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Abstract

Background: This study examines the capability of large language models (LLMs) in detecting medical rumors, using
hemangioma-related information as an example. It compares the performances of ChatGPT-40 and DeepSeek-R1.

Objective: This study aimed to evaluate and compare the accuracy, stability, and expert-rated reliability of 2 LLMs,
ChatGPT-40 and DeepSeek-R1, in classifying medical information related to hemangiomas as either “rumors” or “accurate
information.”

Methods: We collected 82 publicly available texts from social media platforms, medical education websites, international
guidelines, and journals. Of the 82 items, 47/82 (57%) were labeled as “rumors,” and 35/82 (43%) were labeled as “accurate
information.” Three vascular anomaly specialists with extensive clinical experience independently annotated the texts in a
double-blinded manner, and disagreements were resolved by arbitration to ensure labeling reliability. Subsequently, these texts
were input into ChatGPT-40 and DeepSeek-R1, with each model generating 2 rounds of results under identical instructions.
Output stability was assessed using bidirectional encoder representations from transformers—based semantic similarity scores.
Classification accuracy, precision, recall, and Fj-score were calculated to evaluate the performance. Additionally, 2 medical
experts independently rated the model outputs using a 5-point scale based on clinical guidelines. Statistical analyses included
paired ¢ tests, Wilcoxon signed-rank tests, and bootstrap resampling to compute confidence intervals.

Results: In terms of semantic stability, the similarity distributions for the 2 models largely overlapped, with no statistically
significant difference observed (mean difference=—0.003, 95% CI —-0.011 to 0.005; P=.30). Regarding classification perform-
ance, DeepSeek-R1 achieved higher accuracy (0.963) compared to ChatGPT-40 (0.910), and also performed better in terms of
precision (0.978 vs 0.940), recall (0.957 vs 0.894), and F{-score (0.967 vs 0.916). Expert evaluations revealed that DeepSeek-
R1 significantly outperformed ChatGPT-40 on both “rumor” items (mean difference=0.431; P<.001; Cohen d,=0.594) and
“accurate information” items (mean difference=0.264; P=.045; Cohen d,=0.352), with a particularly pronounced advantage in
rumor detection.

Conclusions: DeepSeek-R1 demonstrated greater accuracy and rationale in detecting medical rumors compared with
ChatGPT-40. This study provides empirical support for the application of LLMs and recommends optimizing accuracy and
incorporating real-time verification mechanisms to mitigate the harmful impact of misleading information on patient health.
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Introduction

In recent years, artificial intelligence (AI) has drawn
considerable attention in detecting medical and health-rela-
ted rumors [1,2]. Some studies have conducted system-
atic reviews on the application of Al technologies, such
as text mining and machine learning, for the automatic
identification of health misinformation [3]. Nonetheless,
recognizing medical rumors remains a challenge due to
the scarcity of high-quality specialized datasets and the
extensive effort required by medical experts for annotation
[4,5], making it difficult to train highly accurate rumor
detection models. Moreover, as conversational Al assistants
become increasingly integrated with and partially replace
traditional search engine functionalities, more individuals are
turning to chatbots for medical information [6,7]. However,
current large language models (LLMs) lack robust verifica-
tion mechanisms and often struggle to differentiate genu-
ine from false medical information, frequently producing
factually incorrect or imprecise answers—commonly known
as “hallucinations” [6,8,9]. In the medical field, the risks
posed by misinformation are particularly severe, as mislead-
ing content can undermine trust in health care systems, alter
treatment decisions, and even lead patients to delay or reject
scientifically validated therapies, opting instead for unsuppor-
ted and potentially harmful treatments [10].

To ground our investigation concretely, we focused on
vascular tumors and malformations—a field where rap-
idly evolving medical classifications often cause significant
public confusion and misinformation [11]. The International
Society for the Study of Vascular Anomalies classification
is continuously updated, with the 2025 edition significantly
revising its 2018 predecessor by introducing a new category,
potentially unique vascular anomaly, incorporating multiple
genetic syndromes into the classification framework, and
implementing extensive terminology revisions. Such frequent
updates complicate both clinical diagnosis and public
comprehension [11,12]. A prominent example is the lesion
previously termed “cavernous hemangioma,” which has now
been redefined as a subtype of “venous malformation.”
However, outdated terminology persists widely in patient
forums and online sources, creating a gap between current
medical standards and lay perceptions. This misinformation
can lead directly to clinical risks, such as misdiagnosis,
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delayed treatments, or unnecessary interventions, highlight-
ing the critical need to address inaccuracies and outdated
information [13].

In this context, our study selected 2 widely adopted
conversational Al models—OpenAI’s ChatGPT-40 and the
open-source DeepSeek-R1—as research subjects [14,15].
This combination not only represents the 2 primary devel-
opment trajectories (closed-source versus open-source) of
contemporary LLMs but also establishes a baseline task
for subsequent benchmarking, allowing future studies to
incorporate additional LLMs and facilitate longitudinal
comparability. We conducted a classification evaluation of
medical statements concerning hemangiomas and vascular
malformations, focusing particularly on the models’ ability
to identify incorrect medical claims (rumors). By comparing
the performance of these 2 models on relevant statements,
our research aims to evaluate the current capabilities and
limitations of Al models in verifying medical information and
to provide insights for enhancing rumor-detection capabilities
in medical Al systems in future work.

Methods

Study Design and Overview

Our study used publicly available texts from global social
media platforms (eg, Reddit, Zhihu, and Weibo); medical
education websites (eg, WebMD, Mayo Clinic, and HaoDF
or HaoDaifu Online), the International Society for the Study
of Vascular Anomalies classification resources, relevant
guidelines, and medical journals (Multimedia Appendix 1). In
total, 82 statements were collected, with 47 (57%) classi-
fied as “rumors” and 35 (43%) as “accurate information.”
These statements covered key educational aspects of patients
with hemangiomas and vascular malformations, including
(1) nomenclature and classification, (2) pathogenesis and
natural history, (3) risk stratification and complications,
(4) assessment and referral, (5) treatment and peritreatment
issues, and (6) prognosis and follow-up. All texts collec-
ted were independently reviewed by medical experts and
labeled as either “rumors” or “accurate information,” based
on guideline-supported factual accuracy. Figure 1 provides an
overview of the study workflow.
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Figure 1. Research methodology framework. BERT: bidirectional encoder representations from transformers; ISSVA: International Society for the

Study of Vascular Anomalies.
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Ethical Considerations

This study used only publicly available, nonidentifiable text
data and did not involve clinical interventions, access to
medical records, or collection of personal identifiers. In
accordance with the Measures for the Ethical Review of Life
Science and Medical Research Involving Humans, research
using lawfully obtained public data or anonymized infor-
mation may be exempt from ethics review (Article 32).
Therefore, an ethics application was not required for this
study [16]. Since the data were public and nonidentifiable,
informed consent was not required. No compensation was
provided to any individuals in relation to this study.

Data Collection and Annotation

Two medical experts specializing in vascular anomalies (with
5 and 10 y of clinical experience, respectively) independently

Textbox 1. Model testing process.

Expert scoring
+* 2 medical experts independently rated model outputs

* S-point Likert scale

(1=highly noncompliant and 5=highly reasonable)

reviewed and labeled each statement as either “rumor” or
“accurate information.” To minimize bias, all items were
anonymized by removing source identifiers and engagement
metrics prior to labeling, and annotators remained double-
blinded to each other’s decisions. In cases of disagreement,
arbitration was conducted by a third medical expert with
15 years of clinical experience, resulting in a unified set
of labels and ensuring labeling reliability. Potential biases
were mitigated through independent dual review, third-party
arbitration, and prespecified labeling guidelines.

Model Testing

After labeling, the texts were input into 2 LLMs—
ChatGPT-40 and DeepSeek-R1—for testing. The process is
presented in Textbox 1.

* Prompts and outputs: to minimize bias introduced by variations in prompting and to highlight baseline comparability,
both models received the identical concise instruction: “evaluate the following statement for accuracy and reliability
in the context of hemangioma and vascular malformation treatment.” Each model classified the texts as either “rumor”
or “accurate information,” accompanied by a brief rationale (Multimedia Appendix 2).

Multiple rounds of generation: to reduce the effects of random output, each model generated results twice for

each text. A bidirectional encoder representations from transformers model was then used to compute the semantic
similarity of these 2 outputs to assess the stability of the model’s performance under identical inputs.
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Expert Scoring

In addition to classification results, 2 medical experts
independently assessed the compliance of each model’s
output with clinical guidelines. Evaluations were performed
using a S5-point Likert scale (1= highly noncompliant,
5=highly reasonable). The medical experts remained blinded
to both the model identities (ChatGPT-40 vs DeepSeek-R1)
and each other’s scores. Detailed scoring criteria are provided
in Multimedia Appendix 3.

Statistical Analysis
Semantic Similarity and Stability

Semantic stability was assessed by calculating bidirectional
encoder representations from transformers (BERT)-based
similarity scores between 2 independently generated outputs
for each statement (see Multimedia Appendix 4 for detailed
code). Descriptive statistics, including means, SDs, medians,
and IQRs, were reported. Differences between models were
compared using paired Wilcoxon signed-rank tests (due
to partially nonnormal distributions). Additionally, 95%
bias-corrected and accelerated Cls for mean differences were
computed via 10,000 bootstrap resamples to ensure robust
interval estimation.

Classification Performance

Classification accuracy, precision, recall, and Fj-scores were
calculated based on standard definitions, with error distri-
butions visualized using confusion matrices. This approach
allows comprehensive evaluation of global and class-spe-
cific performance and is particularly suitable for scenarios
involving class imbalance.

Expert Ratings

Two clinical experts independently provided ratings on a
5-point Likert scale for each of the 82 statements (47 rumors
and 35 accurate statements) in 2 separate rounds. The mean
rating for each item was computed as the final score. For
each model, descriptive statistics such as mean (SD) and 95%
CIs were calculated, treating each statement as an independ-
ent unit. Between-model comparisons were performed using
paired 2-tailed ¢ tests (assuming normality of differences)
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supplemented by Wilcoxon signed-rank tests as a robust
alternative, with Cohen d; effect sizes reported. Within-model
comparisons between “rumors” and ‘“accurate information”
were conducted using Welch ¢ test to account for unequal
sample sizes and potential variance heterogeneity. Reviewer
agreement and reliability were assessed using Cronbach o and
interclass correlation coefficients (ICCs), ICC(2,1)/ICC(2.k).
All tests were 2-tailed, with statistical significance defined as
P<.05.

Results

Overview

This study systematically compared the performance of
ChatGPT-40 and DeepSeek-R1 in classifying statements
related to hemangiomas and vascular malformations across
three dimensions: (1) the stability of 2 independent outputs,
assessed using BERT-based semantic similarity metrics; (2)
classification performance, evaluated by accuracy, precision,
recall, and F{-score; and (3) clinical appropriateness of model
outputs as rated by experts on a 5-point scale. For expert
ratings, statistical inference was conducted using a paired
design with Wilcoxon signed-rank tests, effect sizes (r), and
95% bias-corrected and accelerated Cls.

Semantic Similarity Analysis

To evaluate the semantic similarity between the model-gen-
erated responses, we used a BERT-based scoring approach
(detailed in Multimedia Appendix 5). Multimedia Appendix
6 shows the distribution of the scores for ChatGPT-40 and
DeepSeek-R1. Overall, the distributions for both models
exhibited substantial overlap, with ChatGPT-40 displaying a
slightly narrower distribution, while DeepSeek-R1 showed a
marginally wider range. During paired comparisons, 1 pair
with identical observations was excluded, resulting in 81
(99%) paired samples for analysis. The Wilcoxon signed-rank
test indicated no significant difference in stability between
the 2 models (W=1440.5; z=—1.036; P=.30), with a mean
difference of only —0.003 (95% bootstrap CI —0.011 to 0.005,
r=—0.115) as shown in Table 1. These findings suggest
comparable semantic similarity and stability performance
between the 2 models.

Table 1. Stability comparison between ChatGPT-40 and DeepSeek-R1 based on bidirectional encoder representations from transformers semantic

similarity scores.*

Model and comparison Mean (SD) Median (IQR) Range
ChatGPT-40 (N=82) 0.9000 (0.0250) 0.9060 (0.8870-0.9180) 0.8250-0.9400
DeepSeek-R1 (N=82) 0.8970 (0.0320) 0.9010 (0.8850-0.9140) 0.7800-1.0000

#Paired difference (DeepSeek-R1 — ChatGPT-40; n=81; of the original 82 pairs, | pair with identical values [tie] was excluded automatically during
the Wilcoxon test, resulting in an effective sample size of 81): mean difference=—0.0030; 95% bias-corrected and accelerated CI —0.0110 to 0.005;

Wilcoxon W=1440.5000; z=—1.0360; P=.30; r=—0.1150.
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Classification Performance Evaluation

Classification performance for hemangioma and vascu-
lar malformation statements was evaluated by examining
confusion matrices (Figure 2A) and key performance metrics.
Confusion matrix analyses indicated no substantial differen-
ces in misclassification distribution between the 2 models,
with overall good stability. In terms of the overall classifi-
cation accuracy (Figure 2B), DeepSeek-R1 achieved 0.963,
which was notably higher than ChatGPT-40, which reached
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approximately 0.910. Additionally, DeepSeek-R1 surpassed
ChatGPT-40 in terms of other metrics, including precision,
recall, and Fj-score. Specifically, DeepSeek-R1 demonstrated
a precision of approximately 0.978, recall of 0.957, and an
F1-score of 0.967, each marginally higher than the corre-
sponding values for ChatGPT-40 (Figure 2C). These results
highlight the superior classification accuracy of DeepSeek-
R1.
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Figure 2. (A) Confusion matrices for vascular lesion classification by ChatGPT-40 and DeepSeek-R1; (B) overall classification accuracy of

ChatGPT-40 and DeepSeek-R1; (C) precision, recall, and F|-scores of ChatGPT-40 and DeepSeek-R1.
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Expert Rating Analysis

In qualitative assessments, both models demonstrated strong
performance regarding the clinical appropriateness of their
outputs, with subtle yet meaningful differences observed.
Expert ratings (Multimedia Appendices 7 and 8) indicated
that for statements classified as “rumors” (47/82, 57%),
DeepSeek-R1 scored significantly higher with a mean (SD) of
4.39 (0.59) and 95% CI 4.21-4.56 compared to ChatGPT-40
with a mean of 3.96 (SD 0.81) and 95% CI of 3.72-4.20;
the mean difference was 0.431 (95% CI 0.218-0.644); paired
146=4.071; P<.001; Wilcoxon P<.001; and effect size Cohen
d,=0.594.

For statements labeled as “accurate information” (35/82,
43%), DeepSeek-R1 with a mean of 4.44 (SD 0.37) and 95%
CI of 4.32-4.57 also significantly outperformed ChatGPT-40
with a mean of 4.18 (SD 0.69) and 95% CI of 3.94-4.41,
the mean difference was 0.264 (95% CI 0.007-0.522); paired
t34=2.085; P=.045; Wilcoxon P=.046; and Cohen d,=0.352.

These findings demonstrate significant superiority of
DeepSeek-R1 over ChatGPT-40 in evaluating both “rumors”
and “accurate information,” with a particularly pronounced
advantage in detecting “rumors.”

DeepSeek-R1 performed slightly better than ChatGPT-40
across multiple evaluation dimensions, exhibiting higher
output stability and classification accuracy. This finding
suggests that DeepSeek-R1 holds greater potential for
medical information classification tasks.

Discussion

This study compared ChatGPT-40 and DeepSeek-R1 in the
task of identifying medical rumors, with hemangioma-related
misinformation serving as the focal point [17,18]. Over-
all, both models demonstrated robust language comprehen-
sion capabilities but differed markedly in their approaches
to recognizing inaccurate statements about hemangiomas.
DeepSeek-R1 excelled at pinpointing erroneous claims
and clearly categorizing them as rumors, showing its
strength in explicit rumor detection and confident classi-
fication. In contrast, ChatGPT-40 demonstrated superior
semantic similarity and exhibited more consistent stability
in understanding nuanced languages, yet tended to approach
rumor identification cautiously, often resorting to ambigu-
ous wording rather than decisively refuting false informa-
tion. Although these observed differences may stem from
variations in training data, model architecture, and fine-tun-
ing strategies, existing evidence from other studies suggests
that specialized fine-tuning with medical information could
further enhance the capability of LLMs in accurately and
effectively detecting medical misinformation [19].

In our task, overly cautious responses—specifically,
the failure to decisively refute rumors (false negatives)—
may perpetuate harmful misconceptions, causing caregivers
to delay specialist referrals or discontinue evidence-based
treatments in favor of unproven remedies. Conversely,
overconfidence—erroneously labeling accurate guidance as
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rumors (false positives)—may lead to unnecessary anxiety,
undermine trust in clinicians, or impede appropriate inter-
ventions. In hemangioma treatment, such misclassification
could negatively impact decisions regarding timely assess-
ment (eg, ulceration and airway involvement), follow-up
intervals, or continuation of guideline-adherent therapies.
These risks support the use of conservative safety thresh-
olds, verifiable citations, and escalation of human oversight
when model confidence is low. One illustrative example
is the claim that “sun exposure exacerbates hemangiomas,”
which lacks scientific support [20]. Authoritative sources
indicate that sun exposure does not directly enlarge or
worsen hemangiomas. While moderate sun protection can
help safeguard the skin, it does not specifically address
pathological changes in hemangiomas [21,22]. In this study,
DeepSeek-R1 correctly identified this assertion as a rumor
and provided a concise explanation consistent with medical
consensus. ChatGPT-4o, in contrast, did not unequivocally
refute the claim, instead offering a somewhat reserved answer
that did not effectively dispel the misconception. Although
both models possess extensive medical knowledge, Deep-
Seek-R1 displayed a stronger rumor-debunking ability when
confronted with evidently incorrect statements, whereas the
cautious approach of ChatGPT-40 diluted its capacity to
correct misinformation.

As more users turn to Al assistants for medical informa-
tion, traditional search engines are gradually being supple-
mented or even replaced by these systems [23,24]. Unlike
search engines that merely provide links, Al chatbots often
deliver comprehensive, single-point answers whose perceived
authority may lead users to over-rely on them instead of
consulting additional information sources [25,26]. Conse-
quently, the adverse impact of inaccurate or ambiguous
medical information disseminated by Al could be amplified,
posing a considerable risk of misleading patients in their
health care decisions. Therefore, ensuring higher accuracy in
identifying medical rumors is both urgent and critical [27].

Recent research has proposed various methods for
leveraging Al to detect medical rumors. For instance, studies
comparing GPT-4 with other models trained specifically on
health information have shown that specialized models tend
to be more accurate in identifying and correcting misinforma-
tion [28,29]. These findings underscore that although LLMs
have tremendous potential for conveying medical knowl-
edge, they still exhibit shortcomings in fact-checking and
real-time verification [30]. Incorporating real-time retrieval
mechanisms and referencing authoritative data in responses
represents a key direction for improving the accuracy of
Al-generated medical information [28]. Notably, conclusions
regarding model superiority depend heavily on the task
design, dataset scope, and evaluation criteria. These factors
help explain the inconsistencies observed in the existing
literature and highlight the novelty of our research, which
specifically addresses misinformation related to hemangio-
mas. The methodological workflow applied in this study
—consisting of data annotation, multiround generation,
BERT similarity assessment, and expert evaluation—not
only validates the relative advantages of DeepSeekR1 in
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our task but also underscores the insufficiency of any
single metric for comprehensively assessing model perform-
ance. Multidimensional evaluations more effectively reveal
nuanced differences between models in stability, accuracy,
and clinical appropriateness, thereby offering valuable lessons
and standardized protocols for the deployment and further
study of large medical language models.

This study has several limitations. First, our data primarily
address hemangiomas and vascular malformations, and the
limited number and types of examples may not comprehen-
sively encompass all medical rumors. Second, the labeling
of rumors relies on expert judgment, introducing an element
of subjectivity, and disagreements may arise when experts
evaluate borderline cases. Additionally, discrepancies in the
2 Al models’ training data and knowledge cutoff dates could
affect their ability to capture the latest medical information.
Finally, we did not evaluate aspects such as explanatory
depth, response speed, and user-friendliness. For instance,
we did not conduct a formal qualitative or user-centered
analysis of explanation quality, which remains an important
area for future investigation. For clinical decision support,
patient-oriented education, or public health surveillance,
LLM-generated outputs should be embedded within regulated
workflows that include (1) retrieval-augmented validation
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from curated vascular anomaly sources, (2) human-in-the-
loop review of high-risk recommendations, (3) audit trails and
disclaimers clearly delineating accountability, (4) transparent
rationales with explicit references to guidelines and clearly
marked uncertainties, and (5) postdeployment monitoring for
data drift and fairness. These safeguards are prerequisites
for mitigating liabilities and improving interpretability and
usability in practical applications.

In conclusion, this research highlights the performance
differences between the 2 LLMs in detecting hemangioma-
related medical rumors, stressing the urgency of maintain-
ing accurate medical information as Al gradually supplants
traditional search engines. DeepSeek-R1 showed higher
accuracy and a more decisive approach to rumor detec-
tion, whereas the guarded stance of ChatGPT-40 some-
times led to less definitive answers. Future studies should
optimize Al models’ fact-checking capabilities, for exam-
ple, by integrating real-time access to authoritative databa-
ses, enhancing domain-specific fine-tuning, and building
human-machine collaborative monitoring systems. Contin-
uous improvements in the accuracy and transparency of
Al-driven medical communications will better protect patient
health and reinforce public trust in evidence-based health
care.
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