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Abstract

Background: HIV viral suppression is essential for improving health outcomes and reducing transmission rates among people
living with HIV. In Uganda, where HIV/AIDS is a major public health concern, machine learning (ML) models can predict viral
suppression effectively. However, the limited use of explainable artificial intelligence (XAI) methods affects model transparency
and clinical utility.

Objective: This study aimed to develop and compare ML models for predicting viral nonsuppression in Ugandan people living
with HIV on antiretroviral therapy (ART), and then systematically apply comprehensive XAI techniques to the best-performing
model to identify key predictors and demonstrate interpretability at both population and individual patient levels.

Methods: We retrospectively analyzed clinical and demographic data from 1101 Ugandan people living with HIV on ART at
the HIV clinic in Muyembe Health Centre IV between June 2016 and April 2018, focusing on predicting viral nonsuppression
(viral load >1000 copies per milliliter). The dataset was divided into model-building (training: 80%) and validation (test: 20%)
sets. To address class imbalance, the synthetic minority over-sampling technique was applied. For global explanation, 8 ML
algorithms—logistic regression, stacked ensemble, random forest, support vector machines, extreme gradient boosting (XGBoost),
k-nearest neighbors, naïve Bayes, and artificial neural networks—were compared. Model performance was evaluated using
metrics such as accuracy, precision, recall, F1-score, Cohen κ, and area under the curve (AUC). For local explanation, individual
conditional expectation plots, Shapley Additive Explanations (SHAP), breakdown, and SHAP force plots were used to provide
insights into predictions for individual patients.

Results: The XGBoost ensemble model demonstrated superior performance with an accuracy of 0.89, precision of 0.59, recall
of 0.65, and AUC of 0.80. The model achieved high specificity (0.93) and moderate sensitivity, yielding a Cohen κ of 0.55 and
F1-score of 0.62, indicating good discriminative ability for viral nonsuppression prediction. SHAP feature importance analysis
identified adherence assessment over the preceding 3 months as the most influential predictor of viral nonsuppression, followed
by age group, urban residence, and duration on ART. Local SHAP consistently demonstrated that poor adherence was the primary
driver of both correctly identified nonsuppressed cases and false positive predictions, reinforcing adherence as the critical
determinant of treatment outcomes.

Conclusions: The XGBoost model demonstrated optimal performance for predicting viral nonsuppression among Ugandan
people living with HIV on ART, achieving an AUC of 0.80. Comprehensive XAI analysis identified adherence assessment as
the primary predictor, followed by age group, residence type, and ART duration. XAI methods provided transparent interpretation
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of model predictions at both population and individual patient levels, enabling identification of key risk factors for targeted clinical
interventions in resource-limited settings.

(JMIR AI 2026;5:e68196)   doi:10.2196/68196

KEYWORDS

HIV viral suppression; machine learning; explainable AI; artificial intelligence; antiretroviral therapy; adherence; Uganda;
predictive modeling; XGBoost; extreme gradient boosting; clinical decision-making; public health

Introduction

HIV/AIDS remains a major public health issue in Uganda, with
an estimated 1.4 million people living with the virus and an
adult prevalence of 5.2%. According to the most recent
estimates, approximately 93% of individuals living with HIV
in Uganda are currently receiving antiretroviral therapy (ART)
[1,2]. Despite challenges, progress is evident with 1.2 million
individuals on antiretroviral treatment and a 44% reduction in
new infections since 2010. Significant strides have been made
in reducing pediatric HIV infections by 61%, though vertical
transmission rates after breastfeeding remain at 8.6%. Continued
efforts are essential to meet the goal of ending AIDS as a public
health threat by 2030 [1-3].

Viral load monitoring remains a crucial component of ART
success due to its early detection of treatment failure, enabling
timely interventions to address adherence issues or drug
resistance [1]. It distinguishes between true drug resistance and
temporary adherence lapses, allowing for targeted interventions
without unnecessary medication changes [4]. In addition, public
health officials can evaluate program effectiveness and identify
areas for improvement by tracking trends in viral suppression
rates. Achieving viral suppression, defined by the World Health
Organization (WHO) as an HIV viral load <1000 copies per
milliliter, is the primary goal of ART for people living with
HIV. This public health threshold, used for global monitoring
and in resource-limited settings, differs from clinical thresholds
used in high-income countries (<200 or <50 copies per milliliter
for “undetectable” status) [5-8]. This crucial milestone not only
significantly reduces the risk of transmitting HIV to sexual
partners but also minimizes the risk of mother-to-child
transmission during breastfeeding. However, predicting and
achieving viral suppression can be challenging due to the
complex interplay of factors beyond adherence to ART
medication. Research suggests that factors such as age, sex,
sociodemographic characteristics, clinical, treatment, and
potentially psychological factors also play a role in influencing
treatment success [9-11]. Consequently, there is growing interest
in using machine learning (ML) models to enhance prediction
accuracy.

ML analyzes complex, high-dimensional data and captures
complex relationships between variables [12]. Rajula et al [12]
further state that this capability is valuable in HIV viral
suppression prediction, where traditional statistical methods
often struggle with this type of data, potentially overlooking
crucial factors influencing viral failure risk. Several studies in
Eastern and Southern Africa have demonstrated the potential
of ML algorithms such as random forest and logistic regression
for predicting viral suppression in HIV [13-18]. For instance,

Mamo et al [18] demonstrated the potential of ML approaches,
achieving an area under the curve (AUC) of 0.9989 for viral
failure prediction using random forest with a comprehensive
methodology including cross-validation and imbalanced data
handling. While these results are promising, the near-perfect
performance highlights the need for external validation studies
to establish realistic performance benchmarks and confirm the
generalizability of ML models in diverse HIV care settings.

Despite significant advancements in ML for predicting HIV
viral suppression, the adoption of explainable artificial
intelligence (XAI) techniques, which provide transparent
insights into how models make predictions, remains limited
within this domain [19]. Our study hypothesized that
comprehensive XAI techniques could be successfully integrated
with ML models to provide interpretable predictions for HIV
viral suppression in a resource-limited setting, identifying key
risk factors at both population and individual patient levels.
This gap presents a critical opportunity for improvement through
the implementation of local and global interpretability methods.

Our study addressed this limitation by developing and
comparing ML models for HIV viral suppression prediction in
Ugandan people living with HIV, and then systematically
applying comprehensive XAI techniques to enhance model
interpretability. Multiple ML algorithms were built and
compared, XAI methods were applied to the best-performing
model to identify key predictive factors, and interpretability
was demonstrated at both population and individual patient
levels. This integrated approach combined predictive accuracy
with transparent model interpretation, providing actionable
insights for clinical decision-making in resource-limited settings.

Methods

This section outlines the methodological approach used to
achieve our research objectives (Multimedia Appendix 1).

Study Design
This study conducted a secondary analysis of a retrospective
cohort dataset originally collected by Wakooko et al [11], who
used traditional binary logistic regression analysis. The original
study reviewed clinical records of people living with HIV on
ART for at least 6 months at Muyembe Health Centre IV
(HCIV), the primary ART site in Bulambuli District, Uganda.
In contrast to the original analysis, this study used ML
approaches to develop predictive models for viral suppression
outcomes. Furthermore, XAI techniques were applied to the
best-performing model to provide insights into the factors
influencing viral suppression, enhancing both model
interpretability and transparency in the clinical decision-making
process.
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Study Setting
This study used a dataset collected in Bulambuli District, located
in Eastern Uganda, with Muyembe HCIV serving as the sole
data source. Although the district comprises 10 Health Centre
IIIs and 1 HCIV, Muyembe HCIV functions as the district’s
primary and fully operational ART site. It maintains the most
complete ART records and provides centralized HIV care for
the area (Multimedia Appendix 2).

Study Population, Sampling, and Data Acquisition
This study used a secondary dataset sourced from the Mendeley
data repository [20], comprising information extracted from
medical records of people living with HIV who received ART
at Muyembe HCIV between June 2016 and April 2018. The
study population consisted of people living with HIV enrolled
in care at Muyembe HCIV during the study period. From an
initial cohort of 2050 people living with HIV enrolled at the
facility, 1101 participants met the inclusion criteria and were
included in the final study sample. A total of 949 individuals
were excluded for not meeting the inclusion criteria (Figure 1).

Figure 1. Flowchart of participant selection for the study of people living with HIV on ART at Muyembe Health Centre IV, June 2016 to April 2018.
ART: antiretroviral therapy.

The dataset included demographic, clinical, and
treatment-related variables of people living with HIV receiving
ART. Variables such as age, sex, WHO clinical stage at ART
initiation, ART regimen, cluster of differentiation 4 (CD4) count
at ART initiation, adherence assessment, and treatment duration
were incorporated into the analysis (Table S2 in Multimedia
Appendix 3 provides comprehensive mapping between variable
descriptions, code names, and original data codes). Adherence
assessment was conducted by reviewing patient treatment cards,
which contained documented records of medication adherence
over the preceding 3 months as recorded by health care providers
during routine clinic visits.

The primary outcome of interest in this study was viral
nonsuppression, defined as a viral load greater than 1000 copies
per milliliter, consistent with Uganda’s national antiretroviral
treatment monitoring guidelines [6]. To facilitate model
predictions and subsequent clinical interpretation, viral load
measurements were dichotomized, whereby viral nonsuppression
was assigned a value of 1 (positive class), and viral suppression
was assigned a value of 0.

Inclusion and Exclusion Criteria
Participants were eligible for inclusion if they were on ART for
6 months or longer and had viral load test results available. All
ages were included, covering a wide range of people living with
HIV from pediatric to adult populations.
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Data Preparation and Preprocessing
The dataset was randomly partitioned into training (80%) and
testing (20%) subsets, with stratification to preserve the outcome
variable distribution (viral suppression status). We assessed
missingness patterns across all 27 variables initially extracted
from the dataset (Table S1 in Multimedia Appendix 3). Factor
levels were harmonized across subsets, and variables with more
than 80% missingness (specific other medication, reason for
stopping ART, and specific opportunistic infection) were
excluded. All preprocessing steps, including imputation, were
performed exclusively on the training dataset to prevent data
leakage and ensure unbiased model evaluation. Remaining
features underwent systematic cleaning, including mean
imputation for numeric variables and mode imputation for
categorical predictors, with clinically informed handling of
missing values through “unknown” categories for marital status
and supporter relationships to preserve potential clinical
significance of missingness patterns. Ordinal variables (eg,
WHO clinical stage, age group, ART duration, adherence
assessment, weight, and time before viral load testing) were
encoded as ordered factors, ensuring that clinically meaningful
ordering was preserved. Nominal categorical variables (eg, sex,
marital status, residence type, opportunistic infection history,
tuberculosis history on ART, point of entry in ART clinic, ART
history, ART supporter presence, supporter relationship, reported
side effects, dosing frequency, and pre-ART counseling status)
were harmonized across datasets, aligned to consistent reference
categories, and subsequently one-hot encoded using dummy
variables. The derived categorical variable CD4 lymphocyte
count category was removed in favor of retaining the original
continuous CD4 lymphocyte count at ART initiation.

Two distinct preprocessing pipelines were implemented. The
first did not apply any class-imbalance technique and relied
solely on structured preprocessing steps using the recipes
package (dummy encoding, normalization, ordinal scoring, and
zero-variance removal). The second pipeline addressed class
imbalance by applying the synthetic minority over-sampling
technique (SMOTE) to the training data, followed by support
vector machine-recursive feature elimination (SVM-RFE) for
feature selection of predictors. Feature set sizes varied across
model implementations: the final dataset contained 20 features,
preprocessing expanded this to 25 features for selected models,
while other feature selection approaches yielded reduced sets
of 13 features for the extreme gradient boosting (XGBoost)
model. All augmentation and feature selection procedures were
applied exclusively to training data, preserving test set integrity
and enabling systematic evaluation of different preprocessing
strategies while maintaining fully standardized, reproducible,
and leakage-free datasets suitable for downstream model
development.

Model Training and Tuning
This section outlines the key steps undertaken to develop ML
models for predicting HIV viral suppression among patients
receiving ART in Uganda. The following subsections describe
model building and model performance and evaluation.

Model Building
A diverse set of ML models was developed to predict viral
nonsuppression status, including random forest, XGBoost,
artificial neural networks, support vector machines, logistic
regression, k-nearest neighbors, naïve Bayes, and a stacked
ensemble with random forest and XGBoost base learners and
an XGBoost meta-learner. Stacked ensembles are a 2-level
modeling strategy that harnesses the strengths of multiple ML
models [21,22]. Model development used nested 10-fold
cross-validation to optimize hyperparameters and minimize
overfitting. Each algorithm was trained using structured
hyperparameter grids. These models were chosen based on their
proven effectiveness in classification tasks and their ability to
handle complex relationships within the data.

Model Performance and Evaluation
Evaluation incorporated a comprehensive set of metrics,
including accuracy, precision, recall (sensitivity), specificity,
F1-score, Cohen κ, and AUC. Performance was assessed through
both internal cross-validation and independent test sets, enabling
robust benchmarking of the models. In addition, feature
importance and the stability of selected predictors were
examined to compare model behavior across the imbalanced
and SMOTE-SVM-RFE pipelines.

Recall was prioritized due to its clinical importance in
identifying patients at high risk for failing to achieve viral
suppression. The F1-score offered a balanced view of precision
and recall, particularly useful for imbalanced datasets. Cohen
κ accounted for the possibility of agreement occurring by
chance, providing a more robust measure than simple accuracy.
The receiver operating characteristic curve visually represented
the trade-off between true positive (TP) rates and false positive
(FP) rates, with the AUC quantifying the model’s discriminative
ability.

Following model training, the optimal classification threshold
was determined using the Youden J statistic
(sensitivity+specificity–1) on the training set receiver operating
characteristic curve [23]. This approach maximizes the
combined sensitivity and specificity and represents a posttraining
internal validation step that does not influence model fitting.
The resulting threshold was held fixed and applied unchanged
to the independent test set for all performance metric
calculations and confusion matrix computation.

Probability calibration was performed using isotonic regression
fitted on the training set predictions [24]. The fitted calibration
function was then applied to the independent test set to generate
calibrated probability estimates. A calibration plot was created
for the best-performing model to evaluate alignment between
predicted probabilities and actual outcomes. Brier scores were
calculated to quantify the accuracy of probabilistic predictions
before and after calibration [25].

Interpretation Methods
Our research used a multifaceted approach to interpret the
best-performing model used for HIV viral suppression
prediction. This approach combined global and local
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interpretability techniques to understand how features influenced
the model’s decisions.

Global Explanation
We incorporated global Shapley Additive Explanations (SHAP)
for interpretability, which assigned attribution values to each
feature, explaining its contribution to specific predictions [26].
SHAP summary plots helped identify the most important global
features influencing the best model’s predictions. Furthermore,
we used dependence plots to visualize the average effect of
individual features on predictions, showing how the predicted
outcome (eg, viral nonsuppression) changed in response to
variations in each feature [27].

Local Explanation
Local interpretability techniques examined the reasoning behind
individual predictions [19]. Individual conditional expectations
(ICEs) were used to illustrate how changes in a single feature,
while holding others constant, impacted predictions for each
participant [28,29]. Breakdown plots further decomposed
predictions into contributions from individual features,
visualizing their influence on specific predictions [29,30]. In
addition, SHAP was used to explore feature interactions and
their influence on individual predictions, providing deeper
insight into local model reasoning.

Software and Analytical Tools
The analysis was conducted on a machine with the following
specifications: graphics: Intel Iris Plus Graphics 1536 MB,
RAM: 16 GB 3733 MHz LPDDR4X, and processor: 2 GHz
Quad-Core Intel Core i5, running macOS Sonoma (version
14.6.1; 23G93). The programming languages used include
Python (version 3.9; Python Software Foundation) and R
(version 4.3.3, 202-02-29, “Angel Food Cake”; R Foundation
for Statistical Computing), with RStudio 2024.09.0+375 (Posit
Software, PBC) serving as the integrated development
environment for both R and Python, while Stata 18 SE
(StataCorp LLC) was used to import and perform preliminary
descriptive analyses on the raw dataset, which was provided in
Stata’s proprietary .dta file format. The RStata package was
used to import and describe the data in R.

Python integration was achieved via the reticulate package,
using pandas for data manipulation. In R, dplyr was used for
cleaning and renaming columns, improving data clarity. Data
wrangling and preprocessing were conducted using a suite of
R packages. The dplyr package was used for data manipulation

tasks, such as filtering, mutating, and summarizing data. The
tidymodels framework was used for recipe creation and model
baking. ML models were trained and evaluated using the caret
package, supporting hyperparameter tuning and cross-validation.
To ensure interpretability, a suite of XAI packages—iml, vip,
pdp, breakDown, SHAPforxgboost, and DALEX—was used,
providing tools for variable importance, partial dependence
plots, breakdown plots, and SHAP [19].

Ethical Considerations
The original study, titled “Viral Load Suppression and
Associated Factors among HIV Patients on Antiretroviral
Treatment in Bulambuli District, Eastern Uganda: A
Retrospective Cohort Study” by Wakooko et al [11], received
ethics approval from both the Busitema University Faculty of
Health Sciences Higher Degrees and Research Committee and
the Mbale Regional Referral Hospital Research and Ethics
Committee (Ref: MRRH-REC-IN-COM 081/2018). Permission
to conduct the study was further obtained from the Bulambuli
District Health Office. A waiver of informed consent was
granted, as the study involved secondary analysis of existing
medical records initially collected for routine patient care.
Participant privacy and confidentiality were maintained through
deidentification procedures: the data abstraction tool used
numerical identifiers rather than names, ensuring that no
individual personal data were exposed, and all collected data
were stored securely with access restricted to research personnel.
No compensation was provided to participants, as no direct
participant contact occurred. The research presented no risk of
harm to participants. For this current secondary analysis study,
ethics approval was granted by the School of Consumer
Intelligence and Information Systems Research Ethics
Committee of the University of Johannesburg (approval:
2024SCiiS029).

Results

This section presents the findings from our analysis of the ML
models developed to predict HIV viral suppression among
Ugandan people living with HIV receiving ART.

Clinical and Demographic Profile
This study analyzed baseline sociodemographic, clinical, and
biomarker data to understand factors influencing viral
suppression among patients receiving ART in Uganda. A
detailed breakdown of these features stratified by viral
suppression status is presented (Table 1).
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Table 1. Baseline sociodemographics, clinical factors, and biomarkers of people living with HIV on antiretroviral therapy (ART) in a retrospective
cohort study in 2019, Bulambuli District, Uganda.

Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

Age group (years)

4 (2.5)20 (2.1)24 (2.2)0-5

19 (12.1)50 (5.3)69 (6.3)6-12

13 (8.3)28 (3)41 (3.7)13-19

62 (39.5)372 (39.4)434 (39.4)20-35

59 (37.6)474 (50.2)533 (48.4)Above 35

Sex

45 (28.7)289 (30.6)334 (30.3)Male

112 (71.3)655 (69.4)767 (69.7)Female

Marital status

64 (40.8)237 (25.1)301 (27.3)Single

84 (53.5)629 (66.6)713 (64.8)Married

9 (5.7)78 (8.3)87 (7.9)Divorced

Residence type

90 (57.3)588 (62.3)678 (61.6)Rural

67 (42.7)356 (37.7)423 (38.4)Urban

Adherence assessment last 3 months

59 (37.6)19 (2)78 (7.1)Poor <80%

51 (32.5)96 (10.2)147 (13.4)Fair 80%-95%

47 (29.9)829 (87.8)876 (79.6)Good >95%

WHOa clinical stage at ART initiation

39 (24.8)200 (21.2)239 (21.7)Stage 1

78 (49.7)462 (48.9)540 (49)Stage 2

40 (25.5)273 (28.9)313 (28.4)Stage 3

0 (0)9 (1)9 (0.8)Stage 4

Weight at ART initiation (kg)

14 (8.9)56 (5.9)70 (6.4)1-20

76 (48.4)413 (43.8)489 (44.4)21-50

67 (42.7)475 (50.3)542 (49.2)Above 50

Opportunistic infection history

12 (7.6)68 (7.2)80 (7.3)Yes

145 (92.4)876 (92.8)1021 (92.7)No

Tuberculosis history on ART

3 (1.9)12 (1.3)15 (1.4)Yes

154 (98.1)932 (98.7)1086 (98.6)No

Point of entry in ART clinic

130 (82.8)791 (83.8)921 (83.7)OPDb

19 (12.1)120 (12.7)139 (12.6)Maternity

8 (5.1)33 (3.5)41 (3.7)Antenatal care service

Duration on ART (months)
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

2 (1.3)8 (0.8)10 (0.9)3-6

4 (2.5)29 (3.1)33 (3)7-11

58 (36.9)288 (30.5)346 (31.4)12-24

93 (59.2)619 (65.6)712 (64.7)More than 24

ART history

4 (2.5)17 (1.8)21 (1.9)Yes

153 (97.5)927 (98.2)1080 (98.1)No

Reported ART side effects

17 (10.8)71 (7.5)88 (8)Yes

140 (89.2)873 (92.5)1013 (92)No

Frequency of ARVc dosing

90 (57.3)603 (63.9)693 (62.9)Once

67 (42.7)341 (36.1)408 (37.1)Twice

Pre-ART counseling status

135 (86)805 (85.3)940 (85.4)Yes

22 (14)139 (14.7)161 (14.6)No

Treatment supporter presence

145 (92.4)883 (93.5)1028 (93.4)Yes

12 (7.6)61 (6.5)73 (6.6)No

Treatment supporter relationship

28 (17.8)196 (20.8)224 (20.3)Care giver

90 (57.3)516 (54.7)606 (55)Relative

2 (1.3)11 (1.2)13 (1.2)Peer

21 (13.4)66 (7)87 (7.9)Biological parent

16 (10.2)155 (16.4)171 (15.5)Marriage partner

Time before viral load test on ART (months)

12 (7.6)98 (10.4)110 (10%)6

87 (55.4)489 (51.8)576 (52.3)12

58 (36.9)357 (37.8)415 (37.7)>12

Current ART regimen simplified

95 (60.5)642 (68)737 (66.9)TDFd-based

54 (34.4)271 (28.7)325 (29.5)AZTe-based

7 (4.5)26 (2.8)33 (3)ABCf-based

1 (0.6)5 (0.5)6 (0.5)Other ART

CD4g count category

114 (72.6)687 (72.8)801 (72.8)<200

31 (19.7)194 (20.6)225 (20.4)200-500
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

12 (7.6)63 (6.7)75 (6.8)>500

aWHO: World Health Organization.
bOPD: outpatient department.
cARV: antiretroviral.
dTDF: tenofovir disoproxil fumarate.
eAZT: zidovudine.
fABC: abacavir.
gCD4: cluster of differentiation 4.

Among the 1101 people living with HIV on ART, 944 (85.7%)
achieved viral suppression (<1000 RNA copies per milliliter).
Four key demographic and clinical factors demonstrated notable
patterns in relation to viral suppression outcomes.

Adherence patterns showed a strong association with viral
suppression. Among participants with good adherence (>95%),
94.6% (829/876) achieved viral suppression compared to only
24.4% (19/78) of those with poor adherence (<80%). Fair
adherence (80%-95%) resulted in 65.3% (96/147) suppression
rates, demonstrating a clear adherence-response gradient. Age
distribution revealed differential suppression rates across groups.
Participants aged 35 years and older had the highest suppression
rate at 89.9% (474/533), while adolescents (aged 13-19 years)
showed the lowest at 68.3% (28/41). Children aged 6-12 years
had a suppression rate of 72.5% (50/69), indicating age-related
challenges in achieving optimal outcomes.

Duration on ART showed that established patients performed
better, with 87% (619/712) of those on treatment >24 months
achieving suppression compared to 83.2% (288/346) of patients
treated for 12-24 months. Newer patients (3-11 months) had

suppression rates of 86% (588/678). Residence type
demonstrated urban-rural disparities, with rural residents
achieving 86.7% (356/423) suppression compared to 84.2%
(356/423) among urban residents, though this difference was
modest.

Global Explanation
The analysis included the performance evaluation of supervised
learning classifiers, the assessment of feature importance, and
the generation of dependence plots to illustrate the relationships
between key features and model predictions.

Performance of Supervised Learning Classifiers
The imbalanced pipeline (Table 2) revealed substantial
performance variation across algorithms, with neural networks
achieving the highest accuracy (0.90) and precision (0.70), while
k-nearest neighbors exhibited optimal recall (0.68). However,
class imbalance severely impacted several algorithms, notably
logistic regression, which achieved high precision (0.93) but
critically low recall (0.13), rendering it clinically unsuitable for
viral nonsuppression detection.

Table 2. Comparative performance of machine learning models on imbalanced data (train set: 882, test set: 219).

AUCaκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.830.540.600.930.610.590.89XGBoostb

0.770.520.590.930.610.580.88Stacked ensemble (XGBoost
meta-learner)

0.830.460.540.920.550.530.87Random forest

0.800.460.550.870.680470.85K-nearest neighbors

0.56—c0.10.790.130.930.69Logistic regression

0.75——1.00——0.86Naïve Bayes

0.820.450.530.910.550.510.86SVMd

0.780.530.590.960.510.700.90ANNe

aAUC: area under the curve.
bXGBoost: extreme gradient boosting.
cNot available.
dSVM: support vector machine.
eANN: artificial neural network.

The SMOTE-balanced pipeline (Table 3) demonstrated
improved recall across most algorithms, confirming the
effectiveness of synthetic oversampling for addressing class

imbalance. XGBoost achieved optimal overall performance
with balanced metrics: accuracy (0.89), precision (0.59), recall
(0.65), and robust agreement (κ=0.55).
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Table 3. Comparative performance of machine learning models on SMOTEa-balanced and SVM-RFEb selected data (train set: 1008, test set: 219).

AUCcκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.800.550.620.930.650590.89XGBoostd

0.760.300.440.740.710.310.74Stacked ensemble (XGBoost
meta-learner)

0.780.500.570.940.580.560.88Random forest

0700.250.390.770.580.300.74K-nearest neighbors

0.820.350.470.800.680.360.79Logistic regression

0.700.350.440.930.420.460.85Naïve Bayes

0.670.330.390.970.290.600.87SVMe

0.740.270.390.860.450.340.80ANNf

aSMOTE: synthetic minority over-sampling technique.
bSVM-RFE: support vector machine-recursive feature elimination.
cAUC: area under the curve.
dXGBoost: extreme gradient boosting.
eSVM: support vector machine.
fANN: artificial neural network.

XGBoost emerged as the superior performer across both
pipelines, demonstrating consistent excellence in ensemble
learning principles. On the SMOTE-balanced dataset, XGBoost
achieved clinically relevant performance with 65% sensitivity
for viral nonsuppression detection while maintaining 93%
specificity for correctly identifying suppressed patients. The
model’s balanced F1-score (0.62) and substantial agreement
(κ=0.55) indicate robust predictive capability suitable for clinical
implementation. Feature selection via SVM-RFE enhanced
model interpretability while preserving discriminative
performance, yielding an AUC of 0.80 that meets clinically
acceptable thresholds for viral suppression prediction.
Cross-validation identified optimal hyperparameters at iteration
35. The model used the following hyperparameters: nrounds=35,
max_depth=7, eta=0.1, gamma=1, colsample_bytree=0.8,
min_child_weight=4, subsample=0.8, lambda=2.0, and
scale_pos_weight=1.30 to address class imbalance. Threshold
optimization yielded 0.611 for test evaluation to balance
specificity and recall.

Isotonic regression calibration, fitted on training data and applied
to the test set, substantially improved probability estimates.
Calibration performance demonstrated marked improvement,
with the Brier score decreasing from 0.1324 (uncalibrated) to

0.0739 (calibrated), representing a 44.2% reduction and
indicating enhanced reliability of probability estimates. The
calibrated model demonstrated enhanced discriminative
performance, with AUC increasing modestly from 0.799 to
0.838 (Multimedia Appendix 4).

Feature Importance
SHAP analysis (Figure 2A) revealed differential feature impacts
on viral nonsuppression predictions, with adherence assessment
demonstrating the strongest influence on model decisions,
followed by age group, residence type (urban), and duration on
ART. The beeswarm plot illustrates that poor adherence
assessment consistently drives predictions toward viral
nonsuppression (positive SHAP values), while good adherence
strongly predicts viral suppression (negative SHAP values).
Feature importance rankings (Figure 2C) confirmed adherence
assessment as the dominant predictor contributing 54.8% of
model gain, with duration on ART (10.2%), age group (8.4%),
and urban residence (4.9%) representing secondary but clinically
relevant factors. This hierarchy emphasizes adherence as the
critical determinant of treatment outcomes, consistent with
established clinical understanding that medication compliance
fundamentally governs ART effectiveness.
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Figure 2. Model evaluation metrics for XGBoost classifier. (A) SHAP feature impact (beeswarm) illustrating feature influence on predictions, (B)
AUC, (C) feature importance based on relative contribution, and (D) confusion matrix. AUC: area under the curve; SHAP: Shapley Additive Explanations;
XGBoost: extreme gradient boosting.

Dependence Plots
SHAP dependence plots (Figure 3) revealed distinct nonlinear
relationships between key predictors and viral nonsuppression
risk. Adherence assessment exhibited a clear monotonic
relationship, with poor adherence (lower values) consistently
increasing SHAP values toward viral nonsuppression
predictions, while optimal adherence (higher values) drove
predictions toward viral suppression. Age group demonstrated
a nonlinear pattern with pediatric and adolescent populations
showing substantially elevated risk: young children (aged 0-5
years) exhibited moderately positive SHAP values (~0.5),
school-aged children (aged 6-12 years) showed markedly
increased risk (SHAP>0.5), while adolescents (aged 13-19
years) displayed the highest predicted nonsuppression risk

(SHAP>1.0). Conversely, adults aged 20-35 years demonstrated
reduced risk (SHAP<0.5), with those aged 35 years and older
showing protective effects (negative SHAP values~–0.1).
Residence type displayed a binary pattern where urban residence
associated with higher SHAP values (just below 0.5), indicating
increased nonsuppression risk compared to rural residence.
Duration on ART revealed a complex nonlinear relationship
with early treatment periods (3-6 months), showing substantial
variability (SHAP values ranging from 0.4 to –0.7), while
patients at 7-11 months demonstrated elevated risk (SHAP>0.4).
The intermediate period (12-24 months) exhibited the highest
predicted nonsuppression risk (SHAP values 0.0 to 0.8), with
long-term patients (>24 months) showing predominantly
protective effects (SHAP values ranging from 0.1 to –0.6).
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Figure 3. XGBoost dependence plots illustrating the marginal effect of selected predictor variables on the predicted probability of HIV viral suppression.
SHAP: Shapley Additive Explanations.

Local Explanation
The analysis encompassed ICEs, breakdown plots, SHAP-based
model explainability, force plots, and clustering to provide
detailed insights into the model’s decision-making process at
the individual level.

Individual Conditional Expectations
The ICE plot using Ceteris-paribus for the XGBoost model
illustrates how 4 key features influenced the model’s
nonsuppression predictions for 4 individual cases (Figure 4).
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Figure 4. Individual conditional expectation plot using Ceteris-paribus profiles for the XGBoost model. FN:41: false negative, row 41; FP:13: false
positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Ceteris-paribus profiles for 4 representative patients (true
positive, row 9 [TP:9], false positive, row 13 [FP:13], true
negative, row 16 [TN:16], and false negative, row 41 [FN:41])
illustrated distinct individual responses to feature variations
across correct and incorrect predictions. The TP case (TP:9)
demonstrated a high baseline probability (~0.65-0.70), with
adherence assessment showing the steepest probability decline
from poor to good adherence, while maintaining elevated risk
across most feature combinations. The FP case (FP:13) exhibited
moderate baseline probability (~0.25-0.30) with pronounced
sensitivity to adherence changes and notable probability
elevation at younger age groups, contributing to its

misclassification. The true negative (TN) case (TN:16)
maintained consistently low probabilities (~0.1-0.2) across all
feature variations, with adherence assessment providing the
most substantial impact but insufficient to elevate risk
substantially. The false negative (FN) case (FN:41) displayed
consistently high predicted probabilities (~0.65-0.70)
comparable to the TP case across all 4 features, yet was
incorrectly classified despite exhibiting similar risk profiles.

Breakdown Plots
The breakdown plots for individual cases (TP, FP, TN, and FN)
illustrate how specific predictors influenced the overall
prediction for each observation (Figure 5).
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Figure 5. XGBoost breakdown plots for the top 13 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative, row
41; FP:13: false positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Breakdown plots for the 13 selected features revealed the
cumulative contribution of individual predictors to final
prediction outcomes across the 4 representative cases. The TP
case (TP:9) demonstrated a systematic progression from baseline
intercept (0.320) to final prediction (0.813), with adherence
assessment providing the largest positive contribution (+0.365),
followed by duration on ART (+0.136). Additional features
showed mixed effects, with marital status (married) contributing
a positive increment, while other features provided negative
contributions that partially offset these increases, and the net
cumulative effect elevated the prediction above the classification
threshold.

The FP case (FP:13) exhibited substantial progression from
intercept (0.320) to final prediction (0.781), with adherence
assessment dominating the prediction increase (+0.365),
followed by age group contributing moderately (+0.031). Marital

status (married) and residence type (urban) provided combined
positive contributions (+0.048), while other features provided
negative contributions that partially offset these increases.
Despite the counterbalancing effects of protective features, the
model’s final probability assessment substantially exceeded the
decision boundary at 0.575, resulting in the misclassification
of this actually suppressed patient.

The TN case (TN:16) demonstrated protective feature
dominance, with adherence assessment contributing the largest
negative effect (–0.099), followed by age group (–0.062) and
residence type (urban) (–0.032), while other features provided
minimal positive or negative adjustments. The cumulative
protective contributions drove the final prediction to 0.088,
substantially below the classification threshold, enabling the
correct identification of this virally suppressed patient through
predominantly risk-reducing feature effects.
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The FN case (FN:41) presented a complex feature interaction
pattern, with age group providing the primary risk elevation
(+0.184), while adherence assessment (–0.076), marital status
(married) (–0.077), and duration on ART (–0.069) contributed
substantial protective effects. The competing influences of
risk-enhancing and protective features resulted in a suppressed
final prediction of 0.196, falling considerably below the 0.575

threshold and causing misclassification of this patient with
actual viral nonsuppression.

Shapley Additive Explanations
The SHAP value bar charts (Figure 6) depict the top contributing
features for each individual case (TP, FP, TN, and FN). These
plots highlight how key predictors influence the model’s output
for viral suppression or nonsuppression predictions.

Figure 6. XGBoost SHAP value bar charts for the top 10 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative,
row 41; FP:13: false positive, row 13; SHAP: Shapley Additive Explanations; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost:
extreme gradient boosting.

SHAP value bar charts revealed distinct feature contribution
patterns across the 4 representative cases, illustrating
individual-level model explanations for each prediction outcome.
The TP case (TP:9) demonstrated adherence assessment as the
dominant positive contributor (SHAP value>1.5), followed by
marital status (single) (~0.1), with most remaining features
showing minimal negative contributions close to 0. This pattern
indicates that poor adherence primarily drove the model’s
prediction toward viral nonsuppression for this correctly
identified high-risk patient.

The FP case (FP:13) exhibited adherence assessment as the
primary driver (SHAP value~0.9), with residence type (urban)
and age group contributing moderately (~0.3), while most other
features remained near-neutral with minimal negative
contribution from duration on ART. The substantial positive
contribution from adherence assessment, combined with other
risk factors, elevated the prediction above the classification
threshold despite the patient’s actual viral suppression status.

In the TN case (TN:16), adherence assessment emerged as the
most significant feature, contributing a negative value of high
magnitude (SHAP value: –1.2), followed by age group (SHAP
value: –0.4). These contributions reduced the predicted
probability of nonsuppression, correctly guiding the model to
classify the patient as virally suppressed, consistent with their
actual status.

The FN case (FN:41) displayed age group as the strongest
positive contributor (SHAP value~0.4), whereas adherence
assessment, duration on ART, and marital status showed
negative contributions (approximately –1.2, –0.4, and –0.15,
respectively). This conflicting pattern of protective features
outweighing age-related risk factors resulted in an
inappropriately low prediction for a patient with actual viral
nonsuppression.

SHAP Force Plot
The SHAP force plot (Figure 7) highlights how individual
predictors contribute to the model’s predictions of viral
suppression or nonsuppression across all observations.
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Figure 7. XGBoost SHAP force plot analysis of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot revealed feature contribution patterns
across all observations, with adherence assessment consistently
dominating predictions through substantial positive SHAP
values for poor adherence and negative values for good
adherence. Age group exhibited nonlinear effects, with pediatric
and adolescent ranges generating positive contributions while
adult groups provided protective effects. Duration on ART
showed variable influences, with intermediate treatment periods
contributing to nonsuppression risk and early or long-term
durations demonstrating protective effects. Urban residence
consistently produced positive SHAP values compared to rural

residence, whereas married status typically associated with
increased nonsuppression predictions. The visualization
effectively demonstrated how competing feature influences
determine threshold crossing, revealing the dynamic balance
between risk-enhancing and protective factors across individual
clinical profiles.

SHAP Force Clustering
The SHAP force plots (Figure 8) display 4 distinct patient
clusters, each characterized by varying influences of key
predictors on viral suppression outcomes.
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Figure 8. XGBoost SHAP force plot clustering of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot clustering revealed 4 distinct patient
phenotypes based on feature contribution patterns for viral
suppression predictions. Cluster 1 (observations 0-50)
demonstrated predominantly protective profiles characterized
by substantial negative SHAP values from adherence assessment
(>–3) and age group (>–1), with minimal counteracting
contributions from other features. This cluster represented
patients with good adherence, older age groups, and rural
residence, consistently driving predictions toward viral
suppression.

Cluster 2 (observations 51-125) exhibited low-risk profiles with
negative SHAP values of greater magnitude from adherence
assessment (>–2), counterbalanced by moderate positive
contributions from other features. This cluster represented
patients with good adherence across mixed age groups (young
adults and older patients) and diverse residential settings (both
rural and urban), with predictions consistently favoring viral
suppression despite some offsetting risk factors.

Cluster 3 (observations 126-160) demonstrated predominantly
high-risk profiles characterized by substantial positive SHAP
values from adherence assessment (>2) and age group, with
minimal protective contributions from other features. This
cluster represented patients with poor adherence and younger
age groups (particularly pediatric and adolescent populations),
consistently driving predictions toward viral nonsuppression.

Cluster 4 (observations 161-219) showed variable risk patterns
with heterogeneous SHAP value distributions across features,
indicating diverse clinical profiles where feature interactions

produced inconsistent directional effects. This cluster
highlighted the complexity of prediction patterns in patients
with mixed risk and protective factors.

Discussion

This section discusses the implications of our findings on
predicting viral suppression in Ugandan people living with HIV
on ART. We summarize principal findings, acknowledge study
limitations, compare findings with previous research, and discuss
the broader significance and potential clinical implications.

Principal Findings
This study successfully developed an interpretable ML model
for predicting viral nonsuppression in Ugandan people living
with HIV, achieving robust performance with AUC 0.80, recall
0.65, F1-score 0.62, and Cohen κ 0.55. The SMOTE-enhanced
XGBoost model with XAI techniques revealed critical insights
into viral suppression determinants and patient risk stratification.

Adherence emerged as the overwhelming predictor across all
analytical approaches, contributing 54.8% of model gain and
consistently demonstrating the largest SHAP values. This
finding reinforces adherence as the fundamental determinant
of treatment success, though the magnitude of its influence
suggests that current adherence measurement approaches may
inadequately capture the complexity of medication-taking
behavior in this population. The model identified a nonlinear
age relationship, with adolescents (aged 13-19 years) showing
peak nonsuppression risk (SHAP>1.0), declining through young
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adults, and reaching protective effects in patients aged 35 years
and older (SHAP~–0.1). This pattern aligns with known
developmental challenges in adolescent HIV care but quantifies
the risk magnitude for clinical decision-making.

Urban residence consistently predicted increased nonsuppression
risk (SHAP<0.5), despite the dataset’s rural majority. This
finding challenges conventional assumptions about health care
access advantages and suggests that urban-specific barriers may
outweigh accessibility benefits in this population. However,
this finding is isolated to this dataset and may not be
generalizable to broader contexts.

The intermediate treatment period (12-24 months) emerged as
the highest-risk phase, potentially reflecting treatment fatigue
or viral resistance development. This temporal vulnerability
window has important implications for intensified monitoring
and intervention timing.

SHAP clustering revealed 4 distinct patient phenotypes:
protective profiles with good adherence and older age (cluster
1), low-risk patients with mixed demographics but good
adherence (cluster 2), high-risk adolescents with poor adherence
(cluster 3), and complex profiles with variable risk factors
(cluster 4). This stratification framework enables targeted
intervention strategies aligned with specific risk patterns rather
than one-size-fits-all approaches.

Limitations
The absence of external validation using independent datasets
limits confidence in model generalizability beyond the
single-site study population at Muyembe HCIV. Routinely
collected clinical data introduced several quality threats,
including systematic bias from recoding missing values to “N/A”
categories and selection bias from analyzing complete records
only, which reduced dataset size and potentially excluded
patients with complex clinical profiles characterized by
incomplete documentation. This approach may have
inadvertently favored patients with better health care
engagement, limiting model applicability to more vulnerable
populations who are typically underrepresented in complete
clinical records.

The analysis combined pediatric and adult patients without
separate subset evaluation, creating variable coding challenges
that potentially compromised model precision. Marriage status
proved irrelevant for children, caregiver relationships varied in
significance across age groups, and patient weight categories
applied uniform standards across vastly different developmental
stages. The weight variable’s reduced contribution to model
performance likely reflects the complexity of applying
standardized categories where weight implications for viral
suppression differ substantially between pediatric and adult
populations. Additionally, the relatively modest dataset size
(N=1101) may have constrained the ensemble algorithm’s ability
to capture complex feature interactions, while SMOTE
application for class imbalance correction carries overfitting
risks if synthetic minority samples inadequately represent true
population characteristics.

Comparison With Prior Work
This study aligns with several investigations that have explored
the potential of ML for predicting HIV viral suppression, each
possessing its own strengths and limitations [13-18,31]. Various
ML algorithms have been used in these studies, with random
forest and logistic regression emerging as the most frequently
used methodologies.

The findings of Kimaina et al [14] were particularly relevant,
as they reported similar performance metrics and the use of
ensemble techniques in their analyses. Despite the super learner
classifier being identified as the best performer—comprising
stacked ensemble models—the XGBoost model demonstrated
superior performance compared to other individual algorithms.
In our study, we also identified logistic regression and random
forest as the top-performing models, following the XGBoost
classifier.

A recent study by Seboka et al [16] further emphasized the
effectiveness of the XGBoost classifier in predicting viral
suppression, identifying critical predictors such as regimen
change, adherence level, CD4 lymphocyte count, duration on
ART, and tuberculosis status. Though these studies provided
insights through global interpretation, they lacked local
explanations, limiting the ability to compare individual-level
predictions and tailored interventions.

Influential factors in our study reaffirm the critical role of
adherence to ART as a pivotal predictor of viral nonsuppression,
corroborating previous research that has similarly highlighted
its significance in treatment outcomes [17,32-34]. Esber et al
[17] demonstrated that adherence, along with CD4 lymphocyte
count and ART regimen, was crucial in predicting viral
nonsuppression. In contrast, Wagner et al [33] emphasized that
viral suppression among participants on dolutegravir is not
dependent on strict adherence levels; however, their study also
indicated that traditional ART is associated with viral
suppression and different adherence levels.

Our identification of age group as a significant predictor aligns
with evidence from resource-limited settings. Cross-sectional
studies in Cambodia found that older adolescents had a
significantly lower likelihood of viral nonsuppression compared
to younger peers [35]. This is corroborated by prospective data
from Kenya and Uganda, where younger age independently
predicted both failure to achieve viral suppression and increased
risk of virologic rebound [36]. Population-level data from rural
KwaZulu-Natal further support age-related disparities,
demonstrating substantially lower viral suppression rates among
younger populations, with particular challenges among the
younger male population in achieving viral suppression targets
[37]. These clinical and population studies emphasize that
younger populations require targeted interventions including
enhanced psychosocial support and treatment literacy to improve
viral suppression outcomes. These findings collectively support
age as a critical predictor requiring tailored approaches for
younger people living with HIV.

Studies from sub-Saharan Africa show mixed findings, with
some demonstrating higher viral suppression in rural areas due
to older patient demographics and better ART adherence
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compared to urban counterparts, while others report better urban
outcomes due to improved health care access [38]. Our study
found urban residence to be a risk factor for viral
nonsuppression, aligning with the former. South African data
indicate that virological suppression varied by geographical
setting, from 94.6% in urban settings to 88% in rural settings,
though this contradicts our findings [39]. In Cameroon, viral
suppression was 75% in urban sites compared to 67.7% in rural
sites [40]. Our counterintuitive finding may reflect specific
urban health care challenges in our setting, including health
care fragmentation or urban-specific barriers despite proximity
to services. However, this finding is isolated to this dataset and
may not be generalizable to broader contexts.

Duration on ART was found to be associated with viral load
suppression, with longer durations linked to improved outcomes.
This finding is consistent with previous studies [41-43], which
highlight that prolonged ART engagement enhances the
likelihood of achieving viral suppression. These results reinforce
the importance of sustained adherence to treatment in managing
HIV effectively.

Model Interpretability and Clinical Implications
Our primary use of XAI was to identify population-level patterns
that inform general clinical and public health strategies. SHAP
global feature importance analysis across all 1101 patients
revealed that adherence assessment was consistently the
strongest predictor of viral nonsuppression, followed by age
group, urban residence, and ART duration. These aggregate
patterns, derived from the entire cohort, form the basis of our
general conclusions about risk factor hierarchies and provide
evidence for prioritizing adherence support programs in HIV
care settings. Partial dependence plots and ICE curves further
confirmed that these relationships held consistently across
different patient subgroups, demonstrating robust
population-level patterns rather than isolated associations.

While population-level findings drive our general conclusions,
individual patient explainability serves 2 critical complementary
functions. First, breakdown plots and individual SHAP values
validate that population-level patterns manifest consistently at
the patient level, ensuring that our aggregate findings are not
statistical artifacts but reflect genuine clinical mechanisms. For
example, examining individual predictions confirmed that

adherence consistently dominated decision pathways across
diverse patient profiles, strengthening confidence in our
population-level conclusion about adherence primacy. This
emphasizes the clinical value of individualized interventions
and illustrates how XAI mitigates the inherent black-box nature
of ML models by revealing transparent, interpretable decision
pathways [44-46].

Second, individual explainability demonstrates clinical
applicability by showing how the model functions in practice.
Analysis of specific cases, including FPs where poor adherence
drove incorrect nonsuppression predictions despite actual viral
suppression, illustrates both the model’s reasoning process and
its limitations. These examples do not change our
population-level conclusions but demonstrate how clinicians
might use the model for personalized risk assessment and
intervention planning in real-world settings.

This dual approach to explainability fosters accountability and
trust in health care artificial intelligence (AI) systems by
enhancing comprehensibility at both population and individual
levels [47,48]. Transparency in AI decision-making, enabled
by XAI, has the potential to build trust among health care
professionals and patients alike, facilitating wider adoption of
AI-powered health care solutions [45]. Additionally, XAI helps
mitigate biases within AI models, promoting fairer and more
ethical applications [47-49]. Understanding how various factors
influence model predictions allows health care professionals to
improve accuracy and ensure that AI-driven decisions align
with clinical priorities, thus enhancing the overall utility of AI
in health care settings.

This study demonstrates that XGBoost ML models can
accurately predict viral nonsuppression in Ugandan patients
with HIV, achieving strong discriminative performance (AUC
0.80). XAI analysis identified adherence assessment as the most
critical predictor, followed by age group, urban residence, and
ART duration. These findings support the integration of ML
into clinical decision-making for targeted interventions,
particularly adherence support programs for high-risk
populations. Future research should focus on external validation
across diverse health care settings and the incorporation of
additional social determinants of health to enhance model
generalizability and clinical utility.
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Map of Bulambuli District, Eastern Uganda, highlighting the primary study site, Muyembe Health Centre IV, and the network
of surrounding health facilities providing antiretroviral therapy services.
[PNG File , 96 KB - ai_v5i1e68196_app2.png ]

Multimedia Appendix 3
Supplementary tables detailing variable missingness analysis with exclusion decisions and variable name mapping with descriptions
used in the predictive modelling analysis.
[DOCX File , 20 KB - ai_v5i1e68196_app3.docx ]

Multimedia Appendix 4
Calibration plot for the extreme gradient boosting model predicting viral suppression: incorporating isotonic regression for
improved probability calibration.
[PNG File , 693 KB - ai_v5i1e68196_app4.png ]
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Abstract

Background: Medical residency is characterized by high stress, long working hours, and demanding schedules, leading to
widespread burnout among resident physicians. Although wearable sensors and machine learning (ML) models hold promise for
predicting burnout, their lack of clinical explainability often limits their utility in health care settings.

Objective: This paper presents EMBRACE (Explainable Multitask Burnout Prediction Using Adaptive Deep Learning), a novel
framework designed to predict and explain future burnout in resident physicians through an adaptive multitask deep learning
approach. The framework aims to provide clinically actionable and trustworthy burnout predictions by integrating explainable
ML techniques.

Methods: EMBRACE applies deep multitask learning (3 tasks) using wearable sensor data for context-aware burnout prediction
and explanation. The adaptive multitask learning framework predicts workplace activities and future burnout levels, and
automatically completes a clinically validated burnout survey. Additionally, an explainability study was conducted using SHAP
(Shapley Additive Explanations) to provide feature importance scores and visualizations for clinicians, enhancing the transparency
and interpretability of the predictions. We evaluated the model on three datasets: (1) a collected dataset of 28 resident physicians
(mean age 27.5, SD 3.5 years), over 2-7 days (average 3.6 days) with research protocols approved by the institutional review
board (#2021-017) of Berkshire Medical Center, University of Massachusetts Chan Medical School; (2) the publicly available
WESAD (Wearable Stress and Affect Detection) dataset from 15 participants; and (3) the SWELL-KW (SWELL Knowledge
Work) dataset containing workplace stress and activity data from 25 participants (8 females and 17 males).

Results: On our collected dataset, EMBRACE achieved 93% recall, 91% precision, and 0.91 R2 error in predicting 5-class
activities, 4-class future burnout levels, and 1 clinically explainable survey (Mini-Z with 10 questions). On the WESAD dataset,
the model achieved 94.1% recall and 94.6% precision for 3-class stress level prediction. On the SWELL-KW dataset, EMBRACE

obtained 89% recall, 86% precision, and 0.88 R2 error in predicting 5-class activities, 3 burnout measures (joyful, satisfaction,
and stress) with 2 classes on each measure, and 4 survey assessments (a total of 20 questions). The explainability study, using
SHAP values, highlighted key contributing factors such as heart rate variability, sedentary activity duration, and interruptions,
improving clinical trust and interpretation of burnout predictions. Of 23 participants, 21 (91%) reported satisfaction with the
explainability of feature importance summaries.

Conclusions: EMBRACE provides a clinically explainable and actionable solution for early burnout detection in resident
physicians, leveraging advanced ML techniques and SHAP-based explanations. Validation of proprietary and publicly available
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datasets demonstrates their robustness and generalizability. Future research may explore scaling the model across different clinical
environments and assessing its long-term impact on health care outcomes and physician well-being.

(JMIR AI 2026;5:e57025)   doi:10.2196/57025

KEYWORDS

future burnout prediction; wearable sensors; machine learning; multitask learning; clinical explainability; health care informatics

Introduction

Foundations of Physician Burnout
Burnout is a psychological syndrome emerging as a prolonged
response to chronic interpersonal stressors on the job. It is
characterized by 3 dimensions: emotional exhaustion,
depersonalization, and reduced personal accomplishment. Stress,
on the other hand, is a more immediate reaction to a challenge
or demand, often leading to burnout when experienced
frequently or intensely. In our work, we focus on predicting
physician burnout by analyzing the stress levels observed
through various wearable sensors.

Background
Workplace stress is a pervasive issue that affects individuals
across various professions and industries [1]. It encompasses
the psychological, emotional, and physical strain experienced
by employees due to demanding work conditions, excessive
workload, and challenging interpersonal dynamics [2]. Recent
statistics highlight the magnitude of the workplace stress
problem, with studies indicating that 80% of employees reported
feeling stressed at work sometimes, and 60% of absenteeism
was associated with stress in some ways in that survey [3,4].
This alarming trend raises concerns about the impact of
workplace stress on individuals’ well-being, job satisfaction,
and overall quality of life [5].

Recognizing the detrimental effects of workplace stress,
researchers and clinicians have developed clinically validated
tools to assess and detect stress levels in workers [6]. These
tools typically involve questionnaires and surveys that measure
various dimensions of stress, including task load, mental effort,
emotion, and perceived stress [7]. Additionally, real-time
methods for quantifying continuous mental workload have been
proposed [8]. One widely used tool is the Maslach Burnout
Inventory, which evaluates burnout by measuring emotional
exhaustion, depersonalization, and personal accomplishment
among professionals [9]. Another prominent tool is the
Copenhagen Burnout Inventory, which focuses on personal,
work-related, and client-related burnout, providing a
comprehensive view of burnout sources [10]. The Perceived
Stress Scale is frequently used to measure the perception of
stress in workers, assessing how unpredictable, uncontrollable,
and overloaded respondents find their lives [2,11]. Additionally,
the Job Content Questionnaire assesses job characteristics such
as decision latitude, psychological demands, and social support
at work, which are critical factors influencing stress and burnout
[12]. The Mini-Z survey is another widely used tool that assesses
various dimensions of burnout and job satisfaction, including
stress, workload, and control over work, making it effective in
both clinical and research settings [10,13]. These tools help in

identifying stress levels and sources, allowing for targeted
interventions to mitigate the adverse effects of workplace stress
and improve overall well-being.

While these tools provide valuable insights and are clinically
explainable to nurses and clinicians, they are often limited by
their reliance on self-reporting and retrospective assessments,
which can be subject to recall biases and may not capture
real-time stress experiences [14]. To address these limitations
and provide real-time monitoring of workplace stress, wearables
and machine learning (ML) techniques have emerged as
promising solutions. Wearable devices equipped with sensors
can collect physiological and behavioral data from individuals
throughout their workday, offering continuous and objective
measurements of stress-related indicators such as heart rate
variability, skin conductance, and physical activity. These
devices have been extensively used in various studies to monitor
and assess stress levels in real time. For instance, a study
validated the Empatica E4 wristband’s ability to detect heart
rate variability and electrodermal activity (EDA) metrics in
stress-inducing conditions [15]. Another research project focused
on the continuous monitoring of stress using
photoplethysmogram sensors integrated into wrist-worn devices,
highlighting significant changes in physiological responses
during stress-inducing tasks [16]. These developments
underscore the potential of wearable technology in providing
reliable, objective, and continuous stress monitoring solutions
[17]. ML algorithms can then analyze these data and predict
stress levels in real time [18].

Medical residency is undeniably one of the most challenging
and demanding workplace stress situations that individuals can
experience. Medical residency is a highly challenging and
demanding period characterized by extended working hours
and schedules [19]. The demanding work schedules and long
hours of residency, coupled with work-home interference, create
a highly stressful environment that predisposes residents to
burnout due to several stressors, including sleep deprivation,
conflicts with coworkers, difficulty adapting to a new
environment, heavy patient responsibilities, lack of control over
schedules, and personal traits such as neuroticism or introversion
that increase the risk of burnout [20]. Burnout can cause physical
symptoms (headache, fatigue, gastrointestinal distress, flu, and
sleep and appetite changes) and psychological symptoms
(irritability and reduced concentration), as well as behaviors
like procrastination, daydreaming, and substance use [21].
Additionally, it can lead to an increased risk of depression,
suicidal thoughts, and cardiovascular problems [22]. Moreover,
the COVID-19 pandemic has exacerbated the long-standing
issue of resident burnout in the US health care system,
highlighting the urgent need for interventions to support and
protect the well-being of these essential frontline workers before
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it is too late [23]. The combined use of advanced wearable
sensor technologies and ML algorithms can facilitate the early
identification of burnout, thereby providing an opportunity to
prevent its occurrence [18].

Despite their potential benefits, wearable sensors and ML-based
predictions may suffer from a lack of clinical explainability,
potentially leading to mistrust among clinicians and limiting
their practical use in real-time clinical settings [24,25].

Contributions
This paper introduces a novel framework, EMBRACE
(Explainable Multitask Burnout Prediction Using Adaptive
Deep Learning), for enhancing the prediction and explanation
of future burnout in residents by using a clinically validated
survey that is easily comprehensible and reliable for clinicians.
More specifically, our key contributions are

• In EMBRACE, we develop a wearable sensor-based
improved workplace activities and stress recognition
framework using a deep multitask learning (MTL)
technique. Then, using that, we develop a novel explainable
MTL framework to automatically predict future burnout
and explain the prediction by filling out a clinically
validated and trustworthy burnout prediction survey tool.

• We validated the accuracy and explainability of our
proposed EMBRACE framework using real-time collected
data from 28 internal medicine residents (2-7 days each) in
a natural hospital duty setting with appropriate institutional
review board approval (#2021-017) of Berkshire Medical
Center of the University of Massachusetts Chan Medical
School.

• We assessed the generalizability of the EMBRACE
framework by testing its performance on two publicly
available occupational stress prediction datasets. The results
demonstrated the framework’s robustness and effectiveness
across diverse datasets, highlighting its potential for broader
application in real-world settings.

Related Work

ML Approaches to Burnout Detection
The use of ML techniques in detecting burnout among resident
physicians is a relatively new area of research. While ecological
momentary assessment has shown effectiveness in predicting
burnout among residents [26], incorporating ML methods has
the potential to enhance prediction performance [27]. However,
real-time burnout prediction necessitates continuous monitoring
of health vitals and ML techniques [28-30]. Recent systematic
reviews [29,30] indicate that existing just-in-time burnout
prediction techniques use biomarkers such as skin temperature,
motion-based activities (accelerometers), electrodermal
fluctuations, and wristband-based blood volume pulse. Various
ML algorithms such as multilayer perceptron (MLP), random
forest, k-nearest neighbors, support vector machine, linear
regression, convolutional neural networks (CNN), fully
convolutional network, Time-CNN, ResNet MLP, CNN-LSTM
(long short-term memory), MLP-LSTM, InceptionTime, and
others have been used in these studies [29,30]. However, a
common limitation among these works is the lack of clinical

explainability, which has not been adequately addressed in this
research field [25,29,30].

Multitask Deep Learning Frameworks on Wearable
Sensor Computing
Recent advancements in deep learning (MTL) frameworks have
demonstrated significant improvements in the performance of
wearable sensor computing. Taylor et al [31] developed an MTL
model that simultaneously predicts physical activity levels and
stress markers using data from wearable devices. Their approach
highlighted the benefits of shared representations in improving
the generalizability and accuracy of the predictions [31].
Similarly, Sabry et al [32] introduced a deep MTL framework
for health monitoring that integrates tasks such as activity
recognition, sleep stage detection, and stress level prediction,
showing enhanced performance over single-task models.
Another noteworthy contribution by Arefeen and Ghasemzadeh
[33] focused on leveraging MTL to predict both physiological
and behavioral responses, illustrating the model’s robustness
across different wearable sensor datasets.

Context-Aware Stress Prediction Using Wearables
Context-aware stress prediction has gained traction as it enables
more accurate and personalized stress monitoring. Aqajari et al
[34] proposed a context-aware framework that uses
environmental and physiological data from wearable sensors
to predict stress levels, achieving higher accuracy compared to
context-agnostic models. Similarly, Campana and Delmastro
[35] developed a context-aware stress monitoring system that
integrates location-based data and social interactions with
physiological signals, demonstrating significant improvements
in stress prediction accuracy. The work by Zhang et al [36]
further advanced this field by incorporating ML algorithms to
analyze multimodal sensor data, thereby providing real-time
stress detection and feedback.

Explainable Wearable Sensor Computing
Many researchers proposed different interpretable and
explainable artificial intelligence (AI) algorithms to make
complex AI prediction models explainable, which include the
Additive Feature Attribution method and the local interpretable
model-agnostic explanations (LIME) approach [37]. The SHAP
(Shapley Additive Explanations) approach combines LIME
with Shapley values to provide explanations for black-box
models [38]. Other methods include class activation mapping
[39], DeepLIFT (Deep Learning Important Features) [40], and
layer-wise relevance propagation [41] for interpreting CNNs.
In health care, explainable AI applications have been developed
for interpreting imaging studies and real-time predictions [42].
One previous work proposed interpretable ML techniques for
stress prediction using wearables, but it only provided a
simplistic representation of top features based on SHAP, which
lacks clinical significance [43]. Adapa et al [44] proposed a
supervised ML method to predict burnout among resident
physicians that takes a bunch of surveys to understand different
workplace problems and activities related to it, and—based on
those longitudinal surveys on personal, physical, workplace
environmental, and physiological status measures—performed
a supervised ML approach to identify some highly correlated
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factors (emotional exhaustion, depersonalization, race
demographics, etc). EMBRACE offers both efficient burnout
prediction and a clinically validated survey-filling-out method,
hypothesizing that the clinical survey of burnout estimation is
explainable and trustworthy among resident physicians. Recent
studies have focused on making these systems more
interpretable. Abdelaal et al [45] introduced an explainable AI
framework for wearable health monitoring that uses SHAP
values to provide insights into model predictions, enhancing
trust among clinicians. Additionally, De Cannière et al [46]
proposed an interpretable deep learning model that visualizes
feature importance and decision pathways, making the model’s
outputs more comprehensible for end users. Another significant
contribution by Kyriakou et al [47] involves the development
of a transparent stress detection system that combines rule-based
logic with ML to offer clear explanations of its predictions.

Our proposed EMBRACE framework leverages a clinically
explainable, multitask adaptive deep learning approach, making
it superior by providing trustworthy and actionable insights for
burnout prediction. By integrating context-aware stress
prediction with explainable AI techniques, EMBRACE ensures
high accuracy and transparency. This combination addresses
the limitations of existing models, thereby enhancing the
practical utility of wearable sensor computing in clinical settings.

The primary aim of this study is to develop and validate the
EMBRACE framework, a clinically explainable adaptive
multitask deep learning model, for predicting and explaining
future burnout among resident physicians using wearable sensor
data. We hypothesize that integrating real-time physiological
data, context-aware activity recognition, and explainable ML
techniques will significantly enhance the accuracy,
interpretability, and clinical trustworthiness of burnout
predictions. We further hypothesize that the EMBRACE
framework’s performance will generalize effectively across
diverse clinical environments, supporting timely interventions
to mitigate burnout and promote physician well-being.

Methods

The EMBRACE framework consists of two core components:
(1) an algorithm for detecting workplace activity and stress
using a publicly available dataset and (2) an adaptive algorithm
for detecting burnout level and explanation in our collected
dataset, as well as in the publicly available dataset [3].

Publicly Available Wearable Stress and Affect
Detection Dataset (D1)
We used the WESAD (Wearable Stress and Affect Detection)
public dataset [48]. This dataset comprises recordings from 15
participants (12 male and 3 female) who were equipped with 2
wearable devices: the RespiBAN Professional and the Empatica
E4. The RespiBAN device, positioned on the chest, captured
signals such as body acceleration (along 3 axes), body
temperature, respiration, electrocardiography, electromyography,
and EDA, all sampled at a frequency of 700 Hz. The Empatica
E4 wristband measured signals including hand acceleration
(along 3 axes), skin temperature, blood volume pulse, and EDA,
with these signals being recorded at varying sampling rates. All

signals from the Empatica E4 were subsequently upsampled to
a uniform rate of 64 Hz using the Fourier method. The
participants selected for this study excluded individuals with
mental or cardiovascular conditions, those who were pregnant,
and heavy smokers, with an average age of 27.5 years. During
the data collection phases, participants either stood or sat during
the baseline, amusement, and stress phases (with half of the
participants standing and the other half sitting for each phase).
In contrast, all participants sat during the meditation phase (for
details, see Multimedia Appendix 1) [49-52].

Building upon previous research on stress detection using the
WESAD dataset [48], we considered 3 distinct classification
tasks in this study. The first task [48] focused on distinguishing
between stress and nonstress states using data from 3 phases:
baseline, stress, and amusement. The aim was to classify stress
(stress phase) versus nonstress (baseline and amusement phases)
(S vs NS). The second task [48] aimed to differentiate among
3 states: baseline, stress, and amusement (B vs S vs A). The
third task [48] extended the classification to 5 distinct classes:
baseline, stress, amusement, meditation, and recovery (B vs S
vs A vs M vs R).

Publicly Available Stress and User Modeling Dataset,
SWELL-Knowledge Work Dataset (D2)
The SWELL-KW (SWELL Knowledge Work) dataset comprises
accelerometer, heart rate, and galvanic skin response sensor
data along with activity labels and subjective stress assessments
from workplace activities [50-52]. Data were collected from 25
participants (average age 29, SD 4.2 years) performing tasks in
controlled laboratory scenarios designed to induce stress
(neutral, time pressure, and email interruptions). Each participant
completed all scenarios over a 3-hour session, with sensors
operating at 50 Hz (accelerometers), 1 Hz (heart rate monitors),
and 10 Hz (galvanic skin response sensors). Activity labels
included making presentations, paper writing and planning,
writing and reading emails, programming, creating overviews,
information searching, and time away from the keyboard,
annotated via video recordings for accuracy.

Subjective stress was assessed using 4 validated surveys: NASA
(National Aeronautics and Space Administration) Task Load
Index (NASA-TLX), Rating Scale Mental Effort (RSME),
Self-Assessment Manikin (SAM), and Perceived Stress Scale
(PSS) [53]. NASA-TLX measures task load across mental,
physical, and temporal demand, performance, effort, and
frustration (scores are averaged, with higher scores indicating
higher stress). RSME rates mental effort (0-150 scale; higher
indicates higher stress). SAM captures valence, arousal, and
dominance emotions pictorially (higher arousal and lower
valence indicate higher stress) [54]. PSS provides a global
measure of perceived stress (10-item, 0-40 scale; for details,
see Multimedia Appendix 1) [53].

Ethical Considerations
The study received approval (exemption) from the institutional
review board (#2021-017) of Berkshire Medical Center of the
University of Massachusetts Chan Medical School. Participants
voluntarily participated in this study and provided informed
consent before enrollment. All data were stored in a secure,
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HIPAA (Health Insurance Portability and Accountability
Act)-compliant server with proper deidentification to protect
participant privacy. The study adheres to ethical guidelines and
regulatory requirements for conducting research with human
participants. Participation in this study was entirely voluntary.
No incentives or gifts were provided to participants, a fact that
was clearly communicated during recruitment and outlined in
the consent document.

Our Data Collection Principles

Medical and Clinical Tasks of Interest
The medical and clinical task of interest in our study is
prognostic, focusing on predicting the future occurrence of
burnout among internal medicine resident physicians. This
involves continuous monitoring of physiological data using
wearable sensors to estimate the risk of burnout, thereby
allowing timely interventions.

Research Question
The primary research question addressed in this study is, “Can
continuous monitoring of physiological data using wearable
sensors, combined with ML techniques, accurately predict future
burnout levels in resident physicians?” The outcomes of interest
include the levels of burnout, stress, and satisfaction, as
measured by the Mini-Z Burnout Survey [13]. The study aims
to identify significant predictors of burnout and develop an
explainable ML model to enhance clinical decision-making.
The Mini-Z survey is widely recognized as a clinically validated
and concise tool for assessing burnout, stress, and job
satisfaction, making it ideal for our target study on resident
physicians who face high-pressure environments. Its simplicity
and focus on actionable dimensions like workload, electronic
medical record (EMR) stress, and control over work ensure that
it captures relevant factors contributing to burnout, aligning
perfectly with the predictive goals of our EMBRACE
framework. The survey’s structured 10-item format facilitates
automated completion via ML models, enabling seamless
integration with wearable sensor data for real-time burnout
prediction. Mini-Z’s broad adoption in health care settings
ensures that its results are interpretable and trustworthy for
clinicians, enhancing the explainability and clinical utility of
our framework. By targeting key predictors of burnout and
providing clear thresholds for intervention, the Mini-Z survey
supports our objective of delivering clinically actionable insights
to improve resident physicians’ well-being.

Known Predictors and Confounders to What Is Being
Predicted or Diagnosed
Predictors of burnout in this study include physiological
measures such as heart rate variability, skin conductance, and
physical activity levels, collected using the Empatica E4 watch
[55]. These predictors are chosen based on existing literature
that links them to stress and burnout. Confounders may include
individual differences in baseline stress levels, workload
intensity, and personal coping mechanisms. These factors are
controlled through initial baseline assessments and continuous
monitoring.

Overall Study Design
The study uses a prospective cohort design, where 28 internal
medicine resident physicians are monitored over a period
ranging from 2 to 7 days. Data collected includes physiological
metrics from wearable sensors and responses to the Mini-Z
Burnout Survey [13]. The study is divided into training,
validation, and testing phases to develop and evaluate the ML
model.

Medical Institutional Settings
The study is conducted at a renowned teaching-based medical
center, Berkshire Medical Center of the University of
Massachusetts Chan Medical School, where the internal
medicine residency program is hosted. The collected data and
the ML model are intended to be used in this clinical setting to
monitor and predict burnout among resident physicians.

Target Population
This study targets internal medicine resident physicians from
various postgraduate year (PGY1, PGY2, and PGY3) levels.
The model aims to generalize across this population to provide
accurate burnout predictions for different stages of residency
training.

Intended Use of the ML Model
The ML model is intended to be used as a tool for continuous
monitoring and early detection of burnout among resident
physicians. It will provide real-time alerts to medical staff and
wellness coordinators, enabling proactive interventions. The
intended users (with residents’ consent) include clinicians,
residency program directors, and wellness coordinators, who
will use the model’s outputs to support residents’ well-being.

Existing Model Performance Benchmarks for This Task
Existing benchmarks for burnout prediction models typically
involve metrics such as accuracy, recall, precision, and the area
under the receiver operating characteristic curve. Previous
studies using ML methods have reported varied performance,
often limited by a lack of real-time data and clinical
explainability. Our study aims to surpass these benchmarks by
incorporating continuous physiological monitoring and
explainable AI techniques.

Burnout Classes
Burnout levels were assessed using the Mini-Z Burnout Survey,
which includes 10 questions scored on a 5-point Likert scale,
along with an additional open-ended question. Three different
burnout scales were derived from these responses:

1. Joyful Measure: The total score is calculated by summing
the points from all 10 items, with a score range of 10 to 40
points. A score of 20 or higher indicates a joyful work
environment, which has been used to design a 2-class
problem: joyful or not joyful work environment.

2. Satisfaction Scale: This scale is derived by adding the points
from questions 1, 2, 3, and 4, resulting in a score range of
4 to 25 points. A score of 20 or higher indicates a highly
supportive environment, which has been used to design a
2-class problem: satisfied or not satisfied work environment.
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3. Stress Scale: The stress scale is calculated by summing the
points from questions 5, 6, 7, and 8, with a score range of
4 to 25 points. A score of 20 or higher indicates a low-stress
environment with reasonable EMR pressures, which has
been used to design a 2-class problem: high or low stress
at work environment.

Participants were asked to complete the Mini-Z survey daily,
and their responses were used to establish baseline burnout
levels and track changes over the study period. This continuous
assessment allows for timely interventions to prevent and
mitigate burnout.

Our Collected EMBRACE Dataset Description (D3)
The study included 28 internal medicine resident physicians
(average age 27.5, SD 3.5 years) from a renowned
teaching-based medical center, spanning different postgraduate
years (PGY1, PGY2, and PGY3). Inclusion criteria required
participants to be actively engaged in their residency program,
while exclusion criteria involved any medical conditions that
could interfere with stress and burnout assessment. Data
collection was prospective, with participants wearing an
Empatica E4 watch continuously from the start to the end of
their daily duties, covering periods ranging from 2 to 7 days.
Each participant contributed to a total of 98 days of data, with
each day spanning 8 to 13 hours of working hours, averaging
10.5 hours per day, resulting in approximately 1029 hours of
physiological data and 98 different daily ground truth data from
surveys. Of 98 days, 33 (34%) were identified as burnout days
(the days that ended with a burnout as per the burnout survey),
spanning over 19 out of 28 (68%) residents. The collected data
included heart rate variability, skin conductance, and physical
activity levels, recorded at frequencies of 1, 10, and 50 Hz,
respectively. Additionally, participants completed the Mini-Z
Burnout Survey daily via a web-based form sent to their cell
phones, providing subjective assessments of burnout, stress,
and satisfaction. Potential biases include self-reporting
inaccuracies and the variability in daily workloads, which were
controlled through baseline assessments and continuous
monitoring. The dataset consists of longitudinal records with
multiple data points per participant, encompassing continuous
(physiological measures) and categorical (survey responses)
data. Data preprocessing involved normalizing physiological
measures and handling missing data through imputation
methods. Known quality issues include potential sensor
malfunctions and variability in self-reported data. The sample
size was deemed sufficient based on standard ML training
requirements, ensuring adequate model performance and
stability. The data are stored in a secured, HIPAA-compliant
server and are available for further research upon request,
adhering to data sharing policies. Table S1 in Multimedia
Appendix 1 presents the description of the study.

Detecting Workplace Activity and Stress Using Existing
Dataset

Multitask Deep Learning for Joint Activity and Stress
Detection
A multitask deep learning framework for wearable sensor-based
activity and stress detection involves training a single model to

simultaneously perform multiple tasks, specifically activity
recognition and stress level classification. The framework
combines both tasks into a single neural network architecture,
allowing shared representations to be learned and leveraging
the complementary information present in the data.

Input Data
The input data consist of time-series sensor readings from

wearable devices, denoted as X ∈ RT×N, where T represents the
length of the time series and N is the number of sensor channels.

Activity Recognition Task
Activity recognition aims to predict the activity type based on
sensor data. The predicted activity labels are denoted as Yact ∈
{0, 1}C

act, where Cact represents the number of activity classes.
The output layer for activity recognition is defined as

Oact = softmax(Wact × H + bact) (1)

where H represents the shared hidden representations obtained
from the network, Wact is the weight matrix, and bact is the bias
term specific to the activity recognition task.

Stress Level Classification Task
Stress level classification aims to predict the stress level based
on sensor data. The predicted stress labels are denoted as Ystress

∈ {0, 1}C
stress, where Cstress represents the number of stress level

classes. The output layer for stress level classification is defined
as

Ostress = softmax(Wstress × H + bstress) (2)

where H represents the shared hidden representations obtained
from the network, Wstress is the weight matrix, and bstress is the
bias term specific to the stress level classification task.

Shared Representation Learning
The shared representation learning module learns a
representation that captures both activity and stress-related
patterns in the input data. This module consists of a combination
of 1 CNN with 32 hidden nodes each and 2 LSTM layers with
64 hidden nodes each to extract meaningful features from the
input time series. The final fused hidden representation obtained
from this module is denoted as H.

Loss Function
The multitask loss function combines the losses from both tasks
to jointly optimize the model. The loss function is defined as a
combination of activity recognition loss (Lact) and stress level
classification loss (Lstress), weighted by respective task-specific
coefficients (α and β):

Loss = α × Lact + β × Lstress (3)

Learning
The model is trained using backpropagation and gradient descent
optimization techniques, minimizing the multitask loss function.
The shared representation learning module and task-specific
layers are updated jointly during training. By training the
multitask deep learning framework, the model learns to extract
relevant features from the wearable sensor data and
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simultaneously perform activity recognition and stress level
classification tasks. This joint learning approach enables the
model to leverage the shared representations and potentially
improve the performance of both tasks compared to training
separate models.

Burnout Prediction and Explanation

Multitask Few-Shot Domain Adaptation for Mini-Z
Survey and Burnout Prediction
To build a multitask few-shot deep domain adaptation
framework based on the previous framework, we will adapt it
to the scenario where wearable sensor data serves as input, the
source domain involves multitask stress and activity recognition,
and the target domain focuses on predicting the answers to a
multitask Mini-Z survey questionnaire [13] and burnout
prediction. The objective is to estimate the overall burnout scale
class based on the Mini-Z survey questions’ answers. We
describe this model as follows.

Preliminaries
In this framework, we have a similar input data representation
where the source domain framework is the previously described
multitask deep learning architecture for stress and activity
recognition tasks. The model architecture includes shared
representation learning, output layers for activity recognition
(Oact) and stress level classification (Ostress), and corresponding
labels Yact and Ystress. In the target domain, the focus shifts to
predicting the answers to the multitask Mini-Z survey
questionnaire. The objective is to estimate the overall burnout
scale class based on the answers to the Mini-Z survey questions.
For each Mini-Z survey question, a separate output layer is
defined in the neural network architecture. The output layer for
predicting the answer to question i is denoted as Oi = f(WiH +
bi), where H represents the shared hidden representations
obtained from the network, Wi is the weight matrix specific to
question i, bi is the bias term associated with question i, and f
is an appropriate activation function. The estimated overall
burnout scale class is derived from the answers to the Mini-Z
survey questions. This has been achieved by defining a range
of total Mini-Z survey questions’ answers and mapping them
to specific burnout scale classes.

Multitask Adaptive Loss Function
The multitask loss function for the target domain includes the
task-specific loss for Mini-Z survey questions prediction
(LMini-Z) and the overall burnout scale class loss (Lburnout),
weighted by respective task-specific coefficients (γ and δ). The
loss function is defined as

Loss = γ · LMini-Z + δ · Lburnout (4)

where Lburnout is the cross-entropy loss for the overall burnout

scale class estimation, and LMini-Z is the R2 loss metric. R2 is a
goodness-of-fit measure for regression models. This statistic
indicates the percentage of the variance in the dependent variable

that the independent variables explain collectively. R2 measures

the strength of the relationship between our model and the
dependent variable on a convenient 0%-100% scale (see
Multimedia Appendix 1).

Few-Shot Domain Adaptation
Few-shot domain adaptation aims to transfer knowledge from
the source domain to the target domain, even when labeled data
in the target domain is limited [56]. We modify the
Model-Agnostic Meta-Learning (MAML) algorithm [57]
according to our multitask source and target problem, which
allows the model to quickly adapt to new tasks using 10 labeled
samples from each class. The modified MAML algorithm
includes initialization of model parameters and source domain
training. Then, the few-shot domain adaptation includes
selecting a few target samples with labels to define a new target
task with the cloned source model’s parameters. Then, for each
target domain task, we perform a few gradient update steps on
target parameters using few samples and compute the
task-specific target loss in the inner loop; and compute the
gradient of the task-specific target loss with respect to source
parameters and update it. Finally, we evaluate the adapted target
task model using Mini-Z survey answer–based prediction (see
Algorithm S1 in Multimedia Appendix 1).

Results

Setup

Source and Target Dataset Setup
The EMBRACE burnout dataset (D3) we collected does not
include ground truth data for activity recognition. However, to
effectively interpret burnout, it is crucial to predict workplace
activity summaries, evaluate burnout levels, and use clinically
validated survey tools to enhance explainability and build trust
among physicians. To address this, we used the SWELL-KW
(D2) dataset as our source data. This dataset uses the same
wearable sensor (Empatica E4) as ours and provides labeled
workplace activities along with ground truth data for workplace
stress assessment. In our problem setup, the target dataset is our
collected EMBRACE dataset (D3).

Task Definitions
There are two tasks involved in the source dataset (D2)—task
1 (Tact): 5-class activity recognition (writing reports, making
presentations, reading email, searching for information, and
others); and task 2 (Tstress): 3-class stress level recognition
(neutral, interruption, and time pressure). On the other hand,
there are four tasks involved in the target dataset (D3)—task 1
(Tsurvey_answers): a 10-class regression problem to fill out survey
questions; task 2 (Tburnout1): a 2-class overall measure (joyful
work environment or not); task 3 (Tburnout2): a 2-class satisfaction
scale (highly supportive work environment or not); and task 4
(Tburnout3): a stress scale (low stress environment with reasonable
EMR pressure or not). In Figure 1, we present the schematic
diagram of our entire framework with multiple task
specifications.
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Figure 1. The schematic diagram of the proposed framework.

Implementation
Our proposed model was implemented using Python’s Keras
library with the TensorFlow backend. For the regression task,
denoted as Tsurvey_answers, we used the RMSE loss function. In
contrast, for the classification tasks, which encompassed the
remaining tasks, we used categorical cross-entropy loss. These
loss functions were used while jointly training the few-shot
MAML algorithm.

Hyperparameter Tuning
The optimization of our system was performed using the Adam

optimization function with a learning rate of 1×10−3. The
selection of the optimized learning rate and the weighting
parameter β (set to 0.25) was achieved through hyperparameter
tuning. The learning model of our framework was executed on
a server equipped with a cluster of 3 Nvidia GTX GeForce Titan
X GPUs and an Intel Xeon CPU (2.00 GHz) processor, along
with 12 gigabytes of RAM.

Training
For training the multitask stress and workplace activity
recognition framework, we used the D2 dataset (SWELL-KW)
as input. This dataset included readings from wearable sensors
such as accelerometers, heart rate monitors, and galvanic skin
response sensors. The framework was trained to address two
tasks. To adapt the shared module of the target adaptive

multitask explainable burnout prediction, we used the trained
weights for initialization (domain adaptation). Subsequently,
we replaced the inputs with our collected dataset, D3, with
readings from wearable sensors such as accelerometers, heart
rate monitors, and EDA sensors. Additionally, we modified the
output layer to accommodate the 4 aforementioned task
problems.

Timeseries Leave-One-Out-Cross-Validation Setup
The conventional 10-fold cross-validation approach [58] is not
suitable for sequential data. Therefore, to train and assess the
performance of our proposed EMBRACE framework, we adopt
a time-series cross-validation method [8,59]. Here, we partition
the entire sequential dataset into two halves. Subsequently, we
randomly select a sequence of data from the first half as the
training sample and another random sequence from the second
half as the testing sample. This process is repeated 10 times to
generate 10 distinct pairs of training and testing data sequences.
While generating such training and testing data sequences, we
maintained a leave-one-person-out (leave-one-out
cross-validation or LOOCV) strategy (leaving the training
dataset included the individual relevant dataset out while
selecting the testing dataset); thus, the person (out of 28) we
chose to include in the training dataset would never be selected
for the testing dataset. Figure 2 presents a sample of the
LOOCV-based training and testing dataset generation technique
that prevents data leakage between training and testing datasets.
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Figure 2. Example leave-one-person-out strategy-based training and testing sample generation without data leakage.

Accuracy Evaluation Criteria
To evaluate individual task-level classification performance in
the multitask setting of the EMBRACE framework, the accuracy
metric was measured in a macro or balanced setting. For
example, balanced accuracy calculates the accuracy for each
task individually and then takes the average of these accuracies
across all tasks, treating each task equally regardless of its
sample size, using balanced accuracy (see Equations in
Multimedia Appendix 1). This ensures a balanced contribution

from all tasks to the overall performance metric. Balanced
accuracy is suitable in scenarios where all tasks are equally
important, and their performance needs to be evaluated
independently of dataset size. It is particularly useful in MTL
problems where sample sizes vary significantly between tasks.

To add more significance in the performance evaluation, we
included balanced precision, recall, and F1-score as metrics too
[60]. Additionally, we calculate the standard deviation of all
these metrics to evaluate the presence of overfitting (Table 1).

Table 1. EMBRACEa framework predicted individual Mini-Z burnout survey questionnaire–specific answers and overall burnout assessment performance
(R2 coefficient), regression precision, recall, and F1-score stated in the Accuracy Evaluation Criteria section. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR2Questions

80.6 (0.9)78.9 (0.8)79.5 (0.9)78.5 (0.9)Q1

76.4 (0.9)75.3 (0.9)77.4 (0.8)75.8 (0.7)Q2

71.6 (1.0)70.5 (1.2)70.6 (1.1)69.5 (1.9)Q3

86.5 (0.9)84.6 (0.9)87.8 (0.7)84.6 (0.9)Q4

98.3 (0.01)97.5 (0.01)98.2 (0.01)97.5 (0.01)Q5

97.1 (0.02)96.3 (0.01)95.9 (0.02)96.3 (0.01)Q6

93.6 (0.01)93.6 (0.02)94.8 (0.03)93.6 (0.02)Q7

91.3 (0.8)90.4 (0.2)88.5 (1.1)90.5 (0.3)Q8

88.8 (0.9)85.9 (0.5)87.1 (1.2)86.5 (0.9)Q9

91.5 (0.8)90.2 (1.0)89.4 (1.1)90.2 (1.0)Q10

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

To evaluate individual task-level regression performance (ie,

the prediction explanatory power), we used R2 coefficient as

the primary evaluation metric. R2 is a goodness-of-fit measure
for regression models. This statistic indicates the percentage of
the variance in the dependent variable that the independent

variables explain collectively. R2 measures the strength of the
relationship between your model and the dependent variable on

a convenient 0%-100% scale. The percentage of R2 has been
presented in Multimedia Appendix 1. For perfect prediction,

R2=100, while R2=0 indicates no explanatory power. To estimate
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precision, recall, and F1-score for regression tasks, we
discretized the regression into predictions by considering
proximity between predicted and true values using a threshold
value of δ=0.5.

Workplace Activity Recognition Performance
The SWELL-KW (D2) dataset contains detailed annotations of
several workplace activities for 25 participants, including
activities such as making presentations, paper writing, paper
planning, writing emails, reading emails, programming, creating
overviews, searching for information, and being away from the
keyboard. However, due to significant overlaps between some
of these activities, it was challenging to accurately distinguish
them using wearable accelerometers and EDA sensors alone.
Therefore, we consolidated these activities into five distinct
categories: (1) writing (paper writing and paper planning), (2)
presenting (making presentations, programming, and creating

overviews), (3) email (writing emails and reading emails), (4)
searching (searching for information), and (5) others (time away
from keyboard, etc).

Table 2 presents the overall accuracy, precision, recall, and
F1-score for workplace activity recognition, with values of
91.6%, 93.1%, 91.6%, and 93.9%, respectively. These results
are accompanied by reasonably low standard deviations,
indicating no signs of overfitting. Notably, the classification of
writing activities achieves a significantly higher accuracy of
97% compared to other tasks. To compare the performance of
our activity recognition task, we implemented the Bi-LSTM
(bidirectional long short-term memory) [61], perceptron [62],
BayesNet [62], decision tree [62], and K-Star [62] algorithms.
Table 2 presents a comparison of various performance metrics
between our model and the baseline algorithms. The results
demonstrate that our model outperforms all the baseline
algorithms implemented in this study.

Table 2. Comparison of workplace activity recognition performance across different algorithms with the EMBRACEa framework. Data are presented
as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

77.2 (1.7)76.4 (1.5)75.8 (1.6)76.4 (1.5)K-Star

81.9 (1.5)80.2 (1.2)81.5 (1.3)80.2 (1.2)Decision tree

84.0 (1.2)82.9 (1.1)83.1 (1.0)82.9 (1.1)BayesNet

87.4 (1.0)86.5 (1.0)86.9 (1.1)86.5 (1.0)Perceptron

93.7 (0.4)91.4 (1.0)93.0 (0.6)91.4 (1.0)Bi-LSTMb

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
bBi-LSTM: bidirectional long short-term memory.

Stress Classification Performance

Linking Stress to Burnout and Use of Existing Datasets
Stress and burnout are closely linked, with chronic stress being
a significant predictor of burnout in many occupations.
Prolonged exposure to stress without sufficient recovery leads
to emotional exhaustion, one of the key components of burnout
[9]. Research has shown that stress affects not only physical
health but also cognitive and emotional functioning, contributing
to higher rates of burnout in high-demand environments [63].
Additionally, the accumulation of stress over time without
effective coping mechanisms has been associated with an
increase in depersonalization and reduced personal
accomplishment, further solidifying the connection between
stress and burnout [64]. Since wearable sensor-based burnout
prediction datasets are not available, we apply our proposed
framework to existing wearable stress datasets, such as the
WESAD (D1) [48] and SWELL-KW (D2) [50-52] datasets.

WESAD Data
The WESAD (D1) dataset includes 5 emotional states: baseline,
amusement, stress, meditation, and recovery. However, the

WESAD researchers noted that meditation and recovery are not
typical everyday emotional states and focused on the 3 primary
states: baseline, amusement, and stress [48]. Following their
approach, we excluded all data related to the meditation and
recovery states, reducing the dataset to a 3-class problem. Table
3 reports the overall accuracy, precision, recall, and F1-score
for stress level recognition on the WESAD (D1) dataset, with
values of 94.1%, 94.2%, 94.1%, and 94.6%, respectively.
Similar to the activity recognition results, the standard deviations
remain reasonably low, indicating no signs of overfitting.
Notably, the classification of the baseline stress level achieves
an impressive accuracy of 98.9%. To compare with existing
algorithms, we implemented SELF-CARE [65], the Gaussian
mixture model, and CNN algorithms (Table 4). The
SELF-CARE method uses selective sensor fusion and
context-aware techniques to enhance stress detection accuracy,
achieving an accuracy of 86.34%, a precision of 87.2%, a recall
of 85.9%, and an F1-score of 86% for 3-class stress classification
[65].
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Table 3. Proposed algorithm-based 3-class stress level (baseline, stress, and amusement) classification performance details on the publicly available
WESADa (D1) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

98.6 (0.02)98.9 (0.01)97.8 (0.02)98.9 (0.01)Baseline

95.5 (0.07)93.7 (0.08)94.8 (0.02)93.7 (0.08)Stress

92.0 (0.09)90.8 (0.10)91.9 (0.10)90.8 (0.10)Amusement

94.6 (0.02)94.1 (0.03)94.2 (0.03)94.1 (0.03)Overall

aWESAD: Wearable Stress and Affect Detection.

Table 4. Comparison of the proposed algorithm with state-of-the-art algorithms on the WESADa (D1) dataset to predict 3-class stress levels (baseline,
stress, and amusement). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

84.0 (1.3)82.5 (1.2)83.2 (1.1)82.5 (1.2)Gaussian mixture model [48]

90.7 (0.8)89.8 (0.9)90.5 (1.0)89.8 (0.9)Convolutional neural networks [48]

87.4 (0.7)86.2 (1.0)87.0 (0.8)86.2 (1.0)Random forest [48]

86.0 (0.6)85.9 (0.7)87.2 (0.6)86.34 (0.8)SELF-CARE [65]

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aWESAD: Wearable Stress and Affect Detection.

SWELL-KW Data
The SWELL-KW (D2) dataset contains stress data collected
from participants under 3 work conditions: neutral, interruptions,
and time pressure. Table 5 reports the overall accuracy,
precision, recall, and F1-score performance metrics of our

proposed algorithm for 3-class stress level classification on the
SWELL-KW (D2) dataset, with values of 94.7%, 94.7%, 94.7%,
and 95.1%, respectively. Similar to the results from the WESAD
dataset, the standard deviations remain low, indicating no signs
of overfitting. Notably, the classification of the neutral stress
level achieves an impressive accuracy of 99.5%.

Table 5. Proposed algorithm-based 3-class stress level (neutral, interruptions, and time-pressure) classification performance details on the publicly
available SWELL-KWa (D2) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

99.1 (0.01)99.5 (0.0)98.2 (0.01)99.5 (0.0)Neutral

96.3 (0.06)94.1 (0.07)95.4 (0.01)94.1 (0.07)Interrupt

92.8 (0.08)91.2 (0.09)92.7 (0.09)91.2 (0.09)Time

95.1 (0.01)94.7 (0.02)94.7 (0.02)94.7 (0.02)Overall

aSWELL-KW: SWELL Knowledge Work.

To compare with existing algorithms, we implemented the
following models stated in Table 6. Koldijk et al [66] used the
SWELL-KW dataset and compared several ML algorithms.
Support vector machine with an radial basis function kernel
achieved an accuracy of 90.03%, while other models like Naive
Bayes, K-Star, and BayesNet achieved lower accuracies of
64.77%, 65.81%, and 69.08%, respectively. More advanced

models like random forest (87.09%) and MLP (88.54%)
outperformed simpler methods [66]. Similarly, de Vries et al
[67] used a learning vector quantization approach, achieving
88% accuracy for stress classification. Based on these results,
we can conclude that our framework demonstrates competitive
performance against other existing methods.
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Table 6. Comparison of the proposed algorithm with state-of-the-art algorithms on the SWELL-KWa (D2) dataset to predict 3-class stress levels
(neutral, interruptions, and time-pressure). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

67.45 (3.5)66.89 (2.5)69.56 (3.9)64.77 (4.3)Naive Bayes

66.72 (4.1)67.53 (4.1)63.8 (3.7)65.81 (3.8)K-Star

69.08 (2.1)70.1 (1.9)70.0 (3.1)69.08 (2.5)BayesNet

91.0 (0.9)90.03 (0.8)90.1 (0.7)90.03 (0.8)Support vector machine (RBFb kernel) [66]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

89.1 (1.3)88.54 (1.2)89.3 (1.1)88.54 (1.2)Multilayer perceptron [66]

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aSWELL-KW: SWELL Knowledge Work.
bRBF: radial basis function.

EMBRACE Dataset
The EMBRACE dataset contains data for predicting burnout
levels based on several measures, including the joyful measure,
satisfaction scale, and stress scale. In addition to burnout

measures prediction, we also use Mini-Z survey questions to
predict specific responses for questionnaire completion. Tables
7 and 8 present the regression and classification performance
for survey question completion and burnout prediction using
our adaptive MTL framework.

Table 7. EMBRACEa framework–based burnout prediction performance details on our collected dataset. Note that the Mini-Z burnout survey has 3
burnout measures (joyful measure, satisfaction scale, and stress scale) with 2 classes each to classify. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyBurnout measures

81.3 (0.14)82.5 (0.15)83.5 (0.2)82.7 (0.1)Joyful measure

79.5 (0.2)78.4 (0.15)80.5 (0.2)79.2 (0.1)Satisfaction scale

90.3 (0.1)89.5 (0.1)87.6 (0.11)89.3 (0.05)Stress scale

86 (0.1)84.8 (0.2)86.4 (0.1)85.1 (0.1)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

Table 8. Comparison of Mini-Z survey questionnaire–specific answer score (regression problem) prediction performance of our proposed algorithm
with state-of-the-art algorithms, where individual answer ranges from 1 to 5. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR 2Algorithms

83.2 (1.0)82.3 (1.1)82.8 (0.9)82.6 (1.0)Random forest [66]

81.0 (0.8)79.8 (1.2)80.6 (0.9)80.3 (1.1)Decision tree [68]

86.5 (0.8)85.4 (0.9)86.1 (0.7)85.7 (0.8)Bi-LSTMa [61]

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Ours

aBi-LSTM: bidirectional long short-term memory.

Table 1 shows that our framework performs well in predicting

survey question responses, with overall percentage R2

coefficient, precision, recall, and F1-score of 87.7%, 88.3%,
87.6%, and 88.8%, respectively (refer to the Accuracy
Evaluation Criteria section). Although a few questions (such as
Q1, Q2, and Q3) show relatively lower performance, the
adaptive MTL framework efficiently compensates, yielding
robust overall results.

Table 8 shows that our EMBRACE framework outperforms
several baseline algorithms, including random forest, decision
tree, and Bi-LSTM, in predicting Mini-Z survey questionnaire

responses. With an overall percentage R2 coefficient, precision,

recall, and F1-score of 87.7%, 88.3%, 87.6%, and 88.8%,
respectively, the framework demonstrates robust performance.
Notably, while some questions (eg, Q1, Q2, and Q3) exhibit
lower individual performance, the adaptive MTL approach
effectively compensates for these discrepancies, ensuring
reliable overall results. Compared to other models, EMBRACE
achieves higher precision and recall across all metrics,
highlighting its superior ability to capture the nuances of
physician burnout through clinically validated survey responses.

Table 9 reports the performance for burnout prediction,
achieving an overall balanced accuracy, precision, recall, and
F1-score of 94.7%, 94.7%, 94.7%, and 95.1%, respectively
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(refer to the Accuracy Evaluation Criteria section). The standard
deviations across both tasks remain low, indicating no signs of
overfitting.

To compare with existing algorithms, we implemented learning
vector quantization, random forest, and Bi-LSTM [61], all of
which have been shown to perform well in burnout and stress

prediction tasks. Table 9 compares these algorithms’
performance on the EMBRACE dataset. The Bi-LSTM
algorithm performs closest to our model but is still slightly
lower in every metric. The learning vector quantization and
random forest models perform moderately well but do not match
the high performance of our EMBRACE framework.

Table 9. Comparisons of our proposed algorithm based on overall burnout prediction accuracy with state-of-the-art algorithm performance on our

collected EMBRACEa dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

94.0 (0.7)93.5 (0.9)93.9 (0.6)93.6 (0.8)Bi-LSTMb [61]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
aBi-LSTM: bidirectional long short-term memory.

Explainability Study
The primary focus of the explainability study in the EMBRACE
framework is to enhance the clinical trustworthiness and
usability of the burnout prediction system through an easily
interpretable, explainable ML model. This study aims to make
complex model predictions comprehensible to the end users
(resident physicians and clinicians) by providing insights into
how the predictions are derived, thus increasing their clinical
utility.

Setup
We implemented the explainability module as a supplementary
step in the EMBRACE system, focusing on two primary outputs:
(1) the completion of a clinically validated burnout survey
(Mini-Z) and (2) a summary of workplace activity, stress
measures, and burnout indicators. The Mini-Z survey responses,
which serve as a clinically explainable output, are automatically
filled based on the model’s burnout prediction. These survey
responses reflect the participants’ stress, workload, and overall
satisfaction levels.

In this study, we adopted SHAP as our primary explainability
tool for wearable sensor-based burnout and stress prediction.
SHAP values assign importance scores to each feature used in
the model, offering a detailed breakdown of how each feature
contributes to the final prediction. These explanations are then
converted into an intuitive format that can be easily interpreted
by clinicians. For visualization, we generated 2 main outputs:
SHAP value-based feature importance plots and a time-series
summary of activities and stress indicators throughout the day.

Use of ML in Explainability
Our adaptive multitask deep learning model leverages
time-series data from wearable sensors such as heart rate, EDA,
and accelerometer readings to predict burnout. Once the
predictions are made, we use SHAP to interpret the contributions
of each sensor reading toward the burnout prediction. For
example, SHAP values illustrate whether elevated heart rate or
prolonged sedentary periods are significant contributors to
burnout risk.

In addition to the burnout predictions, we also predict the
responses to Mini-Z survey questions, which include satisfaction
with work, perceived stress, and control over workload. SHAP
analysis allows the model to break down these predictions,
showing how different stressors (eg, EMR workload or
workplace interruptions) influence the outcomes. This
transparency ensures that clinicians can trust the model’s
predictions and understand the underlying factors driving these
outcomes.

Visualization
Visualization plays a crucial role in translating the explainable
ML outcomes into actionable insights for clinicians. Our model
outputs two primary visual aids:

1. Feature Importance Plot:
The SHAP-based feature importance plot ranks the top
features contributing to burnout, such as heart rate
variability, sedentary activity duration, or frequent
interruptions. Clinicians can use this ranking to quickly
identify key stressors associated with burnout risk and focus
on interventions for the most significant factors.

2. Activity and Stress Summary:
This time-series summary visualizes the participant’s daily
activity breakdown, including tasks such as writing notes,
responding to emails, and attending meetings. These
activities are mapped to stress levels measured by the
wearable sensors. The summary offers clinicians an
at-a-glance overview of how workday activities contribute
to stress and burnout risks.

Below are sample tables that represent these visualizations for
one participant (sample no. 1).

These tables provide clinicians with a clear understanding of
key features influencing burnout (Table 10), a summary of daily
activities (Table 11), and a summary of stress levels (Table 12).
This visualization enables clinicians to take targeted actions
based on the specific stressors and activities contributing to
burnout.
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Table 10. Feature importance table for person (sample no. 1).

Importance rankSHAPa valueFeature

10.45Heart rate variability

20.38Sedentary activity duration

30.35Time spent writing notes

40.30EMRb time

50.25Interruptions frequency

60.20Sleep quality (night before)

aSHAP: Shapley Additive Explanations.
bEMR: electronic medical record.

Table 11. Activity summary table for person (sample no. 1).

Percentage of the dayTime spent (hours)Activity

454.5Writing notes

202.0Responding to emails

151.5Attending meetings or presenting

101.0Searching for information

101.0Breaks (away from keyboard)

Table 12. Stress summary table for person (sample no. 1).

Percentage of the dayDuration (hours)Stress level

353.5High stress

252.5Medium stress

303.0Low stress

101.0Neutral or relaxed

End-of-Day Email Alerts and Feedback Collection
To ensure proactive interventions, the EMBRACE framework
sends an end-of-day email to the resident physician with a
summary of the day’s activities, stress levels, and a filled-out
Mini-Z survey. The email includes a visual breakdown of the
day’s workload and corresponding burnout predictions, along
with recommendations to mitigate future burnout risks.
Clinicians and residents can review the survey and workplace
summary to identify stressors and consider adjustments in daily
routines.

Furthermore, the system integrates a feedback loop, where
physicians can provide input on the model’s predictions and
explanations. The feedback is collected through a web-based
form linked in the email, where clinicians can indicate whether
the burnout prediction and activity summary matched their
actual experience. This feedback is invaluable for further
refining the EMBRACE model, ensuring it adapts to the unique
experiences of individual residents and physicians over time.

By integrating SHAP values, visualization tools, and real-time
feedback collection, the EMBRACE framework effectively
bridges the gap between complex ML models and clinically

actionable insights. The explainability study showcases how
these tools enhance both the interpretability and usability of the
burnout prediction system, enabling physicians to make
informed decisions regarding their well-being.

Evaluation of the Satisfaction of Explainable
Visualization
Additionally, we conducted an end-of-study survey to evaluate
the impact of our visualizations on participants’ understanding
of burnout. The survey, completed by 23 out of 28 participants,
assessed the clarity of the 3 explanations: feature importance
summary, activity summary, and stress summary. Among the
23 participants, 20 (87%) reported that the feature importance
summary was the most impactful. Furthermore, 21 (91%)
participants expressed high satisfaction with the explainability
of the feature importance summary, 18 (78%) participants were
highly satisfied with the activity summary, and 21 (91%)
participants were highly satisfied with the stress summary
explanation. These findings underscore the importance of
explainability in promoting user trust and comprehension of
predictive models in clinical settings. Table 13 provides the
details of our end-of-study survey results.
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Table 13. Poststudy survey responses: satisfaction with feature importance, activity summary, and stress summary explanations.

Stress summary (n=23), n (%)Activity summary (n=23), n (%)Feature importance (n=23), n (%)Satisfaction level

21 (91)18 (78)20 (91)Highly satisfied

2 (9)3 (13)1 (4)Somehow satisfied

0 (0)1 (4)0 (0)Neutral

0 (0)1 (4)1 (4)Somehow dissatisfied

0 (0)0 (0)0 (0)Totally unsatisfied

Discussion

Validation of EMBRACE With Wearable Sensors,
MAML, and Correlation Analysis
Our proposed EMBRACE framework demonstrated that
adaptive multitask deep learning, integrated with wearable
sensor data and SHAP-based explanations, effectively predicts
future burnout among resident physicians, significantly
improving clinical interpretability, trust, and actionable insights.

We have chosen the Empatica E4 wearable sensor for its robust
and validated capability to capture key physiological indicators
associated with burnout, stress, and exhaustion, including heart
rate, EDA, skin temperature, and accelerometry data. The
device’s accuracy and widespread use in clinical research ensure
reliable data collection, aligning with our objective to quantify
predictors and confounders of burnout. Established studies have
demonstrated strong correlations between heart rate and EDA
with stress, anxiety, and exhaustion, making these metrics
critical for identifying burnout-related patterns. Furthermore,
the inclusion of skin temperature and accelerometry enriches
the dataset by providing insights into thermoregulation and
activity levels, which are important confounders for
differentiating physical and psychological stressors.

We have used the MAML algorithm in this study because it is
particularly suited for scenarios with limited labeled data and
the need to generalize across diverse tasks, such as detecting
burnout indicators across individuals with varying physiological
baselines. Unlike traditional ML algorithms, MAML efficiently
adapts to new tasks with minimal fine-tuning, enabling
personalized predictions in dynamic and heterogeneous
environments. Additionally, its meta-learning approach ensures
robust model performance even when faced with variability in
wearable sensor data, making it ideal for addressing the
challenges of burnout prediction in real-world settings.

The findings of this study provide valuable insights into the
relationship between workplace activities, stress levels, and
burnout among resident physicians. By applying the multitask
workplace activity and stress detection algorithm to our collected
dataset (D3), we effectively analyzed and predicted burnout
levels with high accuracy. The correlation analysis using the
Pearson correlation coefficient technique between predicted

workplace activities, stress levels, Mini-Z questionnaire
responses, and burnout measures offers a comprehensive view
of the stress-burnout relationship. These correlations are
visualized in Figure 3.

Our results reveal several key relationships. Foremost, highly
interruptive and time-pressured workplace activities were
strongly associated with elevated stress levels and negative
responses to the Mini-Z questionnaire. These findings align
with previous studies, which demonstrate that frequent
interruptions and increased workload pressures contribute to
burnout. For instance, residents who experience continuous
interruptions may struggle to focus on critical tasks, leading to
higher stress and dissatisfaction. This is evident in survey items
such as Q5 (“I feel a great deal of stress because of my job”)
and Q6 (“The amount of time I spend on the EMR at home”),
both of which exhibited strong correlations with time-pressured
activities.

Moreover, the correlation between note-writing activities,
especially related to EMR documentation, and higher stress
levels further underscores the role of administrative tasks as a
significant contributor to burnout. Stress related to EMR use
has been widely reported in health care literature, and our
analysis corroborates these findings, confirming that
documentation burdens are a key stressor for residents. As
shown in the correlation heatmap, these tasks are closely aligned
with burnout predictors.

Interestingly, a positive correlation between presentation
activities and job satisfaction was observed. Activities that
involve presenting or participating in discussions were linked
to a more joyful work environment, suggesting that these tasks
may foster a sense of professional accomplishment or
engagement, serving as protective factors against burnout.

From an explainability perspective, the SHAP values were
crucial in providing insights into how specific workplace
activities and physiological measures influenced burnout
predictions. Visualizing the contribution of individual features,
such as heart rate variability and sedentary activity duration,
enhanced clinical trust in the model’s predictions. The real-time
interpretability facilitated by email alerts and feedback loops
played a key role in engaging residents with their data, providing
a feedback mechanism for continuous model improvement.
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Figure 3. Pearson correlation coefficient (R) heatmap among detected workplace activities, stress levels, Mini-Z survey responses, and burnout measures.

Conclusion and Future Work
This paper introduces the EMBRACE framework, a novel
multitask adaptive deep learning approach designed for
predicting and explaining burnout in resident physicians. By
integrating wearable sensor data with the clinically validated
Mini-Z burnout survey, EMBRACE provides a unique approach
to clinically explainable burnout prediction. The combination
of workplace activity recognition, stress level detection, and
explainable burnout prediction offers clinicians actionable
insights into the burnout risks faced by resident physicians.

Our results demonstrate high prediction accuracy across all
tasks, with the framework outperforming several baseline
models, including Bi-LSTM, learning vector quantization, and
random forest. The SHAP-based explainability mechanisms
also significantly enhanced the interpretability of model outputs,
building clinician trust and enabling real-time interventions
based on predicted burnout risks.

Despite these promising findings, the study has limitations. The
relatively small sample size of 28 participants limits the
generalizability of the results. Further studies with larger, more
diverse populations are needed to validate the findings.
Additionally, while EMBRACE offers detailed insights into
stress and burnout, further research is required to assess the
long-term effectiveness of the suggested intervention strategies.
A longitudinal satisfaction study would also be valuable in
evaluating the impact of explainable AI in reducing burnout in
clinical settings.

Future work will focus on expanding the framework by
incorporating additional physiological and behavioral metrics,
such as sleep quality and social interactions, to provide a more
comprehensive assessment of burnout risks. We also aim to
develop personalized interventions based on real-time
predictions, allowing for tailored strategies to mitigate burnout
before it escalates. Scaling the framework to different clinical
environments and assessing its adaptability in various health
care settings will also be key areas of exploration.
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Abstract

Background: Axial spondyloarthritis (axSpA) is a chronic autoinflammatory disease with heterogeneous clinical features,
presenting considerable complexity for sustained patient self-management. Although the use of large language models (LLMs)
in health care is rapidly expanding, there has been no rigorous assessment of their capacity to provide axSpA-specific health
guidance.

Objective: This study aimed to develop a patient-centered needs assessment tool and conduct a systematic evaluation of the
quality of LLM-generated health advice for patients with axSpA.

Methods: A 2-round Delphi consensus process guided the design of the questionnaire, which was subsequently administered
to 84 patients with axSpA and 26 rheumatologists. Patient-identified key concerns were formulated and input into 5 LLM platforms
(GPT-4.0, DeepSeek R1, Hunyuan T1, Kimi k1.5, and Wenxin X1), with all prompts and model outputs in Chinese. Responses
were evaluated using 2 techniques: an accuracy assessment based on guideline concordance, with independent double blinding
by 2 raters (interrater reliability analyzed via Cohen κ), and the AlphaReadabilityChinese analytic tool to assess readability.

Results: Analysis of the validated questionnaire revealed age-related differences. Patients younger than 40 years prioritized
symptom management and medication side effects more than those older than 40 years. Distinct priorities between clinicians and
patients were identified for diagnostic mimics and drug mechanisms. LLM accuracy was highest in the diagnosis and examination
category (mean score 20.4, SD 0.9) but lower in treatment and medication domains (mean score 19.3, SD 1.7). GPT-4.0 and Kimi
k1.5 demonstrated superior overall readability; safety remained generally high (disclaimer rates: GPT-4.0 and DeepSeek-R1
100%; Kimi k1.5 88%).

Conclusions: Needs assessment across age groups and observed divergences between clinicians and patients underline the
necessity for customized patient education. LLMs performed robustly on most evaluation metrics, and GPT-4.0 achieved 94%
overall agreement with clinical guidelines. These tools hold promise as scalable adjuncts for ongoing axSpA support, provided
complex clinical decision-making remains under human oversight. Nevertheless, the prevalence of artificial intelligence
hallucinations remains a critical barrier. Only through comprehensive mitigation of such risks can LLM-based medical support
be safely accelerated.

(JMIR AI 2026;5:e79153)   doi:10.2196/79153
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Introduction

Axial spondyloarthritis (axSpA) is a chronic inflammatory
disorder that predominantly affects the sacroiliac and axial spinal
joints. Early symptoms often include chronic atypical low back
pain and morning stiffness, with associated manifestations such
as tendinitis and arthritis and extra-articular features such as
uveitis, inflammatory bowel disease, and psoriasis frequently
observed [1]. Despite substantial research progress on axSpA,
most studies have been disease centered, with limited focus on
patient-oriented assessment. The insidious onset and nonspecific
symptoms frequently contribute to delays in recognition and
care. Accurate diagnosis requires the integration of clinical
signs; laboratory results; and imaging, such as pelvic X-ray or
sacroiliac joint magnetic resonance imaging [2]. Many patients
lack a clear understanding of the necessity or implications of
these examinations. Therapeutic approaches for axSpA
encompass both pharmacological and nonpharmacological
strategies [3,4], posing additional challenges regarding patient
decision-making and informed participation in care. These
factors collectively impact axSpA self-management and
highlight the urgent need for enhanced patient education.
Furthermore, the rapid advancement of large language models
(LLMs) has unlocked considerable health care potential [5,6].
As more patients seek advice from artificial intelligence
(AI)–based systems, it remains essential to rigorously evaluate
the accuracy and quality of medical guidance they provide
within axSpA-related contexts.

This study aimed to systematically identify genuine concerns
of patients with axSpA via a questionnaire survey and a parallel
analysis of the perspectives from clinicians. Patient-derived
questions were presented to LLMs, with resulting health advice
assessed across 3 dimensions: readability, accuracy, and health
disclaimer. These findings offer data-driven insight for
clinicians, enabling them to tailor education to the needs and
cognitive patterns of diverse patient populations. The results
further inform evaluation of LLMs in health counseling, support
more nuanced clinical decision-making in diagnosis and
treatment, and guide the development of sustainable
patient-centered management strategies.

Methods

Construction of the Questionnaire
The questionnaire development comprised 3 stages [7,8].
Initially, a comprehensive list of knowledge items was extracted
from published questionnaires and the 2022 Assessment of
Spondyloarthritis International Society–European Alliance of
Associations for Rheumatology recommendations for axSpA
management. A Delphi process included rheumatologists,
rheumatology graduate students, and patients. They first
enriched the list by adding items considered potentially useful,
and then the list was reduced to obtain the most important items.
Participants in the Delphi rounds were enrolled from the
department of rheumatology and immunology of the Chinese
PLA General Hospital First Medical Center. The
rheumatologists and the rheumatology graduate students invited
patients to participate.

In the second stage, the initial version of the questionnaire was
created based on the first Delphi round results, formulated by
XJ, JB, and JY. Each question was mapped to the extracted item
list to ensure comprehensive coverage of clinical features,
diagnosis, examination methods, medication options, and
prognosis related to axSpA. The instrument was designed for
all patients with axSpA features regardless of concomitant
peripheral SpA, psoriasis, or inflammatory bowel disease
manifestations.

In the third stage, the final Delphi round facilitated consensus
among all rheumatology experts and rheumatology graduate
students to refine the instrument, with questions selected as
essential if chosen by more than two-thirds and useful if chosen
by more than half but less than two-thirds of participants. Items
deemed redundant and overly complex or those lacking clinical
relevance were eliminated, resulting in the finalized version.
The questionnaire structure and corresponding item numbers
are provided in Multimedia Appendix 1.

Data Collection and Analysis
For data collection, the finalized questionnaire was digitized
and formatted into an online survey. An additional section at
its conclusion collected basic demographic and health-related
information to support baseline analysis. Participation was
anonymous, with clear disclosure that responses would be used
solely for research purposes. Recruitment used a Wenjuanxing
(an online survey platform) link, and this link was distributed
through hospital outpatient clinics [9]. The collected data were
categorized and contrasted according to the baseline
characteristics of the respondents, including patient age, sex,
and occupational category.

To compare differences in attitudes between health care
professionals and patients, a separate online survey was
administered to medical staff within the rheumatology and
immunology department.

Choice of LLM Chatbots
In selecting LLMs, we included DeepSeek R1 (DeepSeek),
Hunyuan T1 (Tencent), Kimi k1.5 (Moonshot AI), Wenxin X1
(Baidu), and GPT-4.0 (OpenAI) [10-13], each possessing
strengths in different domains. The comprehensive comparison
of these models was intended to more accurately reflect
real-world choices and user experiences among patients with
axSpA.

Outcomes and Data Synthesis
The LLM-generated answers were systematically collected by
a researcher and organized into bullet points. Each question was
submitted independently to the models in a 1-time format to
prevent AI memory effects and ensure unbiased responses. Both
the patient queries and all LLM outputs were generated in
Chinese. Full datasets are provided in Multimedia Appendix 2.
Response assessment targeted 3 metrics: accuracy, readability,
and health advice disclaimers. Accuracy was defined as the
degree of correctness in each LLM’s response to individual
items [6-14] benchmarked against the 2022 Assessment of
Spondyloarthritis International Society–European Alliance of
Associations for Rheumatology guidelines and the Lancet series
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recommendations [4,15-19]. Two independent raters assessed
each suggestion based on a published scoring criterion
(Multimedia Appendix 3), with arbitration by a third researcher
in case of discrepancies. For example, for scoring, if rater A
assigned indicator scores of 4, 3, 3, and 1 and rater B assigned
scores of 4, 4, 3, and 1, the raters would discuss any
discrepancies (here for the second indicator, 3 vs 4).
Irreconcilable differences were resolved by an expert’s decision.
The independent raters acknowledged potential subjective bias
favoring AI, possibly leading to higher average ratings than
seen in previous literature. Interrater reliability was quantified
via the Cohen κ statistic.

Readability was defined as the ease or difficulty of reading each
text and quantitatively measured using the
AlphaReadabilityChinese tool (Shanghai International Studies
University) [20]. This analytic framework assesses 9 dimensions
of language complexity. Higher scores in some dimensions

signal increased reading difficulty, whereas, for the 5 “precision
and clarity” dimensions, higher scores equate to better
comprehension (Textbox 1).

The key takeaway was that easier-to-understand texts scored
low on dimensions of complexity, such as intricate vocabulary
and sentence structure, but high on dimensions of precision and
clarity, including the use of specific words and unambiguous
phrasing.

“Health disclaimers” were defined as warnings within the
response that cautioned about specific risks or promoted
appropriate and safe patient behaviors, such as recommending
medical attention if symptoms persist. Each LLM response was
categorized on the basis of the presence or absence of a health
disclaimer [21]. The scope of disclaimers encompassed
recommendations to seek professional assistance, urgent care,
careful medication use, and general consultative language.

Textbox 1. Dimensions of readability.

Dimensions where higher scores mean the text is harder to read

• Lexical richness indicates the use of diverse and complex vocabulary.

• Syntactic richness refers to longer and structurally intricate sentences.

• Semantic richness reflects a high density of content and information.

• Semantic noise represents the presence of redundant or off-topic information that may obscure the main message.

Dimensions where higher scores mean the text is easier to read

• Noun or verb precision captures the use of specific nouns and action verbs (eg, “MRI scan” instead of “a type of examination” and “reduce pain”
instead of “implement analgesic measures”).

• Semantic clarity measures how directly and unambiguously information is conveyed.

Statistical Analysis
Statistical analyses were conducted using R (version 3.4.0; R
Foundation for Statistical Computing) and RStudio (version
1.0.136; Posit PBC). Assumptions of normality and variance
homogeneity informed the use of either ANOVA or
Kruskal-Wallis tests for multiple group comparisons of
language-difficulty metrics [22,23]; Greenhouse-Geisser or
Satterthwaite corrections were applied as needed [24,25].
Categorical data from questionnaire responses were evaluated
using chi-square tests or Fisher exact test, where applicable
[26,27]. Significance was defined at P<.05. Figures were plotted
using the ggplot2 R package.

Ethical Considerations
Before the first Delphi round, this study was approved by the
medical ethics committee of Chinese People’s Liberation Army
General Hospital (S2022-255-03). For patients completing the
paper-based questionnaire, a dedicated informed consent form
was signed to obtain their consent. For those completing the
electronic questionnaire, informed consent was obtained through
the “check + click button” method—patients were required to
check the box and click the confirmation button to verify that
they had read and agreed to all terms. During the data collection
process, we ensured patient privacy and maintained strict

confidentiality of patient data. No compensation was provided
to patients for their participation.

Results

Construction of the Questionnaire
At the first stage, 31 items were extracted from existing survey
instruments. Delphi rounds incorporated 1 senior rheumatology
expert with more than 30 years of experience, 3 rheumatologists
with extensive clinical expertise, 5 rheumatology graduate
students, and 8 patients. The first Delphi round expanded the
preliminary list to 50 potentially informative items. In the next
stage, a graduate student reformulated these into specific
questions and compiled them into a draft questionnaire. The
final Delphi round selected 42 questions judged “essential” by
more than half (9/17, 53%) of the participants. Figure S1 in
Multimedia Appendix 4 provides a detailed flowchart of these
procedures.

Survey Results
Through the online questionnaire, responses were collected
from 84 patients with axSpA. Demographic details and response
distributions are presented in Figure 1A and Table 1. The cohort
comprised 62 (74%) men and 22 (26%) women, with an average
age of 38.01 (SD 10.45) years. Education levels were
predominantly bachelor’s degree (n=34, 40%), followed by
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senior high school (n=24, 29%) and master’s or higher degrees
(n=13, 15%). Most (n=47, 56%) held sedentary occupations.
Parental health status was most often reported as “good” (n=57,
68%), while self-assessed health was frequently rated as “fair”
(n=42, 50%). Family history of ankylosing spondylitis was
identified in 27 (32%) participants. In total, 57 (68%)
participants used the internet for less than 6 hours a day, and
27 (32%) participants exceeded this threshold. Figure 1A shows
that question 11 (“My doctor recommended testing for
HLA-B27. What does a positive result mean?”) was the area of
greatest concern. To expand the scope of assessment, 26
responses from health care professionals were gathered (Figure
1B), with question 11 also ranking highly in this group. Health
care professionals unanimously identified question 1, question
3, question 14, and question 24 as highly important, with no

respondents rating them as “neutral,” “unimportant,” or “very
unimportant.”

To explore factors influencing patient prioritization, we
compared responses across patient subgroups based on baseline
characteristics. The results indicated age was the most significant
variable (P values ranging from .001 to .05), with 12 questions
showing statistically significant age-based differences (question
4, question 13, question 17, question 24, question 27, question
28, question 30, question 31, question 36, question 37, question
38, and question 40; refer to Figures 2A and B. Multimedia
Appendix 5 for P values). Cross-group analysis of patient versus
health care worker priorities revealed statistically significant
disparities on 3 questions (question 18, question 26, and question
31; refer to Figures 3A and B. Multimedia Appendix 6 for P
values).

Figure 1. Questionnaire responses from patients and rheumatologists. (A) Patient questionnaire responses. The lengths of the differently colored bars
represent the proportion of respondents who selected each option within the total surveyed population. (B) Rheumatologists’ questionnaire responses.
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Table 1. Baseline characteristics of the study population (N=84).

ValuesCharacteristic

Sex, n (%)

62 (74)Male

22 (26)Female

38.01 (10.45)Age (y), mean (SD)

Education level, n (%)

3 (4)Primary school or below

10 (12)Junior high school

24 (29)Senior high school

34 (40)Bachelor’s degree

13 (15)Master’s degree or above

Sedentary occupation, n (%)

47 (56)Yes

37 (44)No

Parental health status, n (%)

57 (68)Good

23 (27)Fair

4 (5)Poor

Personal health status, n (%)

33 (39)Good

42 (50)Fair

9 (11)Poor

Family history of axial spondyloarthritis, n (%)

27 (32)Yes

57 (68)No

Family history of hereditary diseases, n (%)

19 (23)Yes

65 (77)No

Daily internet use duration (h), n (%)

57 (68)<6

27 (32)>6
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Figure 2. Age-stratified response discrepancy distribution. (A) Scatter points below the red dashed line indicate P<.05, suggesting statistically significant
differences in answer choices among different age groups for the specific question. (B) Each color block represents the proportion of respondents who
selected that option relative to the total. Group 1 was composed of patients older than 40 years, and group 2 was composed of patients younger than 40
years.
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Figure 3. Distribution of response differences between rheumatologists and patients. (A) Scatter points below the red dashed line indicate P<.05,
suggesting statistically significant differences in answer selection between medical staff and patients for the specific question. (B) Each color block
represents the proportion of respondents who selected that option relative to the total. Group 1 was composed of health care professionals, and group
2 was composed of patients.

AI Consultation Opinion Quality Assessment

Overview
The 42 patient-derived questions were submitted to all 5 selected
LLMs, each generating independent responses to avoid memory
bias. Outputs were collected and systematically aggregated into

bullet point summaries reflecting health consultation content.
Three core attributes—readability, accuracy, and incorporation
of health disclaimers—were then assessed for each model’s
output.

JMIR AI 2026 | vol. 5 | e79153 | p.50https://ai.jmir.org/2026/1/e79153
(page number not for citation purposes)

Bai et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Accuracy
The 5 LLMs generated 1052 recommendations for the 42 items,
including repeated suggestions for the same question across
models. Interrater reliability was excellent (Cohen κ=0.947;
Figure S2 Multimedia Appendix 4). The diagnosis and
examination category yielded the highest average accuracy
across models (mean score 20.4, SD 0.9), while the treatment
and medication domain scored lowest (mean score 19.3, SD
1.7). Model-specific performance data across domains and
question items are provided in Figure 4A; additional breakdowns
are detailed in Figures 4B-E; Multimedia Appendix 7 presents
complete values. Comparative analysis highlighted that the

LLMs’ lowest scores consistently occurred in the “inaccurate
or inappropriate content” category, indicating vulnerability to
these errors. In contrast, the highest average scores were in the
“bias,” suggesting a strong model’s ability to avoid bias in health
consultation outputs. Overall, model performance was
satisfactory, with total accuracy scores ranging from 16.8 to
22.5. The highest scoring questions spanned all domains
(question 3: 23.4 points, question 11: 23.2 points, question 38:
18.2 points, and question 40: 22.4 points), while the lowest
scores were concentrated in questions involving nuanced or
controversial information (question 6: 17.6 points, question 20:
16.4 points, question 34: 16.6 points, and question 38: 18.2
points).

Figure 4. Overall and module-specific score charts. (A) Overall score. (B-E) Scores by module. DS: DeepSeek R1; GPT: GPT-4.0; HY: Hunyuan T1;
KM: Kimi k1.5; WX: Wenxin X1.
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Readability
The readability of LLM-generated health consultation responses
was measured using the AlphaReadabilityChinese tool.
Comparative analysis of the 5 LLMs’ outputs, as visualized via
a heat map in Figure S3 in Multimedia Appendix 4 and detailed
in Multimedia Appendix 8, revealed no significant model
differences in noun-verb or content-word semantic precision.
Kimi k1.5 excelled in lexical richness, verb accuracy, and
semantic noise, while GPT-4.0 demonstrated superior syntactic
richness, noun accuracy, semantic richness, and semantic clarity.
DeepSeek R1, Hunyuan T1, and Wenxin X1 exhibited similar
readability performance overall.

Disclaimers About Health Advice
Figure S4 in Multimedia Appendix 4 demonstrates that most
LLM outputs contained health advice disclaimers, with GPT
4.0 and DeepSeek R1 including such disclaimers in responses
to all 42 questions. Kimi k1.5 provided the fewest responses
but still included disclaimers in 37 (88%) of the 42 cases.

Discussion

This study directly addressed real-world concerns of patients
with axSpA by fostering collaboration between rheumatologists
and patients to develop a comprehensive questionnaire
encompassing symptoms, diagnosis, treatment, and prognosis.
Subsequent validation with an 84-patient sample demonstrated
that the tool reliably reflects patient-identified uncertainties and
supports health care professionals in identifying prioritized and
neglected issues. This facilitates the creation of targeted
educational programs to enhance long-term chronic disease
management.

However, marked discrepancies emerged between professionals
and patients in the perceived importance of certain topics. For
instance, question 18 (“What diseases is this condition likely
to be misdiagnosed as?”) was rated more highly by patients
than by clinicians [28,29]. Question 31 (“Do biologic agents
carry addiction potential?”) and question 26 (“What are the
mechanistic differences between NSAIDs, corticosteroids, and
analgesics in pain management?”) also showed such divergence
[30]. These differences may reflect gaps in professional
knowledge transfer, whereby clinicians, familiar with drug
mechanisms and risk profiles, may underestimate the
informational value these issues hold for patients. This
knowledge gap highlights potential inadequacies in current
educational practices and underscores the need for efforts to
bridge understanding between clinicians and patients in future
interventions.

Age is a significant driver of patient perception [31]. Analysis
of patients grouped by age (older or younger than 40 years)
revealed 12 questions with statistically significant differences,
particularly related to symptom management, medication side
effects, and prognosis. Younger patients showed increased
concern, whereas no significant differences in baseline
demographic characteristics were detected (Multimedia
Appendix 9). Two main explanations were identified: first,
younger patients showed greater interest in novel biological
agents and their related mechanisms or risks; second, life stage

difference shaped priorities, with patients younger than 40 years
demonstrating greater family-planning awareness and early
diagnoses mitigating confusion over questions such as question
17. Furthermore, considering axSpA often manifests in early
adulthood, older patients, who have lived with the disease for
longer, may be more accustomed to standard interventions and
less reliant on new information [32]. Collectively, these findings
highlight the necessity for age-specific patient education to
reflect diverse literacy and life stage requirements, with future
health promotion strategies tailored accordingly [33].

A persistent problem observed was AI hallucination, in which
LLMs produced confidently stated yet unsourced or inaccurate
statistics. For example, in question 41, Hunyuan T1 claimed,
“Spinal mobility: 30 minutes of daily yoga can increase the
maintenance rate of spinal range of motion by 55% [5-year
follow-up data].” While evidence does support mobility benefits
of yoga in axSpA through mechanistic pathways, such as muscle
strengthening or inflammation reduction, no research
corroborates a 55% improvement rate or the alleged 5-year
dataset [34]. Although LLMs demonstrated generally strong
performance, the safety risk posed by confidently delivered but
unfounded claims remains substantial, a threat that cannot be
ignored if patients act on these unsubstantiated data. Teaching
patients to appraise such claims critically is vital for maximizing
LLMs’ potential to support chronic disease management while
safeguarding patient health [35].

Despite intermodel variability in accuracy for medical advice
[36], the LLMs overall performed robustly in this study.
Accuracy ratings in this study were higher compared to previous
research, which may be attributable to our open-ended,
patient-focused question format and relatively accommodating
scoring criteria [37,38]. Ongoing advances in AI technology
may also explain this improvement. Notably, the “bias”
consistently produced high scores, reflecting a strong capacity
to provide wide-ranging yet balanced recommendations.
However, the inclination for models to sometimes produce
superficially authoritative yet insufficiently substantiated advice,
especially regarding clinical management, introduces significant
risk. For example, in response to glucocorticoid-related queries
(question 35), Wenxin X1 recommended glucocorticoids for
pain management without thorough context, potentially exposing
patients to avoidable complications, including osteoporosis and
serious infections [39,40]. These instances typically resulted in
lower “inaccurate or inappropriate content” scores.

Our findings showed that high-scoring LLM responses generally
addressed well-established topics with strong supporting
evidence. As seen in responses to question 40 (“Can Traditional
Chinese Medicine [TCM] treatments replace Western
pharmacological therapies?”), all models consistently advised
against substituting traditional Chinese medicine (TCM) for
Western medicine. GPT-4.0’s response indicated that TCM
currently lacks conclusive evidence comparable to that of
Western medicine in key efficacy outcomes such as bone
protection and symptom control [41,42]. It further clarified that
while TCM can serve as an effective adjunctive therapy,
Western medicine should remain the foundational treatment
approach. Although TCM or acupuncture may serve as useful
adjuncts in the management of ankylosing spondylitis, they

JMIR AI 2026 | vol. 5 | e79153 | p.52https://ai.jmir.org/2026/1/e79153
(page number not for citation purposes)

Bai et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


cannot yet replace the central role of Western medications. We
recommend that one works with a specialist to build an
integrated, individualized treatment plan that is grounded in
Western medicine and supplemented by TCM modalities.

Conversely, lower-scoring questions were primarily those related
to medication recommendations. Medication management is
highly individualized, requiring customized clinical judgment
based on expertise and a comprehensive understanding of the
patient’s profile [36,43,44]. Authoritative but uncontextualized
LLM guidance may mislead if presented without real-time
clinical oversight, posing a substantial safety risk. Patients must
be cautioned that any specific medication recommendations
from LLMs must always be reviewed and validated by licensed
health care professionals before being acted upon.

Readability was an essential metric; both Kimi k1.5 and GPT-4.0
excelled in generating patient-facing content with concise, clear
language and minimal jargon, greatly enhancing accessibility
and user comprehension [45,46]. These findings underscore a
path for further model refinements to improve the
communication of medical information to lay audiences.

Most LLMs systematically incorporated health disclaimers,
such as “This information cannot replace professional medical
advice.” [47,48], which is integral to patient safety. However,
inconsistent disclaimer inclusion for less critical questions was
observed, calling for the standardization of safety messages
across all LLM-generated medical content. Despite generally
appropriate use of disclaimers, occasional omissions were noted,
representing a residual safety concern, as their absence may
increase the risk of patients misinterpreting or misapplying
AI-generated advice. To address this, future iterations of medical
LLMs should enforce uniform attachment of health advice

disclaimers to every health-oriented output, regardless of
perceived question severity.

Our study also has some limitations. External generalizability
is restricted by the sample size (84 patients and 26
rheumatologists) and single-center, urban tertiary hospital
setting, which may limit the applicability of results to broader
populations with axSpA with different demographics, health
literacy, or health care access. For instance, patients in this
top-tier hospital may have distinct expectations, backgrounds,
or experiences compared to those in regional or rural centers.
In addition, the generalizability of LLM performance and user
acceptance may vary by familiarity with digital health tools and
local medicolegal contexts. Further multicenter studies spanning
diverse socioeconomic and health care environments are
necessary to validate these findings and extend the
questionnaire’s utility. In addition, reliance on 2 raters for
accuracy assessments introduces some subjective bias, although
this was minimized via strict guideline adherence and a
structured arbitration protocol involving a third researcher.
Finally, the exclusive use of Chinese-language responses may
not fully extrapolate to other linguistic settings.

This research emphasizes the urgency of patient-centered
communication tools in axSpA management and illuminates
critical shortcomings in current educational practices. The
continual evolution of LLMs offers significant promise and
unique challenges for supporting chronic disease care with
personalized, accessible, and evidence-grounded information.
Addressing AI hallucination through improved model
development, integrated fact-checking, and explicit cautionary
guidance is imperative to ensure responsible and safe adoption
of LLMs in patient health care.
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Abstract

Background: Large language models (LLMs) have been shown to answer patient questions in ophthalmology similar to human
experts. However, concerns remain regarding their use, particularly related to patient privacy and potential inaccuracies that could
compromise patient safety.

Objective: This study aimed to compare the performance of an LLM in answering frequently asked patient questions about
glaucoma with that of a small language model (SLM) trained locally on ophthalmology-specific literature.

Methods: We compiled 35 frequently asked questions on glaucoma, categorized into 6 domains, including pathogenesis, risk
factors, clinical manifestations, diagnosis, treatment and prevention, and prognosis. Each question was posed to both a SLM using
a retrieval-augmented generation framework, trained on ophthalmology-specific literature, and to a LLM (ChatGPT 4.0, OpenAI).
Three glaucoma specialists from a single institution independently assessed the answers using a 3-tier accuracy rating scale: poor
(score=1), borderline (score=2), and good (score=3). Each answer received a quality score ranging from 3 to 9 points based on
the sum of ratings from the 3 graders. Readability grade level was assessed using 4 formulas, such as the Flesch-Kincaid Level,
the Gunning Fog Index, the Coleman-Liau Index, and the Simple Measure of Gobbledygook Index.

Results: The answers from the SLM demonstrated comparable quality with ChatGPT 4.0, scoring mean 7.9 (SD 1.2) and mean
7.4 (SD 1.5), respectively, out of a total of 9 points (P=.13). The accuracy rating was consistent overall and across all 6 glaucoma
care domains. Both models provided answers considered unsuitable for health care–related information, as they were difficult
for the average layperson to read.

Conclusions: Both models generated accurate content, but the answers were considered challenging for the average layperson
to understand, making them unsuitable for health care–related information. Given the specialized SLM’s comparable performance
to the LLM, its high customization potential, lower cost, and ability to operate locally, it presents a viable option for deploying
natural language processing in real-world ophthalmology clinical settings.

(JMIR AI 2026;5:e72101)   doi:10.2196/72101

KEYWORDS

online health information; ChatGPT4.0; glaucoma; large language model; small language model

Introduction

Recent progress in natural language processing (NLP) has been
observed in health care, showcasing innovative approaches to
preventive measures, diagnostics, and patient assistance.
Specifically, large language models (LLMs) such as ChatGPT
(OpenAI) have emerged as prominent tools in the field of
ophthalmology and other medical specialties since their
introduction in November 2022 [1-3]. The conversational
interface of ChatGPT and its unsupervised learning approach,

particularly notable in its fourth generation, ChatGPT 4.0, has
offered a novel and appealing way for patients to access medical
information [4,5]. This trend is underscored by the growing
reliance on the internet for health-related information, a
phenomenon that has become increasingly common among
patients. A survey in the United States revealed that two-thirds
of adults turn to the internet for health information, with
one-third using it for self-diagnosis [6]. However, despite these
advancements and the increasing usage of digital resources for
health information, the inability of ChatGPT to provide source
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citations remains a significant drawback, compromising its
reliability and limiting its utility in clinical settings [5,7].

Recent literature has explored the role of LLMs in different
ophthalmological scenarios. For example, Cai et al [8]
demonstrated strong performance of ChatGPT models in
ophthalmology board-style certification questions, underscoring
their educational potential in training ophthalmologists. Huang
et al [9] showed that ChatGPT’s diagnostic capabilities in
glaucoma could sometimes surpass those of ophthalmology
residents, emphasizing their clinical utility in differential
diagnosis and management. Additionally, Raghu et al [10]
identified the potential use of LLMs for diabetic retinopathy
risk assessment, although they noted several limitations that
restrict clinical deployment.

The substantial number of tasks that LLMs can perform
highlights their potential for innovative research; however, the
substantial computational demands for customizing these
models, which may include over 100 billion parameters, present
a significant challenge, making the technology largely
unattainable due to computational resource limitations [11]. In
this context, small language models (SLMs) have emerged as
a practical alternative [12]. These scaled-down models offer
advantages in terms of computational efficiency, ease of access,
and customizability because they require fewer resources and
facilitate deployment in more specific contexts [12]. Their
adaptability to specific needs and functions allows for the
development of precise and accessible NLP tools by leveraging
targeted, high-quality references, demonstrating a promising
path for specialized applications [12]. SLM can also be used in
a closed local network without an internet connection, which
diminishes the concerns about patient privacy and leakage of
personal health information.

More recently, the use of retrieval-augmented generation (RAG)
frameworks in natural language models has enabled precise
query processing and the generation of highly accurate and
relevant responses. By encoding and vectorizing documents,
RAG allows language models to access external information,
extending their knowledge beyond what was available in the
training data. Furthermore, by integrating external data, RAG
enables natural language models to effectively provide source
citations, thereby bolstering the credibility of the generated
content [13,14].

Despite the growing body of literature evaluating the use of
LLMs in ophthalmology, the performance of a locally deployed
domain-specific SLM remains unexplored. Therefore, this study
assessed the efficacy of SLM enhanced with RAG technology
compared to ChatGPT 4.0 for answering common patient
inquiries regarding glaucoma. Glaucoma specialists evaluated
the quality of the answers, and the level of readability was
assessed using standardized methods.

Methods

Study Design
This study was conducted at the Ophthalmology Department
of the Bascom Palmer Eye Institute (BPEI) in Miami. Patient
information was not included in this study. Between January

and February 2024, commonly asked questions related to
glaucoma care were queried from reputable online health
information outlets, such as the American Glaucoma Society
(AGS) and Eye Care Forum, which enables patients to ask
questions and receive answers from the American Academy of
Ophthalmology (AAO)–affiliated ophthalmologists.

Three fellowship-trained glaucoma specialists refined the first
pool of 60 questions extracted from online resources by
independently selecting those they considered as frequently
asked in a glaucoma outpatient clinic setting. The 35 questions
that all specialists considered frequent and common questions
from patients with glaucoma were separated for analysis and
categorized into 6 domains, such as pathogenesis, risk factors,
clinical presentation, diagnosis, treatment and prevention, and
prognosis (Multimedia Appendix 1).

Development of the Ophthalmology-Specific SLM
Our ophthalmology-specific SLM was developed based on the
Hugging Face and Haystack algorithms [15,16]. These models
serve as a platform for building and deploying NLP models by
performing indexing, information retrieval, and
question-answering tasks. Specifically, we adopted Mistral 7B,
a 7-billion-parameter model, as the SLM [17]. We trained the
SLM model using 60 ophthalmology books and 7862 papers
from 17 MEDLINE-indexed ophthalmology journals from 2017
to 2023. This process yielded 366,924 snippets, which are
succinct excerpts of information extracted from the dataset.
These snippets play a crucial role in the operation of RAG,
enabling the model to discern the most pertinent information
required to address a given question effectively. RAG uses
snippets to understand which information is most relevant to
answering the specific question asked. These were provided in
PDF format to Haystack [16], which processed and split the
text into 500-word chunks with 100 words of overlap. These
word chunks were converted into model embeddings using the
WhereIsAI/UAE-Large-V1 model for training [18] and stored
in the Haystack Facebook Artificial Intelligence Similarity
Search database. This database is an open-source vector store
and search engine that allows for the storage and retrieval of
parts of a document relevant to the question being asked. For
each question, the 3 most relevant 100-word chunks of text from
the reference material were provided alongside the
ophthalmology question when prompting the language models.
We set the temperature to 0.5, the token limit to 500, and top-p
to 1.0. We systematically searched publicly available literature
databases, including PubMed and Google Scholar, using the
keyword “ophthalmology” to construct the
ophthalmology-specific dataset integrated with the RAG system.
We prioritized open access documents published in
peer-reviewed journals and directly relevant to clinical
ophthalmic knowledge.

Large Language Model
For comparison with LLMs, we used ChatGPT 4.0, developed
by OpenAI, a 1.8 trillion-parameter LLM [19]. ChatGPT is a
generative artificial intelligence LLM chatbot that interacts with
text and engages in human-like interactions [19]. It is built on
the GPT architecture and was initially trained on extensive
amounts of text from books, papers, and online sources. The
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model’s training process involves minimizing the difference
between the expected and actual words in the dataset, enabling
it to produce coherent text based on presented prompts [20,21].
Later versions, such as ChatGPT 4.0, have enhanced their
functionalities, with over 1 billion users globally [22]. The
performance of the LLM model was assessed using the currently
available online version at the time of the study, and only the
first response for each question was documented. We used the
same inference hyperparameters to ensure comparability with
the SLM, with a temperature of 0.5, a token limit of 500, and
top-p set to 1.0.

Prompt Design
Each question was presented to the language models as a
standardized prompt, following recent recommendations to
maximize the performance of language models [23]. A prompt
acts as a clear instruction provided to a language model to
generate the desired output, in our case, an answer to a question
frequently asked by a patient with glaucoma. The language
models were all prompted in a zero-shot fashion, meaning that
no examples of questions were provided in the prompt. The
prompt was specific and contextual: “Act as a glaucoma
specialist during a medical appointment and answer the
following question considering it was asked by a patient.” The
same prompt was used for the SLM and LLM before each of
the 35 selected questions was presented as a stand-alone query.
After each query, the conversation was reset to minimize the
memory retention bias. All generated responses were formatted
as plain text to conceal chatbot-specific features and randomly
shuffled before being presented to 3 ophthalmologists for
grading of glaucoma.

Accuracy and Quality Evaluation
Each answer was evaluated by 3 glaucoma specialists (MG,
LB, and VVC). The language models’ identities were concealed
to prevent bias, and the presentation order was randomized for
the graders. Their main task was to individually rate the accuracy
of language model responses on a 3-point scale:+1 for responses
containing inaccuracies that could significantly mislead patients
and potentially cause harm (ie, “poor”);+2 for responses with
possible factual errors, but unlikely to mislead or harm patient
(“borderline”); and +3 for “good” or error-free responses. Each
response’s total quality score was calculated by summing the
scores of all 3 graders, with a minimum possible score of 3 and
a maximum possible score of 9. In addition, we used a majority
consensus approach to obtain an “overall” accuracy rating for
each chatbot response, considering the most common rating
among the 3 graders. In cases where there was no consensus
among graders (ie, each grader provided a different rating), we
adopted a stringent approach and assigned the lowest rating.
Agreement among graders was evaluated using Fleiss kappa.

Readability and Quality of Health Information
Evaluation
To assess the readability of the chatbot answers, each answer
was input into an online readability tool (Readable) [24]. Four
readability scales were used, including the Flesch-Kincaid Grade
Level, Gunning Fog Index, Coleman-Liau Index, and Simple
Measure of Gobbledygook (SMOG) Index. All readability

formulas estimate the number of years of education required to
fully understand a text. However, each formula uses different
equations and variables to calculate it. The Flesch-Kincaid Grade
Level focuses on words per sentence and syllables per word.
The Gunning Fog Index considers words per sentence and
syllables per word. The Coleman-Liau Index measures the
average number of letters per 100 words and the average number
of sentences per 100 words. The SMOG Index focuses on the
number of polysyllabic words in a sample of 30 sentences.

The formula’s output is a number, called the grade level,
corresponding to the years of education required to fully
understand the text. Content aimed at the public should have a
grade level of around 8. Texts above 17 require a graduate-level
education for complete comprehension [25].

Statistical Analysis
Statistical analyses were performed using the Stata Statistical
Software Release 18 (StataCorp LLC). The proportions of
“Good,” “Borderline,” and “Poor” accuracy ratings were
compared between SLM and LLM using a 2-tailed Fisher exact
test. The Wilcoxon rank-sum test was used to examine the
differences between the 2 language models’ overall answer
quality and comprehensiveness scores. Fleiss kappa was
calculated to measure interrater agreement. Statistical
significance was set at P<.05 for all analyses. Post hoc power
analysis was performed to assess the observed mean difference
in quality scores between the language models. We calculated
the standardized effect size based on the observed means and
pooled SD and estimated statistical power using a 2-tailed t test
with an α level of .05.

Ethical Considerations
In accordance with the Declaration of Helsinki, this study did
not involve patients or identifiable private information.
Therefore, review and approval by the University of Miami
Institutional Review Board were not required.

Results

A total of 35 frequently asked questions from patients with
glaucoma were answered by the LLM and SLM and evaluated
by the 3 glaucoma specialists, and a total of 105 gradings were
assigned. The interrater agreement, measured by Fleiss κ among
graders, was 0.28. The partial agreement rate between graders
was 94.3% (99/105). Across the 105 individual accuracy ratings
assigned to each model, the LLM had 74% (n=78) of the
answers classified as good, 20% (n=21) as borderline, and 6%
(n=6) as poor among the graders versus 57% (n=60), 31%
(n=33), and 11% (n=12) for the SLM, respectively (P=.38). The
distribution of quality scores assigned by the graders
demonstrated slightly higher central tendency values for the
LLM but substantial overlap between models. The median
quality score was 8 (IQR 2) for the LLM and 7 (IQR 3) for the
SL, indicating greater variability in evaluator scoring. The
minimum and maximum observed scores were 5-9 for the LLM
and 4–9 for the SLM. No statistically significant difference was
observed between the quality scores from SLM (mean 7.4, SD
1.5 points) and LLM (mean 7.9, SD 1.2 points; P=.13). Post
hoc power analysis indicated that the statistical power to detect
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this observed difference was 32.9%. Multimedia Appendix 2
details the SLM answers and the references used. Multimedia
Appendix 3 shows the answers provided by ChatGPT 4.0.

Table 1 presents an analysis of the consensus-based accuracy
ratings overall and across the 6 glaucoma care domains. There
was no difference in overall accuracy ratings between the
language models (P=.38). For each domain, both models

performed similarly in all areas. The highest performance by
the SLM was in pathogenesis, with 86% (6/7) of the answers
graded as “Good,” while the lowest was in treatment and
prevention, where 28.5% (2/7) of the answers were graded as
“Poor.” Alternatively, LLM’s greatest performing domains were
pathogenesis, treatment and prevention, and prognosis. LLM’s
worst performance domain was risk factors, where 17% (1/6)
of the answers were graded as “Poor.”

Table . Consensus-based accuracy ratings of natural language models responses across glaucoma care domains.

P valueLarge language model, n (%)Small language model, n (%)Number of
questions

Domain

GoodBorderlinePoorGoodBorderlinePoor

≥.996 (86)01 (14)6 (86)1 (14)07Pathogenesis

≥.994 (66)1 (17)1 (17)3 (50)2 (33)1 (17)6Risk factors

.543 (50)3 (50)04 (66)1 (17)1 (17)6Clinical pre-
sentation

≥.991 (50)1 (50)01 (50)1 (50)02Diagnosis

.146 (86)1 (14)02 (28.5)3 (44)2 (28.5)7Treatment and
prevention

.566 (86)1 (14)04 (57)3 (43)07Prognosis

.3826 (74)7 (20)2 (6)20 (57)11 (31.5)4 (11.55)35Overall

Table 2 shows the quality scores for each natural language
model overall and throughout the 6 glaucoma care domains.
The overall quality scores for the SLM and LLM were 258 and

277 (P=.13), respectively. The differences in quality scores
between all the glaucoma care domains were not statistically
significant.

Table . Consensus-based quality scores of natural language models responses across glaucoma care domains.

P valueQuality scoresNumber of questionsDomain

Large language modelSmall language model

.6256587Pathogenesis

.4046416Risk factors

.8746466Clinical presentation

.6814152Diagnosis

.0958467Treatment and prevention

.4557527Prognosis

.1327725835Overall

Table 3 summarizes the readability scores of the responses for
each natural language model. The mean Flesch-Kincaid grade
level was 13.2 (SD 3.2) for the SLM and 11.8 (SD 2.2) for the
LLM. For the Gunning Fog Index, mean scores were 17.7 (SD
4.3) for the SLM and 14.4 (SD 3.0) for the LLM. The mean
results of the Coleman-Liau Index were 14.7 (SD 3.0) for the

SLM compared to 12.5 (SD 1.5) for the LLM. The mean scores
of the SMOG Index were recorded as 15.98 (SD 2.9) for the
SLM and 13.9 (SD 2.1) for the LLM. In all 4 readability
classification systems, the SLM had statistically significantly
higher scores (P<.001).
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Table . Mean readability grade level for small language model and large language model responsesa.

Simple measure of gobbledy-
gook (SMOG) Index, mean
(SD)

Coleman-Liau index, mean
(SD)

Gunning fog index, mean
(SD)

Flesch-Kincaid grade level,
mean (SD)

Readability scores

15.98 (2.9)14.7 (3.0)17.7 (4.3)13.2 (3.2)SLMb

13.9 (2.1)12.2 (1.5)14.4 (3.0)11.8 (2.2)LLMc

aP<.001 in all 3 comparisions.
bSLM: small language model.
cLLM: large language model.

Discussion

Principal Findings
In this study, we developed and evaluated an SLM trained
specifically in ophthalmology to yield clinically relevant
information and answer frequently asked questions about
glaucoma. The responses provided by our model were as
accurate as ChatGPT 4.0, an LLM trained with billions of
parameters, as evaluated by glaucoma specialists. To the best
of our knowledge, this is the first study to compare the
performance of an SLM powered by RAG with ChatGPT 4.0,
demonstrating the feasibility of using a local model to answer
frequently asked questions about glaucoma and provide
references for further reading.

The answers from the SLM developed in this study achieved a
mean quality score of 7.4 (SD 1.5) points, which was
comparable to the mean quality score of the LLM (7.9, SD 1.2
points out of a total of 9 points; P=.13). Moreover, the
consensus-based accuracy ratings for the answers of both natural
language models were also considered equivalent (P=.38). The
performance of SLM was also comparable in all 6 glaucoma
domains studied, including pathogenesis, risk factors, clinical
presentation, diagnosis, treatment and prevention, and prognosis.
These results highlight the potential role of SLMs in
ophthalmology practice, as they offer a more affordable,
adaptable, and straightforward integration into actual
ophthalmology clinics. Furthermore, unlike ChatGPT 4.0, which
is not open-source and refines its model using user-provided
information, SLMs can be trained and operated locally within
an institution, significantly reducing the risk of sensitive
information leakage, making them a more realistic choice for
future integration of natural language models in practical settings
[12]. A previous study by Sharir et al [26] estimated the cost of
US $80,000 per 1.5 billion parameter model. In this context,
training a model such as ChatGPT 4.0 would require US
$96,000,000, while an SLM such as the one used in our study
would require US $373,000, a more realistic amount for many
institutions worldwide [26].

The use of natural language models in artificial
intelligence–driven chatbots has increasingly infiltrated daily
life [27]. The ability of these models to provide immediate
answers across a wide array of inquiries has garnered
considerable interest in the health care sector [28-30]. In
ophthalmology practice, one of the most relevant applications
of natural language models is responding to patient queries
commonly encountered in practice [31-33]. Lim et al [32]

compared the performance of 3 different LLMs in answering
frequent questions about myopia. Using a 3-level grading scale
similar to our study (poor, borderline, and good), they reported
mean total scores of 8.19 (SD 1.14) for ChatGPT-4.0, 7.35 (SD
1.70) for ChatGPT-3.5, and 7.13 (SD 1.63) for Google Bard.
Regarding categorical ratings, 80.6% of ChatGPT-4.0 responses
were classified as “good,” compared to 61.3% for
ChatGPT-3.5% and 54.8% for Google Bard. Our findings, with
mean total scores of 7.9 (SD 1.2) points for the LLM
(ChatGPT-4.0) and 7.4 (SD 1.5) points for the
ophthalmology-specific SLM, align closely with these previous
results. Furthermore, the proportion of responses classified as
“good” in our study (78/105, 74% for the LLM and 60/105,
57% for the SLM) is consistent with previously reported results
also by Lim et al [32]. While Momenaei et al [33] evaluated
ChatGPT 4.0’s ability to address retinal disease queries,
responses were considered appropriate in 84.6%, 92%, and
91.7% of the questions concerning retinal detachments, macular
holes, and epiretinal membranes, respectively. In both instances,
the ChatGPT 4.0 responses were graded by different groups of
ophthalmologists as consistently appropriate. Despite these
positive results, LLMs, such as ChatGPT, are often expensive,
inflexible, and unfeasible to implement in local contexts. Recent
advancements in NLP also include multimodal LLMs [34]. For
instance, Choi et al [34] successfully used multimodal language
models to integrate structured ocular data to calculate safety
indicators and predict contraindications in laser vision correction
procedures. Their results indicated superior accuracy and
flexibility compared to traditional machine learning approaches,
underscoring significant clinical potential. Despite these
encouraging outcomes, practical challenges remain regarding
the broader implementation of such advanced technologies in
clinical settings. Specifically, multimodal models often require
significant computational resources, entail high costs, and may
raise concerns about data security and patient privacy. Thus,
while multimodal approaches offer considerable promise,
specialized smaller scale models, such as the SLM presented
in our study, represent a cheaper and feasible solution for
real-world deployment, balancing accuracy, adaptability,
cost-efficiency, and local data control.

One major concern of implementing ChatGPT in clinical settings
is its lack of ability to provide source citations [35]. Studies
have indicated that ChatGPT often provides false references for
its generated responses, leading to concerns over response
reliability and the risk of inaccuracies [36]. In contrast, the
combination of RAG with SLM guarantees the citation of all
sources, offering clear evidence for shared information. This
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ability is a crucial benefit of SLM in clinical contexts, enhancing
its utility in delivering reliable, evidence-supported information
to patients. Unlike ChatGPT 4.0, which cannot cite references
for its responses, SLM equipped with RAG can specify the
exact reference and its metadata, including DOI, publication
year, and journal name, used to generate a response. The ability
to locally deploy domain-specific SLMs with RAG opens
several avenues for real-world clinical use. In ophthalmology
clinics, SLMs could serve as virtual assistants capable of
providing preliminary education to patients, addressing common
concerns before or after consultations, and supporting
decision-making through curated literature. This could reduce
physician workload and improve information retention. These
systems could also be embedded in telemedicine platforms or
patient portals to enhance access to personalized, trustworthy,
and reference-backed content, especially for chronic conditions
like glaucoma.

Although our study did not directly compare the models’
responses to responses by human experts, recent evidence
suggests that language models may already be approaching
human-level performance in natural language generation [37].
A preprint by Jones et al [37] demonstrated that when
appropriately prompted to adopt a human persona,
state-of-the-art LLMs were judged to be the human more often
than real human participants in a controlled 3-party Turing test,
effectively passing the original Turing test design. These
findings imply that, at least in open-ended conversational tasks,
language models may generate responses that are
indistinguishable from those of real people. While this supports
the plausibility of expert-level performance in patient education
tasks, further research is required to compare model-generated
content to clinician-authored responses within
ophthalmology-specific domains directly.

Previous studies have shown that natural language models often
generate grammatically correct responses to common patient
inquiries [38]. However, these answers are complex and difficult
for the average layperson to understand fully [39]. The American
Medical Association recommends that health-related information
be communicated at a grade level score of 5-6, which is
equivalent to the reading level of fifth- to sixth-graders [40].
Previous research has indicated that information on glaucoma
available online is often written at a grade level that is not
suitable for health-related information [41-43]. Our analysis
revealed that the answers from both LLM and SLM share the
same limitation of requiring high-level education to fully
understand the answers. In our study, the grade level mean
scores, measured by the Flesch-Kincaid Grade Level, the
Gunning Fog Index, the Coleman-Liau Index, and the SMOG
Index, were 13.2 (SD 3.2), 17.7 (SD 4.3), 14.7 (SD 3.0), and
15.98 (SD 2.9), respectively, for the SLM, and 11.8 (SD 2.2),
14.4 (SD 3.0), 12.5 (SD 1.5), and 13.9 (SD 2.1) for the LLM.
The SLM had a statistically significantly higher grade level in
all 4 metrics (P<.001). This finding is associated with the usage

of scientific resources only as the source material for the SLM
responses, as this material is written at an academic level.

This study had several limitations. It was conducted with a
limited set of questions, focusing solely on a single
ophthalmological condition evaluated by a small panel of 3
glaucoma specialists within a single institution. A multicenter
evaluation on a larger dataset of questions would offer additional
insights into the performance of the SLM powered with RAG
versus LLM in answering questions frequently asked by patients
with glaucoma. Moreover, this study did not directly assess
patient response evaluations. Future studies measuring patients’
opinions on the clarity and quality of the answers could reveal
more details regarding using natural language models as a tool
for answering glaucoma-related questions. Additionally, the
model was not designed exclusively to respond to frequently
asked questions about glaucoma but was trained to address
ophthalmological inquiries in a broader and more technical
context. This approach could have resulted in an underestimation
of the SLM’s performance. However, this study stands as proof
of concept, and the SLM can be further tailored to specific tasks
and other domains in ophthalmology. Furthermore, the post hoc
power analysis shows that the sample size of 35 questions
provided only 32.9% power to detect the observed difference
in quality scores. This indicates a high risk of a type II error,
suggesting that the lack of statistical significance may be due
to insufficient power rather than equivalence in model
performance. Future studies with larger sample sizes are needed
to assess potential differences between SLM and LLM
performances more robustly. Moreover, the prompt did not
contain specific instructions to generate answers to a particular
grade level, which could generate more easily understood
questions and should be explored by future studies. Finally, this
study did not include a direct comparison between the responses
generated by the language models and human experts. Future
research should evaluate how SLM and LLM outputs compare
to clinician-authored answers regarding accuracy,
appropriateness, and patient comprehension.

Conclusion
In conclusion, our study revealed that a specialized SLM may
be able to perform similarly to an LLM in answering frequently
asked glaucoma questions. However, their answers were
unsuitable for health care–related information, as they would
be difficult for the average layperson to comprehend. Given
their comparable performance to LLMs, high customization
potential, ability to provide citations, low cost, and capacity to
operate locally without collecting sensitive data, specialized
SLMs may present as a realistic option for deploying NLP in
real-world ophthalmology clinical settings. Further research is
needed to investigate the incorporation of health care–related
texts with greater readability into SLMs, as they could be more
easily adapted to generate accurate and easy-to-understand
answers.
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