in the overlay image, on the primary dataset, we
observed bright activations inside the brain area on the top left
range, which partially coincided with visible anomalies in the
original image. However, we also observed activations along
the skull and outside of the brain area, which are unlikely to
have clinical meaning and may reflect spurious features learned
from the noise. On the cross dataset, we observed that there
were localized bright spots in the top middle region inside of
brain, indicating that the model may have partially identified a
relevant region; however, there was still considerable noise
presented along the skull and outside the brain part. Given the
simplicity and limits of SVM+HOG features, such alignments
may not be accurate and reliable.

For the nontumor images, both on the primary and cross
datasets, the red or yellow regions were dispersed across the
images, indicating that the model is less confident and possibly
focusing on nondiagnostic features.

Figure 5 shows the gradient-based saliency maps for ResNet18
[15]. This method calculated the gradient of the model’s output
score with respect to each input pixel, allowing us to identify
regions that most influence the prediction. This approach aligns
with the underlying mechanism of CNNs, which learns
hierarchical feature representations through differential layers.
In the saliency map, bright red areas indicate regions where
small pixel changes impact the model’s prediction.

Figure 5. Gradient-based saliency maps for ResNet18 model. Each row showed an example from the primary or cross dataset, categorized by tumor
or nontumor class. The three columns displayed (1) the original magnetic resonance image, (2) the computed heatmap, and (3) the overlay of the heatmap
on the original image.

Notably, the gradient-based saliency maps do not directly
identify tumor locations but instead highlight regions that are
influential to the prediction. In the primary tumor image, we
observed localized red regions on the back side of the brain;
however, the anomalous region was more likely located at the

front side of the brain based on the original image. Additionally,
in the external brain tumor, the red regions were less localized
and less prominent. For both nontumor images, the red
activations were sparse and not strongly localized.
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Figure 6 shows attention-rollout [31] saliency maps to the
ViT-B/16 model. This method aggregates attention weights
across all transformer layers, representing how information
flows through the network by propagating attention scores

recursively. Specifically, it multiplies the attention matrices
from different layers, effectively rolling out the attention signal
to show which patches most influence the model classification
prediction.

Figure 6. Attention-rollout saliency maps for ViT-B/16 model. Each row showed an example from the primary or cross dataset, categorized by tumor
or nontumor class. The three columns displayed (1) the original magnetic resonance image, (2) the computed heatmap, and (3) the overlay of the heatmap
on the original image. ViT: vision transformer.

In the primary tumor image, red patches were concentrated in
the front region of the brain, which well aligned with the visible
anomaly in the original image, indicating that the model
accurately identified the tumor location. In the external tumor
image, the model also highlighted the central bright patches
inside the brain, overlapping with the visible tumor, indicating
a reasonable prediction. For both nontumor images, the patches
were more diffusely spread, with no dominant hotspots;
however, in the external nontumor image, slight attention near
the ventricle area may reflect mild overattention to anatomical
structure.

Compared to Figure 5 (ResNet18), the heatmaps from Figure
6 (ViT-B/16) appeared smoother and more globally distributed,
reflecting the global attention mechanism to transformer models,
in contrast to the more localized sensitivity observed in
CNN-based saliency maps.

Figure 7 shows the gradient-based saliency maps [15], which
visualize the regions that are most influential in SimCLR’s
downstream classification. In the heatmaps, brighter red areas
indicate pixels where small changes significantly influence the
model’s prediction.
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Figure 7. Gradient-based saliency maps for SimCLR model. Each row showed an example from the primary or cross dataset, categorized by tumor or
nontumor class. The three columns displayed (1) the original magnetic resonance image, (2) the computed heatmap, and (3) the overlay of the heatmap
on the original image. SimCLR: Simple Contrastive Learning of Visual Representations.

In both tumor and nontumor images, the saliency patterns were
generally similar to those we observed in Figure 5 (ResNet18),
though SimCLR’s saliency patterns appeared sharp and more
diffuse. This is likely because SimCLR pretrained encoder learns
from many augmented views without label annotation, which
encourages the model to capture more global structure
consistency rather than relying solely on highly localized
features.

In the primary tumor image, we observed that there were bright
red spots on the frontal region and the lower back region of the
brain, partially aligning with the visible anomaly in the original
image. In the external image, red spots were concentrated around
the middle-left brain region, overlapping with the tumor area.

In both nontumor images, the saliency maps appeared as
uniformly distributed, with no dominant regions. Notably, in
both primary and cross-domain tumor images, SimCLR’s

saliency maps displayed brighter and smoother red regions,
with greater focus on the anomalous areas compared to those
in Figure 5 (ResNet18), potentially making tumor regions more
distinguishable in the saliency visualization.

Among the 4 saliency methods, attention rollout [31] from the
ViT-B/16 model provided the most biologically meaningful
explanations, with smoother and more globally coherent maps
that aligned well with tumor regions in both the primary and
cross datasets. SimCLR’s gradient-based [15] saliency showed
better results, with clearer and more generalizable tumor region
activations than ResNet18, likely due to its global feature
learning through self-supervised contrastive pretraining. In
contrast, SVM+HOG’s occlusion maps [14] were limited,
interpretable, and often included spurious activations.

The interpretability of saliency maps does not always correlate
with model performance. Gradient-based saliency maps from
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ResNet18 were less reliable and may not reflect biological
meaningful reasoning, aligning with recent findings that question
their trustworthiness in medical imaging [32]. Future work could
explore more robust interpretability techniques to better uncover
model behavior and support clinical decision-making.

Real-World Cost, Complexity, and Deployment
Feasibility
The SVM+HOG model is lightweight among these 4 models.
It requires no GPU and has minimal memory use. It also requires
grayscale images and simple feature extraction (HOG), making
it ideal for low-resource settings. For instance, SVM+HOG
could be deployed in community clinics or rural hospitals where
computational infrastructure is limited, enabling rapid
preliminary screening without the need for GPU resources.

The ResNet18 model balances moderate performance with
reasonable efficiency, and it requires a GPU for fast training.
It benefits from transfer learning by fine-tuning only the last
few layers, making it more adaptable to small datasets. It is
relatively compact in size and easily deployable on standard
medical AI pipelines.

ViT-B/16, while achieving competitive accuracy, is the most
computationally expensive, and it requires more memory, longer
convergence, and benefits from larger datasets to reach optimal
performance. These requirements may limit their feasibility in
real time or low-resource clinical deployments.

SimCLR, with its 2-phase training, including pretraining and
linear evaluation, is the most resource-intensive. Its deployment
may be more complex due to the need for pretrained encoders
and additional infrastructure for self-supervised pretraining.
Despite the high initial cost, it shows strong generalization and
can be highly effective when unlabeled data are abundant, but
annotation resources are limited. For instance, SimCLR may
be especially suitable for large medical centers with access to
vast unlabeled image repositories but limited clinician time for
annotation, allowing for scalable representation learning before
fine-tuning.

While models like ViT-B/16 and SimCLR are more
computationally demanding, their saliency visualizations
provided more biologically meaningful explanations, which
may support clinical trust and decision-making. In contrast, the
simpler SVM+HOG model, although lightweight and suitable
for low-resource settings, occasionally relied on spurious
features, as reflected in its occlusion maps. The gradient-based
saliency map on ResNet18 showed less reliability on medical
imaging data.

Discussion

Principal Findings
The study presented a comparative trade-off analysis of 4
models, including SVM+HOG, ResNet18, ViT-B/16, and
SimCLR, on 2 small-scale brain tumor MRI datasets. The
evaluation spans multiple dimensions, including classification
accuracy, robustness on the distribution shifts, generalization
within- and cross-domains, training stability, and real-world
deployment feasibility. Notably, the models demonstrated strong

transferability and true generalization when tested on unseen
data from an external independent dataset.

For a machine learning research perspective, model performance
is typically prioritized. The results showed that ResNet18
delivered a strong balance between performance and training
efficiency, making it suitable for settings where moderate
resources are available. SimCLR offers compelling
generalization with the advantage of requiring no labeled data
during pretraining, making it well-suited for real-world
conditions with annotation limitations [11]. ViT-B/16 shows
potential, particularly due to its global attention mechanism,
but may be more sensitive to overfitting under a small number
of medical image datasets. SVM+HOG, although simpler,
performs reliably with low computational cost and without
relying on data augmentation [7].

For a clinical or radiologist perspective, model interpretability
plays a critical role. In this regard, ViT-B/16 demonstrates the
most coherent and biologically meaningful saliency maps
through its attention-rollout mechanism, highlighting abnormal
regions with greater reliability. SimCLR, despite its 2-stage
training phases, produced saliency maps; these were smoother
and more focused than those from ResNet18, likely due to its
global feature learning through self-supervised contrastive
training. Moreover, SimCLR requires no labeled data during
pretraining, significantly reducing annotation effort for clinicians
[24]. SVM+HOG, while occasionally producing spurious
saliency activations under noise conditions, is an extremely
lightweight and easy to deploy model. It does not require GPUs
or deep learning architectures and can serve as a practical tool
in resource-limited clinical environments or as a fast,
interpretable baseline [33]. ResNet18 saliency map, relying on
gradient-based method only, showing less reliable
interpretability compared to ViT-B/16 and SimCLR, aligning
with prior literature questioning the trustworthiness of
gradient-based explanations in medical imaging [32].

Hyperparameter Selection and System Setup
To ensure reproducibility and model optimization, we
systematically tuned key hyperparameters across all models.
The details tested ranges and final selected hyperparameters are
provided in Multimedia Appendix 8, while a summary of the
overall system configurations across the 4 models is provided
in Multimedia Appendix 9.

Multimedia Appendix 8 summarizes the model optimization
strategies. For ResNet18 and ViT-B/16, lower learning rates
combined with weight decay were selected to stabilize training
and prevent overfitting. CosineAnnealing LR was adopted for
ViT-B/16 to handle its slower convergence, which
ReduceLROnPlateau performed better for ResNet18. Data
augmentation strategies, such as random rotations and affine
transformations, improved robustness to geometric variations.
For SimCLR, we optimized the projection head dimensions and
augmentations to enhance representation learning. For
SVM+HOG, a linear kernel and default regularization parameter
provided the best trade-off between simplicity and performance.

Multimedia Appendix 9 summarizes the complete experiment
environmental settings to ensure reproducibility. It detailed the
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hardware (NVIDIA RTX A6000 GPU, Intel Core i7 central
processing unit, 251 GB RAM), operating system (Windows
11), and software frameworks (PyTorch 2.6.0+cu118 and
torchvision 0.21.0+cu118). We also listed the Python (version
3.9.21; Python Software Foundation) and the key Python
packages with their current versions, such as scikit-learn 1.6.1
and numpy 2.0.2. Finally, we set the random seed configuration
used in the experiments; variable seeds were applied during
training (42+run) to enhance model generalizability, while a
fixed seed (42) was used during test runs to ensure deterministic
evaluation results.

Comparison With Previous Studies
Previous studies have explored various strategies for brain tumor
classification, ranging from traditional machine learning models
to deep learning approaches. One study [34] demonstrates that
an SVM model alone as the baseline to attain the accuracy of
86.57% on unseen brain tumor data, incorporating principal
component analysis improved the accuracy to 94.20%. While
the combination of SVM with HOG and local binary pattern
achieved a higher accuracy of 96.03%. Another study [35]
applied ResNet18 for brain tumor detection and reported
superior performance over models such as GoogLeNet and
CapsNet, with their ResNet18 achieving an accuracy of 88.33%.

While previous studies primarily focused on classification
accuracy, our research explored 4 distinct model mechanisms
and interpreted how each identified image classification
predictions based on learned features and internal decision
processes. Our models demonstrated strong and consistent
performance across multiple evaluation criteria.

Specifically, for the SVM+HOG model, the HOG method is
used to extract edge and shape features from image data, which
are then fed into an SVM for binary classification. ResNet18,
a CNN model, predicts by attending to localized pixel patterns
and patch movements. ViT-B/16, a transformer-based model,
aggregates attention weights across all image patches and their
spatial relationship, capturing global context for classification.
SimCLR uses a pretrained ResNet18 as a backbone to learn
localized feature representations through self-supervised
contrastive learning, followed by a linear classifier for
downstream prediction.

Additionally, we extended our evaluation to assess the
robustness and generalization both within-domain and
cross-domain. We analyzed training convergence patterns and
included the practical feasibility metrics such as training time,
annotation cost, and interpretability via saliency map. This
comparative trade-off analysis is for offering a broader and
practical evaluation framework for deploying AI in real-world
medical imaging tasks.

Limitations
This study has several limitations. First, the relatively small
training images in the primary dataset contained 2008 images,
and the cross-domain test data contained 3351 images. These
dataset sizes were relatively small, particularly for deep learning
models, which typically required large amounts of data to
generalize better [3]. Second, we selected ResNet18, ViT-B/16,
and SimCLR to enable fair baseline comparisons, but larger
models such as ResNet50 or ViT-L may yield better
performance. Third, we focused exclusively on image-level
classification rather than voxel-level tumor localization. Finally,
the interpretability of saliency maps does not always correlate
with model performance and may potentially highlight spurious
features.

Future Work
For future work, larger and more diverse datasets are needed to
validate model generalization and enhance clinical relevance.
Extending this work to segmentation and 3D modeling could
offer more precise tumor localization and enhance voxel-level
clinical interpretation [36]. Moreover, exploring more robust
interpretability techniques such as concept-based methods or
counterfactual explanations may strengthen clinician trust in
model decisions. Finally, close collaboration between machine
learning researchers and clinicians will be critical to translating
models into trustworthy, deployable tools for health care.

Conclusions
This study aimed to evaluate trade-offs between classical
machine learning and deep learning, including SSL approaches
for brain tumor classification under small-scale medical imaging
conditions. To achieve this, we compared 4 representative
models, including SVM+HOG, ResNet18, ViT-B/16, and
SimCLR, with consistent training pipelines and evaluated their
performance across both within- and cross-domain settings,
without retraining on cross dataset to simulate real-world
deployment.

Our analysis revealed that no single model is universally
optimal. ResNet18 achieved a strong balance of accuracy and
computational efficiency, SimCLR demonstrated superior
generalization under limited annotations, ViT-B/16 provided
the most coherent visual interpretability through attention
mechanisms, and SVM+HOG showed a lightweight,
resource-efficient alternative. Importantly, the results highlighted
that model choice depended on perspective: from a machine
learning researcher standpoint, efficiency and accuracy
dominate, whereas from a clinical perspective, interpretability
through saliency maps can be important.
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