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Abstract

Background: Recent advances have highlighted the potential of artificial intelligence (AI) systems to assist clinicians with
administrative and clinical tasks, but concerns regarding biases, lack of regulation, and potential technical issues pose significant
challenges. The lack of a clear definition of AI, combined with limited focus on qualitative research exploring clinicians'
perspectives, has limited the understanding of perspectives on AI in primary health care settings.

Objective: This review aims to synthesize current qualitative research on the perspectives of clinicians on AI in primary care
settings.

Methods: A systematic search was conducted in MEDLINE (PubMed), Scopus, Web of Science, and CINAHL (EBSCOhost)
databases for publications from inception to February 5, 2024. The search strategy was designed using the Sample, Phenomenon
of Interest, Design, Evaluation, and Research type (SPIDER) framework. Studies were eligible if they were published in English,
peer-reviewed, and provided qualitative analyses of clinician perspectives on AI in primary health care. Studies were excluded
if they were gray literature, used questionnaires, surveys, or similar methods for data collection, or if the perspectives of clinicians
were not distinguishable from those of nonclinicians. A qualitative systematic review and thematic synthesis were performed.
The Grading of Recommendations Assessment, Development and Evaluation-Confidence in Evidence from Reviews of Qualitative
Research (GRADE-CERQual) approach was used to assess confidence in the findings. The CASP (Critical Appraisal Skills
Program) checklist for qualitative research was used for risk-of-bias and quality appraisal.

Results: A total of 1492 records were identified, of which 13 studies from 6 countries were included, representing qualitative
data from 238 primary care physicians, nurses, physiotherapists, and other health care professionals providing direct patient care.
Eight descriptive themes were identified and synthesized into 3 analytical themes using thematic synthesis: (1) the human-machine
relationship, describing clinicians’ thoughts on AI assistance in administration and clinical work, interactions between clinicians,
patients, and AI, and resistance and skepticism toward AI; (2) the technologically enhanced clinic, highlighting the effects of AI
on the workplace, fear of errors, and desired features; and (3) the societal impact of AI, reflecting concerns about data privacy,
medicolegal liability, and bias. GRADE-CERQual assessment rated confidence as high in 15 findings, moderate in 5 findings,
and low in 1 finding.

Conclusions: Clinicians view AI as a technology that can both enhance and complicate primary health care. While AI can
provide substantial support, its integration into health care requires careful consideration of ethical implications, technical
reliability, and the maintenance of human oversight. Interpretation is constrained by heterogeneity in qualitative methods and the
diversity of AI technologies examined across studies. More in-depth qualitative research on the effects of AI on clinicians’careers
and autonomy could prove helpful for the future development of AI systems.

Trial Registration: PROSPERO CRD42024505209; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024505209
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Introduction

Background
Health care systems worldwide are increasingly strained, partly
due to aging populations and insufficient resources, and there
is increased demand for accessibility, medical quality, and
economic efficiency [1]. Primary care is regarded as a
cornerstone in health care systems across many regions of the
world [2], and primary care clinicians’ job satisfaction is
considered essential for many health care systems [3]. Recent
studies have demonstrated the potential of artificial intelligence
(AI) tools and systems to reduce burnout and increase the
efficiency of health care professionals [4], as well as to improve
diagnostic accuracy and patient care [5].

AI is an emerging technology with a broad range of applications
[6-8]. However, there is still no consensus on a general
definition of AI, which presents an obstacle to investigating
peoples’ perspectives [9].

Recent advances in AI have led to increased health care–related
AI use and research [10]. Previous reports have indicated that
the main applications of AI in primary health care have been
data extraction and processing [11], reducing administrative
burden [12], and assisting physicians in diagnosing, determining
a prognosis, and choosing a treatment [13]. Current large
language models (LLMs) have started to play a more prominent
role in health care, and new applications are frequently identified
[14]. Several LLM products, including Chat Generative
Pretrained Transformer (GPT), have demonstrated the capability
of medical reasoning and have performed well on medical
licensing exams [15,16]. Moreover, LLMs may improve
communication between health care professionals and patients
through text simplification [17].

Previous research suggests concerns among clinicians regarding
the use of AI in health care, such as demographic biases,

insufficient regulation, lack of trust in AI systems [18], and
automation bias [19].

While there seems to be a lack of systematic synthesis on
clinicians’ perspectives on AI in primary health care, a scoping
review conducted in 2022 on perceptions and needs of AI in
health care identified few studies within primary health care.
End-user and stakeholder opinions are essential for future
implementation and development. Since research on AI in
primary care is limited and results are varied, perceptions of the
use of AI in this domain are not fully understood [7].

Definitions

Definition of Clinicians
In this review, we refer to health care professionals who provide
direct patient care (eg, physicians, nurses, physiotherapists) as
clinicians.

AI Definitions
Different AI systems vary in their levels of autonomy and
adaptiveness after deployment [20]. For broad inclusion, this
review included any AI system or concept specified by the study
authors as AI. This includes LLMs, generative AI (GAI), natural
language processing (NLP), and clinical decision support
systems (CDSS). The definitions of these model types are
complex, and overlap exists; LLMs are language models trained
on large amounts of data and are created to process and generate
human language based on prompts created by the user,
sometimes operating as GAI or as the core of a CDSS [21]. GAI
refers to AI which is capable of generating content, such as text,
images, or audio, some of which are based on LLMs. Current
GAI system examples are GPT-4, Copilot, and DALL-E 2 [22].
The term NLP encompasses computational techniques designed
for the automatic analysis and representation of language [23].
A CDSS is an information system that generates specific clinical
recommendations through certain software-based algorithms
[24]. An illustration of key concepts of AI and machine learning
(ML) is provided in Figure 1 [25].

JMIR AI 2026 | vol. 5 | e72210 | p.4https://ai.jmir.org/2026/1/e72210
(page number not for citation purposes)

Bogdanffy et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.2196/72210
http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Conceptual hierarchy of AI domains. AI: artificial intelligence; DL: deep learning; GenAI: generative artificial intelligence; LLM: large
language model; ML: machine learning; NLP: natural language processing; NN: neural network.

Objective
The aim of this systematic review is to synthesize the current
qualitative research on clinicians’perspectives on AI in primary
care settings.

Methods

Study Design
We performed a systematic review and metasynthesis in
accordance with the Cochrane Qualitative and Implementation
Methods Group [26]. The review was reported according to the
Enhanced Transparency in Reporting the Synthesis of
Qualitative Research (ENTREQ) statement [27] (Checklist 1)
and Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [28] (Checklist 2). The

study protocol was registered with the International Prospective
Register for Systematic Reviews (PROSPERO;
CRD42024505209) [29] before conducting the review. This
study employed a methodology for a systematic review of
qualitative studies, in which the authors conducted a secondary
qualitative synthesis of published clinician quotes and primary
authors’ interpretations from the reviewed studies, allowing for
deeper exploration of underlying patterns and themes.

Search Strategy

Overview
The search strategy was developed using the Sample,
Phenomenon of Interest, Design, Evaluation, and Research type
(SPIDER) framework [30]: clinicians in primary care (Sample);
their perspectives and experiences regarding AI (Phenomenon

JMIR AI 2026 | vol. 5 | e72210 | p.5https://ai.jmir.org/2026/1/e72210
(page number not for citation purposes)

Bogdanffy et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of Interest); explored through qualitative study designs (Design);
focusing on evaluations of experiences, attitudes, perspectives,
and views (Evaluation), within qualitative and mixed methods
research (Research type). Search strings were designed by the
author team and reviewed by a health sciences librarian at the
Gothenburg University Library. Broader terms for “primary
health care,” “artificial intelligence,” and “perspectives” were
combined. Controlled vocabulary and free-text terms were used
(Multimedia Appendix 1). A systematic search was conducted
in MEDLINE (PubMed), Scopus, Web of Science, and CINAHL
(EBSCOhost) databases for publications from inception to
February 5, 2024. Backward citation searching of the reference
lists of the included articles was also performed. Search strings
were modified according to the requirements of each database.
All searches were performed independently by authors RB and
AM and reviewed by author AE. Search documentation is
presented in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Search (PRISMA-S)
checklist [31] (Checklist 3).

Inclusion Criteria
Studies were included if they were conducted in a primary health
care setting, involved clinicians such as doctors, nurses,
physiotherapists, or other health care professionals providing
direct patient care, and explored any perspectives on AI in
primary health care. For the purposes of this review, studies
were considered to be conducted in a primary health care setting
if participants were recruited via primary care services, had
documented interaction with primary care, or if the study context
clearly reflected a primary care environment such as general
practice or family medicine. Only qualitative and mixed methods
studies published in English in peer-reviewed scientific journals
were eligible for inclusion.

Exclusion Criteria
Studies were excluded if they lacked sufficient qualitative depth,
such as those using only questionnaires, surveys, or similar
methods for data collection. We also excluded studies in which
qualitative data on clinicians’ perspectives were not clearly
distinguishable from those of nonclinicians, as well as grey
literature and unpublished materials.

Study Selection
Authors RB and AM imported the search results into Rayyan
(citation manager) [32], where duplicates were removed. The
authors independently screened titles and abstracts of the
remaining articles against the inclusion and exclusion criteria.
Any disagreements were discussed, and if consensus was not
reached, a third author (AE) was consulted for a final decision.
We included articles claiming to evaluate AI technology based
on the authors’ definition of AI, as described in the
“Introduction.”

Critical Appraisal
Authors RB and AM independently conducted critical appraisal
using the Critical Appraisal Skills Program (CASP) checklist
for qualitative research [33]. Disagreements were discussed
until a consensus was reached or author AE was consulted for
a final decision.

Data Analysis and Synthesis
Data were extracted from the Results section of the included
articles and their supplementary material. Participant quotes
and authors’ findings were analyzed independently by RB and
AM to generate descriptive themes using thematic analysis
according to the Braun and Clarke method [34]. This involved
several steps through a primarily inductive analytic process.
First, the authors familiarized themselves with the extracted
data by reading it several times. RB then developed codes using
line-by-line coding of words or sentences considered
meaningful, using the NVivo software [35]. Data extraction and
coding were performed in 2 stages. The first stage involved
articles solely containing primary care clinician perspectives,
and the second stage involved articles containing perspectives
of both primary care clinicians and nonclinical health care
professionals. Qualitative data with perspectives other than that
of clinicians was not coded. Codes were discussed by both
authors until an agreement was reached, whereafter, they were
exported to a Microsoft Excel spreadsheet. RB then proceeded
to generate descriptive themes by grouping codes. The alignment
of codes to certain themes was discussed, and the descriptive
themes were refined. Thematic synthesis, according to the
Thomas and Harden method, was employed to develop
higher-order analytical themes. It is a well-suited method for
exploring qualitative data such as perspectives or sentiments
[36]. Thematic synthesis was accomplished through a discussion
between both authors, during which the analytical themes were
developed and named (Multimedia Appendix 2). No new themes
emerged from coding the articles with mixed perspectives. This
method was chosen due to its ability to identify recurring themes
and patterns across multiple studies, enhancing the breadth of
the analysis.

Assessment of Confidence in the Evidence
Confidence in each synthesized finding was assessed using the
Grading of Recommendations Assessment, Development and
Evaluation-Confidence in Evidence from Reviews of Qualitative
Research (GRADE-CERQual) approach. The GRADE-CERQual
approach was chosen as it explicitly addresses qualitative
evidence synthesis, allowing systematic and transparent
assessments of the confidence in each thematic finding. Authors
RB and AM independently evaluated each finding based on 4
components: methodological limitations, coherence, adequacy,
and relevance. Each component was assessed as having no or
very minor, minor, moderate, or serious concerns. Discrepancies
were discussed, and if agreement was not reached, author AE
was consulted for a final decision. Each finding began with an
initial rating of “high confidence”. Confidence levels were then
potentially downgraded to moderate, low, or very low based on
the severity and number of concerns present in each component.
Typically, one level of downgrading (eg, from high to moderate
confidence) was applied when moderate concerns were
identified in one component combined with minor concerns in
other components, and two levels (eg, from high to low
confidence) were applied when serious concerns or multiple
moderate concerns were present. When concerns were minor
or very minor, no downgrading was performed [37-42].
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Ethical Considerations
Because this systematic review used only pre-existing data,
ethical approval was not required.

Results

Search Results and Selection
The final search generated 1492 results, and 415/1492 (27.8%)
duplicates were excluded. The remaining 1077/1492 (72.2%)

articles were screened by title and abstract, and 54/1077 (5%)
articles were retrieved in full text and evaluated, of which 42/54
(77.8%) were excluded based on the exclusion criteria. Finally,
12/54 (22.2%) articles were included from the screening, and
1 additional article was identified from the reference lists of the
previously included articles, resulting in a total of 13 studies
[43-55] (Figure 2).

Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of study selection.

The 13 included studies were conducted in 6 different countries.
Australia was the most frequent location with 4/13 (30.8%)
studies [45-47,49], followed by Canada with 3/13 (23.1%)
studies [51-53] and the United States with 3/13 (23.1%) studies
[43,44,50]. Sweden [55], the Netherlands [54], and Germany
[48] each contributed 1/13 (7.7%) study. Many studies used

semistructured interviews for data collection (6/13, 46.2%)
[43,45,48,51,53,55]. Mixed methods were used in 3/13 (23.1%)
studies [44,47,50], focus groups in 2/13 (15.4%) studies [49,54],
deliberative dialogue in 1/13 (7.7%) study [52], and a co-design
workshop in 1/13 (7.7%) study [46]. Characteristics of the
included studies are presented in Table 1.
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Table . Characteristics of the included studies.

Identified themesType of AIOccupationCharacteristics of
participants

MethodCountryStudy

Acceptability, Clin-
ical Utility, Priva-

Machine learningMixedbn=10

Agea

Gendera

Semistructured in-
terviews

USADavis et al [43]

cy, Data and Evi-
dence, Clarifica-
tion/Confusion,
Communication,
Patient, Family and
Provider Character-
istics and Experi-
ences, Inner Set-
ting, Outer Setting,
Suggestions

Provider factors re-

lated to CDSSc
CDSScMixedbn=39

Agea

Gendera

Mixed methodsUSALitvin et al [44]

adoption, Patient
factors related to
CDSS adoption,
Technical factors
related to CDSS
adoption, Organiza-
tional factors relat-
ed to CDSS adop-
tion

Doctor-AId collabo-
ration, Desired fea-

Natural language
processing

General practition-
ers

n=10

Agea

Gender-men: n=7,
women: n=3

Semistructured in-
terviews

AustraliaNavarro et al [45]

tures, Concerns and
challenges, Consul-
tation of the future

Professional auton-
omy, Human-AI

Generative AIGeneral practition-
ers

n=16

Agea

Gender-men: n=10,
women: n=6

Co-design work-
shop

AustraliaKocaballi et al [46]

collaboration, New
models of care

Usefulness, Facili-
tating conditions,

CDSSGeneral practition-
ers

n=37

Agea

Gender-men: n=24,
women: n=13

Mixed methodsAustraliaShibl et al [47]

Ease of use, Social
influence, Trust in
the knowledge
base, Involvement,
Moderating vari-
ables

Concerns, Expecta-
tions, Environmen-

CDSSGeneral practition-
ers

n=18

Age (y): 34-70

Gender-men: n=9,
women: n=9

Semistructured in-
terviews

GermanyBuck et al [48]

tal influences, Indi-
vidual characteris-
tics, Minimum re-
quirements of AI-
enabled systems

Reaction to
prompts, Concerns

CDSSGeneral practition-
ers

n=22

Gender-men: n=15,
women: n=7

Focus groupsAustraliaAhearn et al [49]

and potential prob-
lems, Effects on
prescribing behav-
ior, Need for train-
ing, Helpful fea-
tures of decision
support systems,
Suggested improve-
ments, Attitudes to
evidence-based
guidelines
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Identified themesType of AIOccupationCharacteristics of
participants

MethodCountryStudy

Concerns regarding
technology, Con-
cerns regarding
people and process-
es

Unspecified AIGeneral practition-
ers

n=15

Agea

Gendera

Mixed methodsUSAAllen et al [50]

Context of Health
Care Setting,
Knowledge, Foun-
dation of Trust: Ac-
curacy, Experience,
and Openness, Inter-
nal and External In-
fluences, Anticipat-
ed Impact of AI

Unspecified AIMixedbn=10

Agea

Gendera

Semistructured in-
terviews

CanadaNash et al [51]

Priority applica-
tions of AI in prima-
ry care, Impact of
AI on primary care
provider roles,
Considerations for
provider training in
AI

CDSSMixedbn=21

Age (y): 28-64

Gender-men: n=12,
women: n=9

Deliberative dia-
logue

CanadaUpshaw et al [52]

Provider satisfac-
tion, Difficulties
with implementa-
tion, Impact on pa-
tient care

Unspecified AIMixedbn=8

Agea

Gendera

Semistructured in-
terviews

CanadaLibon et al [53]

Perceived Benefits,
Perceived Barriers,
Preconditions for
Implementation

Unspecified AIGeneral practition-
ers

n=17

Age (y): 31-62

Gender-men: n=7,
women: n=10

Focus groupsNetherlandsSangers et al [54]

Trust, Usability and
User Experience,
Clinical Context

CDSSGeneral practition-
ers

n=15

Agea

Gendera

Semistructured in-
terviews

SwedenHelenason et al
[55]

aAge/Gender: undisclosed or not distinguishable from nonclinicians.
bMixed: doctors, nurses, physiotherapists, or other health care professionals providing direct patient care.
cCDSS: clinical decision support system.
dAI: artificial intelligence.

Critical Appraisal
The critical appraisal using the CASP qualitative checklist
indicated that all included studies had clear research aims,
appropriate qualitative methodologies, and well-reported
findings. Several studies lacked sufficient transparency in ethical
considerations (Multimedia Appendix 3).

Findings
The thematic analysis identified eight descriptive themes. These
descriptive themes represent recurring elements identified across

studies and served as the foundation for the synthesis of broader
analytical themes. Thematic synthesis resulted in three analytical
themes: the human-machine relationship, the technologically
enhanced clinic, and the societal impact of AI. All themes are
presented in Table 2. There was a wide time span across the
included studies. Earlier studies, conducted between 2003 and
2013, explored perspectives on less advanced systems, such as
CDSSs not based on ML [44,47,49], whereas later studies
included more advanced AI systems, such as GAI and NLP
[43,45,46,48,50-54], or a CDSS based on ML [55].
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Table . Analytical themes and descriptive themes.

The societal impact of AIaThe technologically enhanced clinicThe human-machine relationship

BiasWorkplace changesInteraction with AI

Data security, privacy, and legal implicationsTechnological concernsResistance to AI

Clinical impact

Desired features

aAI: artificial intelligence.

Theme 1: The Human-Machine Relationship

Interaction With AI
The relationship between humans and AI was approached from
different perspectives, and several clinicians perceive AI as an
assistant that could alleviate the burden of specific tasks
[45-47,51-55]. Some clinicians suggested that AI may have a
negative impact on the clinician-patient relationship through
the lack of a human connection [46,48]. However, some findings
suggested increased clinician empathy with AI assistance [46,50]
or even facilitation of communication between a clinician and
a patient [45]. Several clinicians wished for AI to enhance rather
than replace the relationship between clinician and patient [52].
The idea of working with the AI algorithm to present
information and decisions to the patient was also appreciated
[43]. It was also believed that the use of AI could increase time
spent with patients rather than other tasks [45]:

Yes, just taking my hands off the computer, getting
my eyes off the screen, so that I can be spending time
with the patient. And also saving me the
documentation time, because you can either spend
more time with the patient or see more patients. [GP]

Some clinicians believed that a patient’s confidence in the
clinician would increase by using AI [53,55], and others believed
that AI would empower clinicians to be more confident in their
practice [53-55]. Several clinicians thought that AI could be
valuable in educating clinicians or providing new clinical
insights [51,53,54]. However, there were concerns that by
introducing AI systems to inexperienced clinicians, there could
be a risk of declining proficiency due to the automation of tasks
[52]. Clinicians highlighted that AI could complement human
medical practitioners with nonhuman traits, such as the ability
to not get tired, thus retaining its clinical accuracy [48]. Many
clinicians believed that AI could improve the clinical
consultation by shifting the clinician’s focus toward the patient
[45,46,52]. Clinicians in one study believed that AI systems
currently focus more on task efficiency than on improving
patient care [46].

Some clinicians ultimately wished to retain control over the AI
system, keeping the clinician in charge [45,46,55]. Whether
clinicians wanted to have a deeper understanding of the
programming behind an AI system differed, with some clinicians
having a desire for a more profound knowledge [48] and others
believing that it was not required [43,50]. Clinicians’ trust in
AI systems was discussed with conflicting opinions, where
some believed that AI could ultimately be trusted, and some
did not [45,47,55]. Trust in the AI system would increase if it

were scientifically proven to work or validated by other health
care professionals, according to some clinicians [55]. The topic
was further investigated in discussions surrounding trust in the
AI creators, where clinicians expressed that they would trust
the system if it were based on a well-known physician or author.
They voiced no concern regarding how the system was
developed or who the software developers were [47].

Resistance to AI
Several clinicians voiced concerns regarding AI replacing
medical staff or jobs in other sectors [46,48,50]. Some expecting
doctors to eventually assist AI [46]:

I think eventually the doctors will be the assistant
doctors … Doctors will assist artificial intelligence
what to do … eventually … we'll be helping it. I think
we'll be assistant … Because they'll be doing
everything. It will be just saying, yes, no, yes, no. Say
supervision, but we'll be assisting. [GP]

Other clinicians dismissed such fears [45,52]. It was also thought
that clinicians’ gut feelings could not be replaced by AI [51].
There was also resistance or skepticism toward AI systems.
Several clinicians voiced potential negative effects on their
workflows, stating that they perceived AI to cause increased
time expenditure [43,47,48,50]. Other clinicians believed that
there was no change in time expenditure [44]. It was also
believed that decreased time expenditure could have adverse
effects due to patients becoming accustomed to the increased
speed and effectiveness of certain processes [50].

Previous negative experiences with the introduction of electronic
health records could influence skepticism toward AI [51,52].
Discussions about factors contributing to AI resistance emerged,
and some clinicians concluded that this could be caused by age,
personal interests, or alignment with accepting new technology
[45,48,50]. Other barriers, such as being limited by time or
resources, were also mentioned [43]. Some clinicians were
worried about patient safety due to concerns about AI safety
and algorithmic bias [52].

Theme 2: The Technologically Enhanced Clinic

Workplace Changes
There were different clinician perspectives on automating certain
tasks, the impact on workload, and integrating a new system in
a workplace [43-55]. Clinicians expressed a belief that using
AI systems could potentially save time through automation of
administrative tasks or clinical decision support
[44-48,50,54,55]. Some voiced that this was the foremost reason
for using AI [45]:
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I'd be confident that it would save me time but not
replace me thinking, which is not the aim, for me it’s
the saving time. [GP]

Not all clinicians agreed on this topic. Some thought that AI
would increase their workload by complicating their tasks
[43,50] or disrupting their workflow and disturbing their train
of thought [47,53]. Interference with the clinician’s
decision-making process by the suggestion of unnecessary tests
was highlighted as a negative impact on workflow [43].
Opinions were mixed regarding whether cost was an important
factor for implementation. Some believed that cost could be a
factor in system acceptance [48], whereas others did not [47].
Some thought that there was probably a positive cost-benefit
for clinics using AI systems [54]. Some clinicians wished that
the focus of AI systems should be to assist patient care and not
strictly for financial gain [47]. Assisting clinicians in primary
care centers was thought especially important in countering
physician burnout [51]. Several studies voiced concerns
regarding integrating AI systems into already established
working environments. Many clinicians wished for seamless
integration of AI systems into existing systems [45,47-50,52],
whereas some wished for the systems to be completely separated
[49,55]. The need for established policies and routines prior to
AI system adoption was also voiced [55].

Technological Concerns
Clinicians voiced several technological concerns, including the
risk of technical issues, issues with the AI system itself, or user
errors [43-52,55]. Several clinicians had experience with CDSS
providing inaccurate information [47] or leaving out important
information [49]. Many clinicians were concerned with the risk
of AI producing erroneous information or having a low accuracy
[45-47,49,50,55]. The AI’s ability to decide whether a piece of
information was relevant was also a concern [45].

Simultaneously, there was also a fear of user error, meaning
clinicians were uncomfortable using the system and potentially
causing errors [45,47,51]. Several clinicians further explored
this subject, mentioning that they would fear not knowing how
to use the system in front of patients [47]. The reason for this
was not further specified, but other clinicians deemed using an
AI system nonintuitive [44]. Another technical concern
expressed by some clinicians was the possibility of complete
system failure [48]:

If my system goes down, my AI is on standby, then
sorry, I can’t diagnose, my system strikes out. That
is why it’s nice to be able to write down with a pen
on paper what a patient has and has received. [GP]

Accessibility was approached from different perspectives. There
were wishes for AI systems to be easily accessible from the
electronic health record [43]. Clinicians also expressed concern
that some patient groups could be less likely to have access to
the technology needed for AI interaction [43]. Likewise, using
AI as triage could be inaccessible for some populations [52].
Computer and AI training for clinicians was generally seen as
an important factor for implementation.

Clinicians from different studies expressed the need for specific
training [47,52,55] and being regularly informed about AI

technology [48]. Some believed there was no need for training,
as they had been using an AI system without prior professional
training [47]. The growing use of similar algorithms or
programs, such as CDSS or other AI systems, was generally
considered beneficial for implementation [43]. Even though
several technical concerns were voiced, remarks from one study
were that technological advancements in medicine are also
necessary. It would help clinicians stay up-to-date with the
increasing amount of medical knowledge, enable predictive
models, and keep up with demographic changes, making clinics
technologically modern for younger physicians [48].

Clinical Impact
Thoughts on how the usage of AI would impact clinical work
emerged in multiple studies [44-49,53-55]. Some mentioned
the benefits of diagnostic support, increasing clinical
effectiveness and accuracy [44,45,47-49,53-55], while others
mentioned positive effects on their prescribing behavior by
using a pharmaceutical decision support system [49]. Using AI
technology in remote diagnostics or examinations was
considered beneficial [53]. Clinicians also discussed retrieving
a medical history using AI as a helpful tool [45]. However,
some clinicians thought that by removing the act of writing
from the clinician, their thought process could be disrupted [46]:

One of the advantages of when you write it is it
reinforces what you thought … It’s a thinking process,
because you actually think about what this actually
means? … How can you capture that writing
experience in an electronic medium? [GP]

Desired Features
Clinicians had several ideas regarding features they would like
to see in AI systems and decision support systems. Their wishes
for specific features and the implications of these features were
recurring topics [44-52,55]. Many expressed the importance of
the extraction and summarization of essential data [45,52]. They
also expected AI systems to process more information than any
human brain could, all while maintaining a high working speed
[48]. Clinicians wished for AI to be more accurate and yield
better results than humans so that it would not be considered
obsolete [48,51]. The possibility for clinicians to customize the
information presented or for the AI to adapt to the clinicians’
needs was deemed important [44,46,49,50].

Other desired features were AI-assisted patient triage [48,52],
identifying patients with high risk of disease [52] and integrating
AI into telehealth systems [46,48,52]. Besides purely clinical
functions, suggestions included using AI to predict visit surges
and for health resource planning [52]. Numerous clinicians
emphasized the necessity for AI systems to be user-friendly,
thereby enhancing the probability of their adoption
[47-49,51,55].

Some clinicians felt strongly that the AI should provide a clear,
logical explanation of how it arrived at its conclusions,
emphasizing the need for transparency and traceability of the
AI’s algorithm. Others, however, argued that as long as the AI’s
output is accurate and reliable, understanding its inner workings
is less important [50]. Some clinicians also expressed that their
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limited knowledge of AI systems hindered them from providing
ideas on possible features [51]:

And I do not know enough about artificial intelligence
to give you big ideas of what could be done. [Health
care provider]

Theme 3: The Societal Impact of AI

Bias
Clinicians discussed several types of bias, some of which could
affect the population and others which might affect clinicians.
Opinions regarding bias and how it could affect our society
were expressed [45,46,48,50-52]. Clinicians were worried that
the data used to train an AI system could be historically biased
by being trained mainly on information from only one or a few
demographic groups [46]. They also expressed that bias could
“leak” into the AI from its creators [50]:

The thing I’m apprehensive about is, how are we
teaching AI these things because some of those biases
could leak in. [GP]

Clinicians were additionally concerned that automation bias
could affect the clinician’s decision-making or potentially
distract the clinician from important information. This means
that clinicians could over-rely on the information presented by
AI and prioritize it over their own reasoning [45,46,48,51,52].

Data Security, Privacy, and Legal Implications
Patient data security and privacy were topics discussed from
different perspectives. Clinicians expressed concerns about the
risks of having sensitive data processed through AI and the
impact it could have both on patients and clinicians
[43,45-48,50]. Many clinicians voiced concern over the security
surrounding data processing, whether the data would be
encrypted, and the risks of hacking or misuse of data [45-48].
On the other hand, some clinicians did not consider security
important since they were unaware of any security issues [47].

Other clinicians wanted to know how the AI system handled
data privacy [45]. Some clinicians thought that letting AI
systems process all the data produced in a clinical setting could
be an inherent problem, leading to possible monitoring of
clinicians. However, none of the participants could identify who
would benefit from such surveillance [48]. Some clinicians took
a negative stance on the complete transparency potentially
caused by using AI in documentation, as opposed to the natural
filtration of information employed by clinicians. They also
preferred keeping data from a patient-physician consultation
private [48]:

Patient data are very sensitive data. Disease data are
very sensitive data. [There is the risk that] they are
passed on somewhere, that some authorities who have
nothing to do with it or should have nothing to do
with it could intercept the data and use this to the
disadvantage of the patients. [GP]

In addition to patient data safety, the safety of doctors and how
the availability and transparency of data could work against
them were considered. Clinicians suggested that doctor safety
could be jeopardized when using AI for documentation or
decision support. An example given by clinicians was if the AI
had suggested something that a clinician did not take notice of
or if there could be compromising data in what the AI system
documented [46].

Legal implications were also a large topic of discussion in
several studies. Many clinicians voiced legal concerns, primarily
related to fear of legal action taken toward the clinician if they
acted outside of recommendations given by the AI system
[45,46,50,55]. Another viewpoint was that clinicians expected
there to be built-in legal protection that shifted responsibility
from the clinician to an AI system [48], or for there to be a
clearly defined medicolegal liability [52,55].

Assessment of Confidence
The results of the GRADE-CERQual assessment for the review
findings are summarized in Table 3.
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Table . Summary of qualitative findings, Grading of Recommendations Assessment, Development and Evaluation-Confidence in Evidence from
Reviews of Qualitative Research (GRADE-CERQual) assessments.

Explanation of CERQual assessmentCERQuala assessment of confidence
in the evidence

ReferencesSummary of review findings

Interaction with AIb

There were minor concerns regard-
ing adequacy.

High confidence[45-47,51-55]    Clinicians perceive AI as an assis-
tant that could alleviate the burden
of specific tasks.

There were serious concerns regard-
ing adequacy, moderate concerns

Low confidence[46,48]    AI may negatively impact the
clinician-patient relationship due to
a lack of human connection. regarding coherence, and minor

concerns regarding methodology,
justifying two levels of confidence
downgrade.

There were moderate concerns re-
garding coherence and minor con-

Moderate confidence[43,45,46,50,52-55]    AI could enhance clinician empa-
thy or facilitate clinician-patient
communication and confidence. cerns regarding adequacy, justifying

one level of confidence downgrade.

There were moderate concerns re-
garding adequacy, and minor con-

High confidence[43,45,46,48,50,55]    Clinicians wish to retain control
over AI systems and understand
how they function. cerns regarding methodology and

coherence.

There were moderate concerns re-
garding adequacy. The concern was

High confidence[45,47,55]    Clinicians expressed conflicting
views regarding trust in AI.

not deemed serious enough for a
downgrade of confidence.

Resistance to AI

There were moderate concerns re-
garding adequacy, and minor con-

Moderate confidence[46,48,50]    Some clinicians fear being re-
placed or having their role dimin-
ished by AI. cerns regarding methodology and

coherence, justifying one level of
confidence downgrade.

There were moderate concerns re-
garding coherence and minor con-

Moderate confidence[43,44,47,48,50]    The introduction of AI could in-
crease clinicians’ time expenditure
or disrupt workflows. cerns regarding methodology and

adequacy, justifying one level of
confidence downgrade.

There were minor concerns regard-
ing methodology and adequacy.

High confidence[43,45,48,50-52]    Multiple factors influence skepti-
cism toward AI, such as previous
experiences, time, age, interests, and
technology acceptance

Workplace changes

There were moderate concerns re-
garding coherence and minor con-

Moderate confidence[43-48,50,53-55]    AI systems could save clinicians
time through automation.

cerns regarding methodology and
adequacy, justifying one level of
confidence downgrade.

There were moderate concerns re-
garding adequacy and minor con-

Moderate confidence[47,48,54]    Clinicians held differing perspec-
tives on the importance of cost for
AI system adoption cerns regarding methodology, justi-

fying one level of confidence
downgrade.

There were minor concerns regard-
ing methodology.

High confidence[45,47-50,52,55]    There were conflicting views on
the ideal level of AI system integra-
tion with existing clinical systems.

Technological concerns

There were minor concerns regard-
ing methodology.

High confidence[43-52,55]    Clinician concerns regarding
technological issues such as AI sys-
tem or user errors.
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Explanation of CERQual assessmentCERQuala assessment of confidence
in the evidence

ReferencesSummary of review findings

There were minor concerns regard-
ing methodology, coherence, and
adequacy.

High confidence[47,48,52,55]    Clinicians expressed a need for
specific training in AI systems and
being informed about AI technology

Clinical impact

There were minor concerns regard-
ing methodology and adequacy.

High confidence[44,45,47-49,53-55]    AI could provide valuable diag-
nostic support, increasing clinical
effectiveness and accuracy.

Desired features

There were minor concerns regard-
ing methodology and adequacy.

High confidence[44-52,55]    Clinicians expressed preferences
for specific features in AI systems

There were minor concerns regard-
ing methodology.

High confidence[44,46,49,50]    Clinicians emphasized the impor-
tance of AI systems being adaptable
and customizable

There were minor concerns regard-
ing methodology and adequacy.

High confidence[47-49,51,55]    User-friendliness of AI systems
was emphasized by numerous clini-
cians as essential for adoption

Bias

There were minor concerns regard-
ing methodology and adequacy.

High confidence[45,46,48,50-52]    Clinicians are concerned that AI
could perpetuate biases from its
training data or its creators.

There were minor concerns regard-
ing methodology and adequacy.

High confidence[45,46,48,51,52]    Clinicians fear over-relying on
AI, leading to automation bias.

Data security, privacy, and legal implications

There were minor concerns regard-
ing methodology, coherence, and
adequacy.

High confidence[43,45-48,50]    The security of patient data pro-
cessed by AI is a significant concern
for clinicians.

There were minor concerns regard-
ing methodology and adequacy.

High confidence[45,46,48,50,52,55]    There are significant concerns
regarding the legal liability and re-
sponsibility when using AI in clini-
cal decisions.

aCERQual: Confidence in Evidence from Reviews of Qualitative research.
bAI: artificial intelligence.

Details are provided in Multimedia Appendix 4.

Discussion

Principal Results
When synthesizing primary care clinician perspectives of various
AI systems, 3 analytical themes emerged. The
GRADE-CERQual assessment indicated high confidence in 15
findings, moderate confidence in 5 findings, and low confidence
in one finding.

The Human-Machine Relationship
There were many positive remarks on the potential for AI to
assist clinicians in administrative tasks [45-47,51-53,55], clinical
work [45,46,52,55], and education [51,53,54]. Some studies
highlighted fears of AI replacing human roles [46,48,50].
Resistance to AI was noted, with concerns that AI might disrupt
workflow and increase task time [43,47,48,50,53]. The
underlying causes of skepticism were discussed. Some attributed
it to previous negative experiences with other digital tools
[51,52], others to their age or technical alignment [45,48,50].

Positive views on AI systems were generally seen in studies
where AI tools were deemed effective, seamlessly integrated,
and saved time [44,45,47].

The Technologically Enhanced Clinic
Some clinicians saw benefits in automating tasks like
documentation and consultation [44-48], whereas others feared
potentially increased workload [43,47,50,53]. Technical
concerns were found, including fears of computer errors or user
errors [43-53,55]. Clinicians valued AI’s potential to assist in
clinical tasks such as decision support [44,45,47-49,53-55].
Clinicians discussed desirable AI features, such as diagnostic
support, integration with telemedicine, and customization
options [44-52,55]. Several studies mentioned the importance
of the system’s user-friendliness [47-49,51,55].

The Societal Impact of AI
Security and privacy issues were highlighted, particularly
regarding the handling of sensitive patient data and the risks of
unauthorized access [43,45-48,50]. Societal impact, including
potential biases and overreliance on AI, was concerns
[45,46,48,50-52], and potential legal implications if clinicians
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acted outside of the AI recommendations [45,46,50,55].
Clinicians expressed greater confidence in adopting AI systems
that had received formal regulatory approval or institutional
endorsement [49,51].

Comparison With Prior Work
Our findings regarding clinicians’ views of the potential of AI
and reservations regarding safety aspects are similar to a
previous systematic review of AI-powered chatbots for
managing chronic illness, which provided insights into the
usability and acceptance of AI in health care. The review found
that participants gave positive feedback regarding perceived
usefulness, satisfaction, and ease of use. The review also
concluded that the safety of AI-powered chatbots has been
overlooked and needs to be considered more thoroughly in
future designs [56].

As AI expands into health care, a significant concern has
emerged: the risk of bias. Since AI relies on historical data that
could be statistically or socially biased, it could potentially incur
a risk of worsening patient outcomes [57]. This coincides with
our findings regarding clinicians’ concerns about biased AI
systems.

In this review, clinicians were positive toward simplifying
certain tasks using AI while simultaneously having concerns
regarding technical aspects. Another systematic review of
stakeholders’perspectives on clinical AI implementation, which
included perspectives of health care providers, similarly found
that health care providers saw benefits in using AI for reducing
repetitive tasks, improving patient outcomes, and clinical
training. Reservations toward AI included implementation
issues, uncertainty around its mechanics, and skepticism toward
its ability to inform clinical decisions [58].

In the current review, opinions on whether clinicians should be
involved in the development of AI systems were mixed. One
scoping review published in 2020 found the engagement of
clinicians in health care AI development and research to be
crucial [59]. The ethical and regulatory challenges expressed
in the findings of this review are also brought to light in a
scoping review published in 2022. Their findings suggest that
AI research and development in health care is currently
outpacing the creation of supporting AI governance, and there
is a need for international collaboration to facilitate
comprehensive AI governance in this sector [60]. There were
similar findings in another article published in 2021, where the
author concludes that there is an apparent risk of regulations
and oversight falling behind AI’s rapid development and
integration [61].

This review focuses solely on clinicians, although many other
professionals are implicated in the adoption of AI into health
care. Further investigation of perspectives of information
technology experts, managers, and other stakeholders could
prove valuable in the development, adoption, and integration
of AI systems [62].

Strengths and Limitations

Strengths
To the best of the authors’ knowledge, no systematic review on
this topic in a primary health care setting is currently available.
The review provides new and valuable information on the topic.
The review adhered to the PRISMA and ENTREQ guidelines,
was pre-registered with PROSPERO, and searched across
several large databases. Thematic synthesis was employed by
two independent authors, enhancing reliability, validity, and
reducing bias.

Limitations
The field of AI is rapidly expanding, and perspectives on AI in
primary health care could swiftly change over time. Several
new studies have emerged since this analysis was conducted;
thus, further research is needed to better understand clinician
perspectives on the latest AI advancements. This review relied
on the authors’ definitions of AI in the included articles,
potentially increasing the variability of the results. The limited
geographic range of the included studies may affect the
generalizability of the findings. In this review, we only included
studies from high-income countries. Research on AI in health
care in low- and middle-income countries is very limited, as
most AI health systems are developed and tested in high-income
countries. Additionally, no PRESS checklist for peer review of
search strings was completed.

Practical Implications and Identified Gaps in the
Qualitative Literature
The findings of this review suggest that AI systems should focus
on reducing administrative burden and supporting certain clinical
tasks, provided they do not disrupt clinicians’workflows. These
systems must demonstrate time-saving capabilities and
seamlessly integrate with existing infrastructure, such as
electronic medical records. Through these functions, an AI
system could enhance a medical visit by allowing the clinician
to focus on patient contact rather than administrative tasks.

Continuous monitoring for computer errors, structured AI
training programs for clinicians, and simplifying user interfaces
are essential to minimize user errors. Additionally, ensuring
robust data handling practices is critical to maintaining patient
privacy and security. There is also a desire among clinicians
for clearly defined medicolegal responsibilities.

Developers of health care-related AI systems should aim to
mitigate system bias and consider collaborating with clinicians
in the development process to build initial trust and address
potential concerns. Involving clinicians with previous
experiences of AI or CDSS in the development or integration
of AI systems might facilitate adoption and use. Moreover,
current AI tools should complement, not replace, clinical
decision-making. It is important to provide younger clinicians
with opportunities to develop critical reasoning skills without
fostering over-reliance on AI-generated outputs.

The review revealed gaps regarding clinician perspectives on
AI in primary health care, specifically in LLMs. Perspectives
on ethical implications focused mainly on bias in AI systems,
patient privacy and data security, medicolegal implications,
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transparency and accountability, and equity in AI system access.
However, deeper analyses regarding the ethical implications of
modern AI systems, including how AI might alter clinicians’
professional roles, authority, and autonomy, were scarce. Some
of the included studies mentioned clinicians expressing thoughts
on their reliance on AI systems and how their autonomy might
be affected. However, further research could provide valuable
information on these aspects that directly influence clinicians’
acceptance and utilization of AI technologies.

Findings from this review suggest that some clinicians are aware
of long-term job implications and possible job displacement
due to the introduction of AI into health care. Threats to the
professional autonomy of clinicians could be due to automation
bias, potentially overriding or deskilling clinical judgment with
decision-support recommendations becoming default options,
or by reducing the professional freedom of clinicians when
many clinical actions are turned into data, enabling scrutiny of
even the smallest decisions. Further research on AI’s effects on
the evolution of clinicians’ career paths and future autonomy
is warranted.

While many clinicians assume ultimate responsibility in patient
care, several fear “legal whiplash” if they disregard an AI
recommendation that later proved correct or followed one that
proved harmful. These findings highlight the need for clear
governance frameworks by having AI tools accredited and
liability boundaries specified by a professional body such as
the EU AI Act [63] and FDA Software-as-a-Medical-Device
(SaMD) guidance [64]. Further empirical research is
recommended to evaluate how such regulations translate into
everyday primary care. Another possible pre-condition for
ethically acceptable AI use could be provided by transparent
AI reasoning paths, enabling clinicians to follow a defensible

audit trail rather than a simple, final output that could prevent
shared decision-making with patients.

Future Directions
Further research on AI in primary health care is needed,
especially in low- and middle-income countries. Notable gaps
in the literature include evaluations of LLMs in primary health
care, which are expected to have great potential. Ethnographic
studies could yield deeper insights into AI’s impact on the
professional role of clinicians and long-term career implications.
Further in-depth, qualitative research on these topics could prove
helpful for future AI system development and integration.

Future research should also expand beyond cross-sectional
studies to longitudinal, mixed-methods studies that follow AI
systems from adoption to routine use in primary care clinics for
further in-depth analysis of AI use and a deeper understanding
of facilitators and barriers to adoption. Additionally, systematic
reviews targeting specific types of AI or clinical use cases would
support a more nuanced understanding of AI implementation
in diverse primary care contexts.

Conclusions
Clinicians view AI as a technology that could both enhance and
complicate primary health care. While AI can provide substantial
support, its integration into health care requires careful
consideration of ethical implications, technical reliability, and
the maintenance of human oversight. Interpretation is
constrained by heterogeneity in qualitative methods and the
diverse AI technologies examined across studies. More in-depth
qualitative research on the effects of AI on clinicians’ careers
and autonomy could prove helpful for the future development
of AI systems.
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Abstract

Background: Artificial intelligence (AI) has, in the recent past, experienced a rebirth with the growth of generative AI systems
such as ChatGPT and Bard. These systems are trained with billions of parameters and have enabled widespread accessibility and
understanding of AI among different user groups. Widespread adoption of AI has led to the need for understanding how machine
learning (ML) models operate to build trust in them. An understanding of how these models generate their results remains a huge
challenge that explainable AI seeks to solve. Federated learning (FL) grew out of the need to have privacy-preserving AI by
having ML models that are decentralized but still share model parameters with a global model.

Objective: This study sought to examine the extent of development of the explainable AI field within the FL environment in
relation to the main contributions made, the types of FL, the sectors it is applied to, the models used, the methods applied by each
study, and the databases from which sources are obtained.

Methods: A systematic search in 8 electronic databases, namely, Web of Science Core Collection, Scopus, PubMed, ACM
Digital Library, IEEE Xplore, Mendeley, BASE, and Google Scholar, was undertaken.

Results: A review of 26 studies revealed that research on explainable FL is steadily growing despite being concentrated in
Europe and Asia. The key determinants of FL use were data privacy and limited training data. Horizontal FL remains the preferred
approach for federated ML, whereas post hoc explainability techniques were preferred.

Conclusions: There is potential for development of novel approaches and improvement of existing approaches in the explainable
FL field, especially for critical areas.

Trial Registration: OSF Registries 10.17605/OSF.IO/Y85WA; https://osf.io/y85wa

(JMIR AI 2026;5:e69985)   doi:10.2196/69985

KEYWORDS

explainable artificial intelligence; federated learning; explainable federated artificial intelligence; privacy-preserving machine
learning; model interpretability

Introduction

Background
Machine learning (ML) has become increasingly prevalent in
critical sectors such as health care and security [1,2] driven by
the need to process copious amounts of edge device data [3].
However, highly performant ML algorithms often operate as
“black boxes” [4,5], creating a need for ML explainability to
build trust. This has led to increased research in the field of

explainable artificial intelligence (XAI) [2,4,6]. How a ML
model works is important in building trust and reliability in its
prediction or classification results, especially in critical areas.
XAI approaches such as linear interpretable model-agnostic
explanations (LIME) [7] and Shapley Additive Explanations
(SHAP) [8] perform well with centralized models, although
challenges remain [9]. Growing data privacy legislation such
as the General Data Protection Regulation [10], HIPAA (Health
Insurance Portability and Accountability Act) [11], and Kenya’s
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Data Protection Act [12] have further complicated centralized
ML development.

Federated learning (FL), introduced by McMahan et al [13] in
2016, enables privacy-preserving training on decentralized data
stored on edge devices [13,14]. A central server distributes a
global model to clients, who train it locally and send updates

(learned parameters) back, ensuring that data never leave the
device. The federated ML process is outlined in Figure 1. These
updates are aggregated from selected clients (polling) typically
using the federated average algorithm [13] to refine the global
model. This process is repeated over several rounds, preserving
privacy while improving model performance [15]. The federated
averaging algorithm is outlined in Textbox 1.

Figure 1. Federated machine learning process showing global model distribution and update of the global model on the federated learning (FL)
aggregation server.

Textbox 1. Federated averaging algorithm showing its mechanism.

Instructions

Initialize global model weights w0

For each communication round t= 1, 2,..., T do

Server sends current model weights wt to a subset of clients

Each selected client k trains on local data for E epochs with learning rate η:

, where ξ is a batch of local data

Clients send updated weights wt+1
k back to the server

Server aggregates client updates:

(weighted by client data size)

End For

Return final global model weights w*

FL has demonstrated its potential as a privacy-preserving
technique suitable for real-world applications despite its
challenges [16,17]. However, its deployment in sensitive
domains such as patient-embedded devices requires a high level
of trust. This opens up significant research opportunities in
integrating XAI techniques in FL environments. By enabling
explanations on model generalizations at the data source while
maintaining privacy, XAI can offer real-time benefits and
enhance trust in artificial intelligence (AI)–driven embedded
systems. FL can be categorized based on communication

architecture or data partitioning. By communication architecture,
FL models can be categorized as centralized or decentralized.
By data partitioning, FL models can be categorized as horizontal,
vertical, or transfer learning (TL) [18].

Centralized FL
In centralized FL (CFL), a global model is shared with various
clients, who train it locally and send back the learned
parameters. The server aggregates these updated parameters
using algorithms such as federated averaging to improve the
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global model. Clients are selected through polling, and
differential privacy can be applied by adding noise to the
updates. CFL faces challenges such as client heterogeneity,

limited communication and computing resources, fairness,
security, and trust [19]. The structure of CFL is shown in Figure
2A.

Figure 2. Centralized and decentralized federated learning (FL) in action.

Decentralized FL
Decentralized FL—also known as distributed FL—eliminates
the need for a central server. Each client trains a local model
and shares the parameters with their peers using protocols such
as pointing, gossip, and broadcast. Clients act as both learners
and aggregators while refining their model based on peer
updates. Therefore, the global model is developed from peer to
peer [20,21]. The structure of decentralized FL is shown in
Figure 2B.

Horizontal FL
Horizontal FL (HFL) involves clients that share the same data
features but have different data samples. Each client holds
instances with similar attributes (eg, name, gender, date of birth,
and salary), but the individual records (samples and rows) differ.
This setup is ideal when datasets have high feature overlap
across clients but differ in the entities they contain [22]. Figure
3A depicts the structure of HFL.
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Figure 3. Federated learning (FL) types, showing horizontal FL, vertical FL, and federated transfer learning.

Vertical FL
Vertical FL (VFL) is where clients share the same data samples
but have different feature sets. Each client holds part of the
information for the same users; for example, one client may
have demographic data, whereas another may have financial
data. VFL is ideal when full data sharing is not possible, such
as in health care settings with multiple institutions holding
complementary patient data [23]. Figure 3B shows the structure
of VFL.

Federated TL
Federated TL (FTL) merges the concepts of FL and TL. In FTL,
a pretrained model from a related task is distributed to all the
clients. Each client fine-tunes (adapts) the pretrained model
using their local data. FTL is useful when training data are
limited or privacy sensitive, such as in health care, allowing
clients to benefit from existing models while preserving data
privacy. FTL structured is showcased in Figure 3C.

Contributions
This study makes contributions to the field of explainable FL
in the following ways: it offers original insights into the

explainability of FL models, including the methods used to
explain the models, whether novel or existing, and how they
have been used. This study also delves into the deployment
contexts for FL models, including the types of FL used. Unlike
prior works such as the study by Singh et al [24], which broadly
examines FL applications, and the study by Aggarwal et al [25],
which explores general FL use cases, this study also focused
on the application areas for explainable FL models and their
associated challenges, as well as providing the direction of the
trends.

Methods

Overview
This study followed established guidelines for systematic
literature review studies [26] and adhered to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) reporting standards (Figure 4) [27]. Its main
objective was to assess the development of XAI within FL. To
achieve this, the following review questions were formulated.
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Figure 4. PRISMA flowchart for selection of systematic review literature. FL: federated learning.

Research Questions
To understand the explainable approaches in FL, research
questions (RQs) were raised and grouped under 1 of 3
categories.

RQ 1: Trends and Contributions
To understand the contributions of the existing literature, three
questions were raised: (1) when were the explainable FL studies
published? (2) In which countries or regions are the studies or
study applications located, or which countries or regions are
the authors of the studies affiliated with? (3) What are the main
contributions of the studies identified?

RQ 2: Application Areas
The application areas for FL, coupled with the application areas
for explainability, were explored based on the following
questions: (1) what are the application areas of explainable FL
models? (2) What types of FL have been applied in the studies?
(3) Why was FL adopted in the studies?

RQ 3: Model Explainability
The XAI models and their categories were reviewed based on
the following questions: (1) which XAI algorithms or models

have been applied or used in the studies? (2) What category of
XAI do the models or algorithms used in the studies fall under?
(3) What data sources or datasets (if available) were used in the
development of the models used in the studies?

Search Strategy
The reported results followed the population, intervention,
comparison, and outcome guidelines [28]. The search string
generation process is outlined in Multimedia Appendix 1. The
generated search string was adapted to the 8 different databases,
as outlined in Multimedia Appendix 2.

Eligibility Criteria
Of the 1933 initial search results, 26 (1.3%) peer-reviewed
studies published between 2016 and 2024 were selected.
Inclusion was based on relevance to XAI within any FL context.
Exclusion criteria included non–English-language papers,
non–peer-reviewed studies, and inaccessible full texts and gray
literature as they are not easily retrievable [29].

Screening
Screening was conducted by 2 independent reviewers using the
CADIMA software [30]. Initial screening was based on the titles
and abstracts, followed by a blind full-text review. Conflicts
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were resolved through discussion, and a third party was involved
when there was lack of consensus. A strong interrater reliability
was achieved, with a κ value of 0.74.

Data Extraction and Synthesis
Key details from the selected studies, such as title, authorship,
affiliation, publication year, data used, and answers to the RQs,
were extracted and synthesized using Google Sheets. This
process was undertaken by 2 reviewers to minimize bias.
Multimedia Appendix 3 contains all the data used for analysis
and synthesis.

Quality Assessment

Overview
Quality assessment was undertaken by the 2 researchers (TT
and BS) as recommended by Xiao and Watson [26]. The criteria
used included handling of overfits, missing data, and use of
multiple datasets and validation techniques. The evaluation was
based on the PRISMA guidelines [27].

Risk-of-Bias Analysis: Individual Studies
The risk of bias of the individual studies focused on potential
biases of data selection and model training. The criteria used
included handling of overfit and underfit, missing data treatment,
use of multiple datasets, and ML evaluation metrics. A total of
69% (18/26) of the studies reported clear mechanisms for
mitigating against overfitting and underfitting. In total, 31 (8/26)
of the studies lacked evidence of such mitigation. A total of
77% (20/26) of the studies did not address missing data
treatment, increasing the risk of data and selection biases [31],
especially as most of the studies used preexisting datasets.

Figure 5 [20,32-56] shows the risk of bias per study, highlighting
how each implemented underfitting and overfitting, missing
data treatment, use of multiple datasets, and internal and external
validation. Missing data treatment was not clearly identified in
most studies (19/26, 73%), with only 27% (7/26) reporting any
treatment done. Internal and external validation was conducted
in most of the studies (19/26, 73%).

Figure 5. Heat map showing risk mitigation by study for the selected studies.

All studies used ML evaluation techniques such as precision,
recall, accuracy, F1-score, mean squared error, mean absolute

error, R2, area under the receiver operating characteristic curve,
and the Kolmogorov-Smirnov test. A total of 69% (18/26) of
the studies used internal validation techniques (train-test
validation split or k-fold cross-validation), with 31% (8/26) of
the studies reporting no clear internal validation. Most of the

studies (15/26, 58%) had a low risk of bias for their model
training, although the lack of missing data training was a key
concern.

Risk-of-Bias Analysis Across Studies
The risk of bias across studies was evaluated on the use of
multiple datasets and the use of external ML validation

JMIR AI 2026 | vol. 5 | e69985 | p.26https://ai.jmir.org/2026/1/e69985
(page number not for citation purposes)

Tunduny & ShibwaboJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


techniques such as benchmarking against state-of-the-art models.
A total of 73% (19/26) of the studies performed external
validation. In total, 27% (7/26) of the studies lacked external

validation. Only 42% (11/26) of the studies used multiple
datasets, increasing the risk of bias (Figure 6).

Figure 6. Risk-of-bias analysis showing different bias evaluation methods.

Results

The selection of the articles is illustrated in Figure 4. The results
regarding the RQs are presented in the following sections
(Multimedia Appendix 4).

RQ Category 1: Trends and Contributions
We analyzed the publication trends in explainable FL. While
FL emerged in 2016, the first article on XAI for FL was

published in 2020(1 publication). The number of articles showed
consistent annual growth, culminating in 11 studies in 2024
(Figure 7), which represents the current peak and nearly half
(11/26, 42%) of the included studies. The trajectory showed
increased interest in this research area despite the low number
of total publications (N=26 studies), indicating significant
opportunities for future research.
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Figure 7. Publication trends for the selected studies by year.

Our analysis of author affiliation revealed a pronounced
geographical imbalance, with Asian and European institutions
dominating. In contrast, African and South American institutions
remained significantly underrepresented, a critical gap given

Africa’s potential to benefit from privacy-preserving ML
solutions amidst resource constraints. Figure 8 shows the authors
affiliation by continent were Asia (23), Europe (11), Australia
(4), North America (1), South America (1) and Africa (1).

Figure 8. Author affiliation by country for the selected studies (created using the Bing Maps integration in Microsoft Excel [57], which is published
under limited license per the Microsoft Bing Maps Terms of Use [58]).

Despite the African continent having huge potential for rich,
diverse, and high-volume data that can be used in ML research,
collating and accessing the distributed data (stored in

geographically sparse locations or in different institutions, and
also in different formats) still poses a challenge. Lack of a
computing backbone—including internet connectivity and cloud
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computing—further leads to data being sourced from
high-income countries [59]. Moreover, data scarcity and the
lack of proper infrastructure have been highlighted by Fabila
et al [60] and Nieto-Mora et al [61] as limiting the research in
data-rich diverse areas such as Africa.

Two dominant approaches for achieving explainability in FL
systems emerged: those that are intrinsically explainable (ante
hoc) [20,32-35] and those that use a surrogate model for
explainability (post hoc) [36-53]. In total, 8% (2/26) of the
studies [54,55] could not be properly categorized and were
classified as “Unspecified.”

RQ Category 2: Application Areas

Overview
The motivations for adoption of FL were analyzed. They were
categorized into model security, computation and
communication challenges, data quality and availability, data
management and sharing, and data protection and safety. The
results are shown in Figure 9. The main motivation was data
management and sharing, followed by data quality and
availability.

Figure 9. Frequency of federated learning adoption motivations.

Application Area and Type of FL Used
The application area and type of FL applied were assessed, and
the results are summarized in Table 1. The application area with
the highest number of studies was health with 27% (7/26).

Networking and finance followed closely with 23% (6/26) and
15% (4/26) of the studies, respectively. Fault detection
encompassed 8% (2/26) of the studies, and agriculture, space
exploration, urban planning, and social media encompassed 4%
(1/26) of the studies each.
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Table 1. Summary of the studies based on application area, type, and category of federated learning (FL).

StudiesCentralized FLApplication area and type of FL

Health

[36,37]YesTransfer learning

[32,38-40]YesHorizontal FL

[41]YesVertical FL

Space exploration

[42]—aHorizontal FL

Networking

[33,43-46]YesHorizontal FL

[34]YesVertical FL

Finance

[20,42,55]YesVertical FL

[35]YesHorizontal FL

Fault detection

[47,54]YesHorizontal FL

Agriculture

[48]YesHorizontal FL

Urban planning

[49]YesVertical FL

Social media

[50]NoHorizontal FL

Manufacturing

[51]YesHorizontal FL

Energy

[52]YesHorizontal FL

Generic

[53,56]YesVertical FL

aNot applicable.

HFL (17/26, 65% of the studies) was the major type of FL used,
with VFL and TL reported in 31% (8/26) and 8% (2/26) of the
studies, respectively.

RQ Category 3: Model Explainability
The selected studies were reviewed for their approach to model
explainability, which is essential to building trust in predictions.
In FL, understanding model outputs helps assess their reliability
and identify the need for adjustments or improvements.

XAI Techniques

Overview

XAI, first introduced by the Defense Advanced Research
Projects Agency in 2015, helps experts understand how ML
models arrive at their decisions, thereby increasing trust in the
outputs. XAI techniques can be categorized as either global or
local depending on the level of explainability. Global XAI
techniques offer a broad view of the model’s behavior by

highlighting important features. Local XAI techniques focus
on explaining individual predictions.

XAI techniques also differ based on whether they are intrinsic
to the model (ante hoc or white box), such as decision trees, or
applied after training (post hoc), such as LIME [7], which uses
simpler models to explain complex ones.

Additionally, some model explainers are model agnostic and
can be applied to a wide group of ML models, whereas others
are model specific and tailored to particular algorithms, offering
deeper insights but requiring more expertise. We provide a brief
overview of the techniques in the following sections.

LIME Technique

LIME [7] is a popular model-agnostic explainer that uses a
simple surrogate model, typically a sparse linear model, trained
on locally perturbed data to approximate and explain the
individual predictions of a complex model. While it is widely
adopted, LIME’s effectiveness depends on the quality of the
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surrogate fit, and its sampling process introduces uncertainty,
resulting in nondeterministic and potentially inconsistent
explanations for the same input [62].

SHAP Technique

SHAP [8] is a local and global explainer that is based on game
theory. SHAP explains a prediction of each instance by
computing the contribution of each feature to the prediction.
SHAP uses additive contribution to compute a fair value for
each feature by computing the contribution of each feature to
the final model outcome to understand the importance of each
feature. The SHAP explanation is shown in the following
equation, where g is the explanation model, x’ is the coalition
vector, M is the maximum coalition size, and is the feature
attribution for feature i:

Gradient-Weighted Class Activation Mapping

Gradient-Weighted Class Activation Mapping [63] is an
explainer that uses the spatial information naturally retained in
the last convolutional layer. This is a model-agnostic post hoc
explainer that works with different classes of convolutional
neural networks. It is a visualization technique that generates
heat maps that highlight the important regions of the image that
contribute to the model’s prediction.

RuleFit

The RuleFit algorithm is a method to generate a model that
combines rules and linear regression. First posited by Friedman
and Popescu [64] in 2008, RuleFit develops interpretable models
that can predict an outcome based on various features. A set of
rules is generated from a dataset and then fit into a model using
the L1-regularized (least absolute shrinkage and selection
operator) regression. The simpler linear models are interpretable
like “normal” linear models [65].

Partial Dependence Plot

Partial dependence plot (PDP) [66] is an explainer that shows
the marginal effect of 1 or 2 features on the predicted outcome
of an ML model. It is a post hoc model-agnostic explainer. One
or 2 features are selected, and their changes are mapped by
changing the values to see their impact on the predicted
outcome. The PDP highlights the relationship between the target
and the feature as linear, monotonic, or more complex [65]. A
newer variant of PDP is called incremental PDP [67], which
expands the working of PDP by considering time-dependent
effects in nonstationary learning environments. This newer
approach considers how the model’s reasoning changes over
time while considering the effects of concept drift.

Integrated Gradients

Integrated gradients [68] is an axiomatic-based local explainer
that attributes the importance value of each input feature of an
ML model based on the gradients of the model outputs with
reference to the input.

Causal Models

Causal models [69] use counterfactual reasoning to explain the
cause-effect explanations of a particular model. A counterfactual

explanation for a prediction is a description of the smallest
change to an input feature that will alter the prediction to a
predefined output [65]. Counterfactual explanations describe
the causes in the form of “if X had not occurred, then Y would
not be the result.” The computation of counterfactual
explanations is done by comparing the causal chain paths of the
actions not taken by the model [62].

Anchors

Anchors [70] are a model-agnostic way of explaining the
workings of complex (black-box) models through the use of
high-precision rules. Anchors use perturbations to generate the
local explanations, but instead of using surrogate models, the
explanations are provided using if-then rules that are easy to
understand. The if-then rules are called anchors. A rule
“anchors” the prediction if changes in the other feature values
do not alter the prediction made [65].

Deep Taylor Decomposition

Deep Taylor decomposition [71] is an approach for explaining
neural networks by decomposing the output of a model into
contributions from individual input features. It redistributes the
output to the input variables layer by layer. The approach relies
on Taylor expansion to determine the relative contributions of
the layers. The final relevance scores at the input layer reveal
which input features were the most influential in the prediction.

Layerwise Relevance Propagation

Layerwise relevance propagation (LRP) [72] is a technique for
explaining predictions made by neural network models. LRP
identifies the input features that contributed the most to the
decision made by the model. LRP relies on deep Taylor
decomposition and works by tracing the prediction backward
through the network using backward propagation while
assigning relevance scores to each input feature [62].

Prediction Difference Analysis

Prediction difference analysis [73] generates explanations for
neural networks by comparing the model’s prediction when a
specific feature is present with the prediction of the model when
that feature is absent. The comparison allows for measurement
of the feature’s impact on the final model’s prediction. Each
feature is removed (knocked out), and a relevance score is
assigned to them based on their impact [62].

Testing With Concept Activation Vectors

Testing with concept activation vectors [74] is an approach to
generate global explanations for neural networks based on the
idea of concept activation vectors. It measures the importance
of a concept to a prediction based on the directional sensitivity
of a concept in the neural network layers. The concept can be
anything from color and objects to ideas [65].

Explainable Graph Neural Networks

Explainable graph neural networks [75] are model-level
explainers that show how graph neural networks make decisions.
Explainable graph neural networks use reinforcement learning
to build a new graph stepwise, which the original graph neural
network can classify as a certain label, for example, “spam.”
The new (generated) graph acts as an example for what the
model has learned.
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Explainable FL
XAI can be applied to FL environments to explain the workings
of ML models.

Explainable FL Techniques Used

This study aimed to explore the types of XAI models used in
FL (first question in RQ category 3) and their classification
(second question in RQ category 3). Most studies (19/26, 73%)
applied existing XAI techniques, especially those originally
developed for centralized ML such as LIME [7] and SHAP [8].

A few novel methods such as vertical decision tree ensembles
[20] were specifically developed for federated settings. Most
reviewed studies (23/26, 89%) used post hoc explainability
methods, followed by intrinsically explainable models (5/26,
19%). In total, 8% (2/26) of the studies could not be categorized.
Most of the techniques were model agnostic, highlighting the
adaptability and widespread use of tools such as LIME in FL
environments. Table 2 summarizes the various categorizations
of XAI approaches as applied in FL.
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Table 2. Summary of categorization of explainable artificial intelligence approaches in federated learning, application areas, and performance metrics
used.

Performance metricsApplication areaStudiesType (model agnostic
or model specific)

Approach and model or
algorithm

Post hoc

Accuracy (all studies), precision [36], re-
call [36,39], and F1-score [36,39]

Health care [36,37,39],
manufacturing [51], and
generic [56]

[36,37,39,51,56]Model agnosticGrad-CAMa

Accuracy, precision, and MSEcGeneric[53]Model agnosticFalcon-INPb

Accuracy, F1-score [43], and PDPd and
percentage of feature impact [46]

Networking[43,46]Model agnosticRuleFit

Accuracy [43,47,49,50,52,54], F1-score
[43,47,50], PDP [46], precision [47,50],

Networking [50], fault detec-
tion [47], agriculture [48],
urban planning [49], social
media [50], and energy [52]

[43,46-50,52,54]Model agnosticSHAPe

recall [47,50], RMSEf [48], MAEg [48],
and loss [49]

Accuracy [38,40,49,51], F1-score [38,40],
precision [38,40], recall [38,40], and PDP
[46]

Health care [38,40], network-
ing [46], urban planning
[49], and manufacturing [51]

[38,40,46,49,51]Model agnosticLIMEh

—iNetworking[46]Model agnosticPDP

AccuracyHealth care[41]Model agnosticCausal models

Maximum input sensitivity analysisSpace exploration[42]Model specificCPAj Net

AccuracyNetworking[45]Model agnosticRandom decision
forest

MSE and R2Networking[44]UnspecifiedRule based

Ante hoc

AUCk and KSl curve analysisFinance[20]Model specificVertical decision
tree ensembles

MSE, MAE and R2 [33], and accuracy
[35]

Networking [33] and finance
[35]

[33,35]Model specificDecision trees

AUROCm [32], AUPRCn [32], and MSE
[34]

Health care [32] and net-
working [34]

[32,34]Model agnosticIntegrated gradients

Unspecified

ROCo and KS curve analysisFinance[55]UnspecifiedGradient-based
method

AccuracyFault detection[54]UnspecifiedInterpretable adap-
tive sparse-depth
networks

aGrad-CAM: Gradient-Weighted Class Activation Mapping.
bFalcon-INP: Falcon Interpretability Framework.
cMSE: mean squared error.
dPDP: partial dependence plot.
eSHAP: Shapley Additive Explanations.
fRMSE: root mean square error.
gMAE: mean absolute error.
hLIME: linear interpretable model-agnostic explanations.
iNot applicable.
jCPA: Cascading Pyramid Attention.
kAUC: area under the curve.
lKS: Kolmogorov-Smirnov.
mAUROC: area under the receiver operating characteristic curve.
nAUPRC: area under the precision-recall curve.
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oROC: receiver operating characteristic.

Challenges Faced in Explainable FL

Explaining ML models in an FL environment presents unique
challenges typically not encountered in centralized setups,
especially in real-world scenarios. The challenges include data
heterogeneity, security and privacy, communication costs and
resource constraints, and scalability.

Data Heterogeneity

In centralized ML, data from multiple sources are combined
into a single dataset, allowing explainability models to analyze
a unified, consistent data distribution. In contrast, FL involves
data from different, often heterogenous sources that follow
different distributions, resulting in non–independently and
identically distributed (IID) data [76]. Non-IID data are common
in FL and are characterized by skewed class distributions and
varying data volumes across clients [76]. This variability
challenges explainability as the explainer model must handle
randomly polled clients with diverse and uneven data,
complicating interpretation.

Security and Privacy

FL was developed to enable ML model training while preserving
data privacy, addressing strict data protection regulations. Unlike
centralized ML, where XAI techniques risk data leaks or reverse
engineering by requiring access to training data, FL introduces
new challenges such as vulnerability to model poisoning [77].
Moreover, applying explainability in federated environments
can raise privacy concerns as explanation methods might
inadvertently reveal some attributes of the client data.

Communication Costs and Resource Constraints

FL involves clients sharing model updates via either a
centralized or decentralized approach, necessitating continuous
and efficient communication. Additionally, the use of
perturbation-based explainers such as SHAP adds overheads
on client devices due to complex estimation of Shapley values
as well as communication costs when sharing the learned
perturbations to the central aggregator [78].

Scalability

In non-IID FL setups, randomly polling clients is often
ineffective, necessitating smarter client selection strategies that
prioritize clients with valuable data for improving the global
model [79]. Moreover, increasing the number of clients can lead
to communication bottlenecks and strain the aggregation server’s
resources due to the growing volume of model updates.

Discussion

Summary of Findings
This study aimed to understand the current situation in the XAI
field and how it has been applied to the field of FL. This was
done through a comprehensive review process of the existing
openly accessible primary studies on XAI approaches in
federated ML. The role of privacy in the choice of ML model
was evident in the studies analyzed. FL has proven to be robust
and useful in mitigating privacy concerns to comply with privacy
legislation and ensure data integrity within the devices [22].

It is noteworthy that most of the studies (10/26, 39%) did not
originate from highly sensitive fields such as health and security,
which are arguably fields that could benefit most from
explainable federated AI approaches. These fields are
traditionally conservative, heavily regulated (eg, HIPAA) [11],
and still suffer from trust issues due to the lack of explainability
of the models. These fields are highly impactful as the problems
defined require complex solutions, which necessitate the use of
black-box models. Areas such as health, cybersecurity, finance,
education, and autonomous vehicles could invariably benefit
from explainable FL as they are heavily reliant on privacy and
security. Federated XAI could also be applied in edge devices
as this would bring the computation closer to the data source
while at the same time enhancing privacy and security [80].

The FTL approach, which can help alleviate the challenge of
limited training data [81]—the second reported reason for the
use of FL—has also not been used fully. Despite the use of
real-world datasets, the implementations assessed largely used
the HFL approach, which did not fully account for data
heterogeneity [82]. Real-world implementations of these
approaches might suffer due to the data and environment not
being representative. It would be important for more research
to be conducted addressing these challenges.

Implications
There has been a steady increase in the number of studies in the
field of FL and XAI. This increase can be mapped from 2016,
when FL was first introduced. However, there is still a lot of
room for more research to be conducted. The development of
explainable FL models can help unlock great potential in the
fields of health and security [2], but caution needs to be taken
to ensure that the development is not concentrated in specific
regions.

Model explainability using state-of-the-art techniques, whether
post hoc or intrinsic in nature, has been proven to work well.
Several novel explainability techniques that can work well in
FL environments, such as those in the studies by Corcuera
Bárcena et al [44] and Wang and Zhang [54], highlight the
potential for improvement of existing explainability techniques
and approaches and development of more robust novel
techniques that can perform better in the federated environments.
This also offers fertile research potential for experimentation
with more real-world data and techniques such as TL.

More research needs to be conducted to mitigate the challenges
faced by explainable FL. There is a need to develop models that
are scalable and can operate in real-world FL settings where
data are non-IID. There is also a need for robust systems that
can operate more efficiently when generating the explanations
to make them useful for personalized explainable FL. This
would help unlock an even greater potential for trustworthy AI.

Limitations
This review was limited to 26 studies. The novelty of the 2
areas—XAI and FL—meant that a lot of studies (including most
studies from the initial total of 1933 identified in the databases)
were not eligible for review. Moreover, the strict requirement
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for primary research and not review papers, coupled with the
need for accessible documents, meant that the papers reviewed
were limited in nature.

Conclusions
This study attempted to analyze the existing landscape and
provide an overview of the approaches that could be used in
implementing XAI in FL. This review was conducted based on
the RQs posited, and 26 studies that fit the criteria were assessed.

One of the key findings was that, despite the need for
explainability in critical areas, there is limited research that has
been conducted. More research in these critical areas needs to
be conducted to develop more novel approaches that mitigate
the challenges. FL remains a useful approach to model
development in cases in which privacy is important and limited
data exist. This study highlights the potential areas that can be
explored by future researchers.
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Abstract

Background: Advances in artificial intelligence (AI) have revolutionized digital wellness by providing innovative solutions
for health, social connectivity, and overall well-being. Despite these advancements, the older population often struggles with
barriers such as accessibility, digital literacy, and infrastructure limitations, leaving them at risk of digital exclusion. These
challenges underscore the critical need for tailored AI-driven interventions to bridge the digital divide and enhance the inclusion
of older adults in the digital ecosystem.

Objective: This study presents a comparative bibliometric analysis of research on the role of AI in promoting digital wellness,
with a particular emphasis on the older population in comparison to the general population. The analysis addressed five key
research topics: (1) the evolution of AI’s impact on digital wellness over time for both the older and general population, (2)
patterns of collaboration globally, (3) leading institutions’ contribution to AI-focused research, (4) prominent journals in the field,
and (5) emerging themes and trends in AI-related research.

Methods: Data were collected from the Web of Science between 2016 and 2025, totaling 3429 documents (344 related to older
people), analyzed using bibliometric tools.

Results: Results indicate that AI-related digital wellness research for the general population has experienced exponential growth
since 2016, with significant contributions from the United States, the United Kingdom, and China. In contrast, research on older
people has seen slower growth, with more localized collaboration networks and a steady increase in citations. Key research topics
for the general population include digital health, machine learning, and telemedicine, whereas studies on older people focus on
dementia, mobile health, and risk management.

Conclusions: The results of our analysis highlight an increasing body of research focused on AI-driven solutions intended to
improve the digital wellness among older people and identify future research directions to refer to the specific needs of this
population segment.

(JMIR AI 2026;5:e71248)   doi:10.2196/71248
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digital wellness; artificial intelligence; digital divide; digital inclusion; mHealth; mobile health; older people

Introduction

Information technology, the internet, and artificial intelligence
(AI) have emerged as transformative domains that shape
contemporary life [1]. Technology-driven alternatives have
increasingly replaced traditional services, revolutionized daily
routines, and fostered connectivity and convenience for a
growing global population. Despite these advancements, the
older population often encounters significant challenges adapting
to these technological changes. These include barriers related
to accessibility, digital literacy, and the complexity of operating
modern devices and affiliated services [2].

Digital literacy is essential for older populations, particularly
as essential services increasingly transition online; yet, many
older adults face significant barriers in adopting these
technologies. Research indicates that anxiety related to using
information and communication technologies can hinder
engagement, leading to frustration and helplessness, which
further exacerbates the digital divide [3]. A recent scoping
review highlighted that older adults often exhibit low digital
health (DH) literacy, with many lacking the necessary skills to
navigate DH resources effectively [4]. Additionally, studies
have revealed that limited access to technology and inadequate
infrastructure contribute to the exclusion of older adults from
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digital life, particularly in rural areas [5]. Furthermore,
intergenerational support has been shown to positively influence
digital participation among older people in rural settings,
suggesting that fostering such support could enhance digital
literacy outcomes [6]. Overall, targeted educational interventions
are crucial to improve digital skills and reduce anxiety,
promoting greater inclusion and engagement with digital
resources among older adults [7].

Recent research by Anisha et al [8] has demonstrated the overall
positive attitudes of older adults toward DH technology
acceptance, with studies showing that the technology acceptance
model (TAM) and the unified theory of acceptance and use of
technology are the most frequently used frameworks for
evaluating technology acceptance among this population. Key
facilitators of technology acceptance include perceived
usefulness, ease of use, social influence, and digital or eHealth
literacy, while barriers involve technical challenges, usability
issues, and privacy concerns. However, the acceptance of
AI-based conversational agents for noncommunicable disease
management among older adults remains inadequately evaluated,
possibly due to limited adaptation of established frameworks
to specific health care contexts and technology innovations.

Studies have shown that customized interventions are crucial
for successful technology acceptance among the older
population, with core components of TAM including perceived
usefulness, perceived ease of use, attitude toward use, behavioral
intention to use, subjective norms, image, and facilitating
conditions [9]. Challenges arising from TAM applications in
older people’s health care include technological literacy barriers,
digital divide concerns, privacy and security apprehensions,
resistance to change, limited awareness and information, health
conditions and cognitive impairment, trust and reliability
concerns, a lack of tailored interventions, overcoming age
stereotypes, and integration with traditional health care.

Meta-analytic evidence conducted by Yang et al [10] has
revealed significant positive correlations between perceived
usefulness, perceived ease of use, and social influence with
behavioral intention to use health care technology among older
adults, with moderating effects based on geographic region,
technology type, and presence of visual demonstrations. These
findings suggest that tailored strategies for different types of
technology and the use of visual demonstrations are important
for enhancing adoption rates among older adults.

These challenges are further intensified by the growing
dependency on digital tools in key areas of interaction for older
individuals, including health care services, legal systems, social
connections, information access, and the integration of
interconnected smart devices within the home environment
[11,12].

The advent of AI has introduced a range of transformative tools
that offer innovative solutions tailored to the unique needs of
older individuals. For instance, AI-powered personalized health
care services have demonstrated the potential to bridge the gap
between technological advancements and the older people’s
orientation to digital tools, significantly enhancing their quality
of life [13,14]. These technologies not only address accessibility
challenges but also create pathways for older people to engage

meaningfully with digital ecosystems such as health care [15].
Research on middle-aged adults’ acceptance of AI chatbots has
shown moderate acceptance levels, with perceived ease of use,
subjective norm, and user image significantly influencing users’
intention to use AI chatbots, highlighting the importance of
preparing for aging with personalized technology [16].

The rapidly expanding integration of AI across various sectors
has been documented through comprehensive bibliometric
analyses, which reveal significant growth patterns and emerging
trends. Educational technology research has shown a notable
rise in AI-related studies beginning in 2018, with citations
reaching their zenith in 2019, and collaborative metrics
indicating that the United States and China are leading in
publication volume [17]. Similarly, research on AI in education
has rapidly progressed, with studies demonstrating that China,
the United States, India, Spain, and Germany lead in research
productivity, with particular emphasis on higher education
compared to K-12 education [18]. The intersection of AI and
language learning has also gained substantial attention, with
bibliometric analysis revealing a rising pattern of AI applications
in language learning processes, identifying influential authors,
institutions, and countries contributing to this growing field
[19]. Furthermore, the convergence of AI with environmental,
social, and governance frameworks has emerged as an evolving
research area, with increasing publications indicating the
growing importance of sustainable AI applications [20]. The
integration of AI into learning management systems has also
demonstrated significant potential, offering adaptive and
personalized learning experiences that promote active learning
and support self-regulated learning across face-to-face, hybrid,
and online environments while improving students’ learning
outcomes, engagement, and motivation [21].

This study uses a comparative bibliometric analysis to
investigate the role of AI in improving digital wellness among
older people. Bibliometric analysis enables the quantification
and systematic mapping of the existing literature, providing a
structured review of academic studies in a specific domain [15].
Through this method, our research highlights key topics,
influential studies, and emerging insights that underscore the
importance of leveraging AI-driven innovations to create
inclusive digital ecosystems. The findings highlight the
importance of addressing challenges and developing solutions
that enable older individuals to effectively navigate and manage
their lives in an increasingly complex environment, as reflected
in the growing body of research within the field of AI-oriented
world [2,22]. The study analyzes the following research
questions: (1) How has AI’s impact on digital wellness evolved
for the general versus older populations? (2) What are the global
collaboration patterns in AI research on digital wellness? (3)
Which institutions lead in AI research for digital wellness? (4)
What are the key journals and publication trends in this field?
(5) What are the emerging themes in AI research for digital
wellness?
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Methods

Search Strategy
This study conducts a comparative bibliometric analysis to
examine the role of AI in enhancing digital wellness for both
the general population and older people, using the methodology
outlined by Aria and Cuccurullo [23]. For this study, we
followed a 3-phase approach: data collection, data analysis, and
data visualization and reporting.

In the data collection phase, we queried, selected, and exported
data from the Web of Science (WoS) core databases, focusing

on publications from 2016 to 2025. The selected time period
covers all publications in the field of study as indexed by WoS.
WoS was preferred over alternatives such as Google Scholar
or Scopus due to its higher quality bibliometric data, which is
characterized by a lower rate of duplicate records [24] and
broader coverage of high-impact journals [25]. We executed 2
search strings: SRCH_STR_ALL (which referred to the general
population, excluding the older people) and SRCH_STR_OLD
(which focused exclusively on the older population). These
search strings were used to query the titles, keywords, and
abstracts of all documents in the WoS collection (Textbox 1).

Textbox 1. Search strings.

SRCH_STR_ALL: (“AI” OR “Artificial Intelligence” OR “Machine Intelligence” OR “Intelligent Automation” OR “Smart Technology” OR “Automated
Intelligence” OR “Algorithmic Intelligence”) AND (“Digital Wellness” OR “Digital Health” OR “e-Wellness” OR “Digital Wellbeing” OR
“Technology-Enabled Wellness” OR “Digital Literacy” OR “Online Wellbeing”) NOT (“Elderly” OR “Senior*” OR “Older adult” OR “Mature adult”
OR “Advanced in age” OR “aging” OR “Long-lived” OR “Retiree” OR “Golden ager”)

SRCH_STR_OLD: (“AI” OR “Artificial Intelligence” OR “Machine Intelligence” OR “Intelligent Automation” OR “Smart Technology” OR
“Automated Intelligence” OR “Algorithmic Intelligence”) AND (“Digital Wellness” OR “Digital Health” OR “e-Wellness” OR “Digital Wellbeing”
OR “Technology-Enabled Wellness” OR “Digital Literacy” OR “Online Wellbeing”) AND (“Elderly” OR “Senior*” OR “Older adult” OR “Aged”
OR “Mature adult” OR “Advanced in age” OR “aging” OR “Long-lived” OR “Retiree” OR “Golden ager”)

Data Analysis
We used both VOSviewer (version 1.6.20; Leiden University)
[26] and Bibliometrix (The Bibliometrix R-package
Development Team, University of Naples Federico II) [24]
software to visually represent and assess the relationships
between institutions, countries, authors, and keywords related
to research on the use of AI to improve individuals’ digital
wellness. Furthermore, some of the visualizations provide details
about clusters emerging from these relationships. These clusters
were formed using the VOSviewer algorithm, which groups
related authors, keywords based on their connections, and
proximity within the network.

Bibliometric Analysis
The aforementioned search strings resulted in 3819 documents
(352 related to older people), forming the initial datasets for

this study. For quality assurance, only document types classified
as papers, reviews, and proceeding papers were included, as
these are most likely to have undergone a rigorous peer-review
process before publication [27]. Consequently, editorial
materials, letters, news items, meeting abstracts, and retracted
publications were excluded from the dataset, yielding a final
total of 3429 documents (344 related to older people) that were
used for the bibliometric analysis. Figure 1 summarizes the data
collection phase. The datasets comprise documents from 1171
sources (147 related to older people), authored by 18,911
individuals (2738 related to older people), and include a total
of 47,044 unique references (4630 related to older people). The
number of references per year was estimated by multiplying the
average references per paper by the number of papers, with
totals rounded for clarity.
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Figure 1. Summary of the data collection phase for both general and older populations.

Ethical Considerations
This study did not require institutional review board or ethics
committee approval, as it conducted a secondary bibliometric
analysis of published literature from the WoS database without
involving human participants, the collection of primary data,
or access to identifiable information. Bibliometric and
scientometric analyses that exclusively use publicly available,
aggregated bibliographic metadata (publication records, author
information, institutional affiliations, and citation indices) are
generally exempt from ethics review requirements under
standard institutional and international research ethics
guidelines. This exemption is consistent with established policies
of major research institutions and ethics oversight bodies. The
Belmont Report and the Common Rule (45 CFR 46) in the
United States define human subjects research as a systematic
investigation designed to develop or contribute to generalizable
knowledge involving human participants or identifiable private
information. Since this research involved neither human
participants nor access to identifiable individual data—only
aggregate publication-level information already in the public
domain—it falls outside the scope of research requiring ethics
board oversight. Similarly, the Declaration of Helsinki and the

International Council for Harmonisation guidelines recognize
that research using nonidentifiable, aggregated data does not
constitute human subjects research and therefore does not
require ethics committee assessment. The European Union’s
General Data Protection Regulation and comparable data
protection frameworks exempt analyses of aggregated,
anonymized bibliographic data from ethics review requirements,
as such data cannot be traced to individual persons.

Results

Annual Publications, Citations, and Growth Forecast

Older Population
For the older population, the average annual number of papers
published did not exceed 10 before 2022. After 2022, the output
of papers increased and reached 100 in 2025. The results of the
polynomial curve resembled those found among the general
population and showed a very high coefficient of determination

(R2=0.982). The average number of citations per paper was
13.5. Over the years, total citations per year fluctuated, reaching
a peak at 1600 citations in 2020 and then decreased in the
following years (Figure 2).
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Figure 2. Publications and citations of artificial intelligence–focused research in improving digital wellness among both the general and older populations.

General Population
The average annual number of papers published for the general
population did not exceed 100 before 2022. After 2022, the
output of papers increased exponentially and reached 1083 in
2024. The polynomial curve was coherent with the yearly
growth trend of literature, indicating a very high coefficient of

determination (R2=0.8778). The average number of citations
per paper was 13.7. Over the years, total citations per year
fluctuated, reaching a peak at 10,547 citations in 2023 and then
decreased to 4711 in 2024 and 409 in 2025.

The analysis revealed distinct publication trends when
comparing the general and older populations. For the general
population, the number of publications remained relatively low
until 2022, after which there was a sharp increase, peaking in
2024. Despite this growth, citation patterns fluctuated, reaching
a peak in 2023 before declining significantly in 2024 and 2025.
In contrast, the older population had minimal research output
prior to 2020. Following 2020, there was a notable increase in
publications, reaching its highest point in 2025. Similarly,
citations for papers on the older population peaked in 2024
before declining. Although both populations demonstrated
exponential publication growth in recent years, the volume of
research focused on older people remains smaller. However,
citation trends for this group suggest a steadier and more

consistent pattern compared to the more volatile citation trends
observed in the general population.

Countries

Older Population
The majority of research papers on the topic of AI applications
to improve well-being among older population came from the
United States (79/344, 22.1%), China (40/344, 11.6%), the
United Kingdom (38/344, 11.0%), Canada (22/344, 6.4%),
Germany (20/344, 5.8%), and Spain (20/344, 5.8%). A network
map of these countries was generated along with their allocation
to clusters; in total, 34 countries published 5 or more papers on
the aforementioned field (Figure 3). Cluster sizes were set to a
minimum of 6 countries.

The network map revealed 3 clusters that highlighted
international coauthorship in older people care research, with
major hubs including the United States, China, and the United
Kingdom leading collaborations. The United States was central
with many global connections, while Germany, the United
Kingdom, and China also created strong and steady regional
clusters in Europe and Asia, respectively. European countries
have close and internal relationships, and Canada, Brazil,
Finland, and Israel are linked between the clusters, facilitating
cross-regional partnerships. This structure shows a blend of
regional collaborations and global partnerships centered around
key research leaders.
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Figure 3. Network map of cooperation between countries for the older population. The size of dots represents a major hub of collaboration, and the
different colors represent different clusters.

General Population
To form the network map between countries, we have calculated
the number of publications based on the corresponding author’s
country. Among the United States (671/3429, 19.5%), China
(308/3429, 9.0%), the United Kingdom (304/3429, 8.9%),
Germany (252/3429, 7.3%), Canada (175/3429, 5.1%), and
Australia (167/3429, 4.9%), a network map between countries
was generated. Based on this network map, several clusters of
countries were revealed. In total, 82 countries met the threshold
of publishing at least 5 papers (Figure 4). Cluster sizes were set
to a minimum of 15 countries.

The coauthorship network map illustrates patterns of
international cooperation, revealing four major clusters: (1) the
United States, China, and the United Kingdom, along with
several African and Asian countries (blue cluster); (2) Germany
and other European and Asian or Middle Eastern countries
(yellow cluster); (3) Canada with strong ties to Middle Eastern
countries (green cluster); and (4) Italy, Spain, and a group of
European countries (red cluster). The United States, China, the
United Kingdom, Germany, Canada, Italy, and Spain lead in
their respective clusters, reflecting their central roles in global
research collaboration. In addition to these dominant hubs,
several bridging countries play a key role in linking otherwise
separate regions. Australia emerges as a central intermediary,
connecting the Asian cluster (led by China) with Western nations
such as the United States and the United Kingdom. South Africa
also acts as a bridge, facilitating collaboration between the

European cluster and other regions. Similarly, India connects
both Western and Eastern networks, despite being rooted in the
Asia-Pacific cluster. These bridging countries enhance global
knowledge exchange and international integration, highlighting
their significance not only in research output but also in fostering
multiregional partnerships within the field. The research
landscape for the general population was led by the United
States, China, the United Kingdom, Germany, Canada, Italy,
and Spain, forming 4 major clusters. These included broad
collaborations between the United States, China, and the United
Kingdom; a European Asian or Middle Eastern group centered
around Germany; a Canadian-Middle Eastern cluster; and a
European cluster led by Italy and Spain. In contrast, research
on the older population revealed a more streamlined network
structure, dominated by the United States, China, the United
Kingdom, Germany, and Australia, and organized into 3 primary
clusters. While both populations showed strong patterns of
international collaboration, the general population network
appeared more globally distributed, with several countries acting
as bridges across clusters. Australia, South Africa, and India
served as key intermediaries in the general network, enhancing
connectivity between regions. In older people–focused research,
bridging countries such as Canada, Brazil, Finland, and Israel
played a similar integrative role, linking otherwise separate
regional efforts. Although the United States remained a central
hub in both domains, the general population network exhibited
broader global integration, whereas older people research
remained more concentrated within Europe and Asia.
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Figure 4. Network map of cooperation between countries for the general population. The size of dots represents a major hub of collaboration, and the
different colors represent different clusters.

Coauthorship and Cocited Authors
While coauthorship means that authors form a cooperation
between them, cocited authors mean that authors are cited
together, not necessarily formed a direct cooperation between
them. Following this nuance, we created both coauthorship and
cocited authors maps, which provide information about potential
collaborators and influential researcher groups.

Older Population
A total of 2738 researchers participated in the research on the
topic of AI applications for improving older population’s
well-being, with 20 of 2738 (0.7%) publishing 3 or more studies
on the topic. Peter A Noseworthy (5/344, 1.5%), and Ching-Yu
Cheng, Paul A Friedman, Francisco Lopez-Himenez,
Charumathi Sabanayagam, Yih-Chung Tham, and Tien Yin
Wong with 4 of 344 (1.2%) publications each, published most
papers. The coauthorship network visualization presented at the
top of Figure 5 (including only authors with 2 or more
publications) shows that while 95 authors met the publication
threshold, only 8 were connected within a collaborative network,

indicating a limited presence of high-yield, cooperative
researchers in the field. Moreover, none of these prolific authors
collaborated beyond their immediate groups, underscoring a
scarcity of high-output researchers who actively engage in
broader cooperative efforts. The structure is characterized by
multiple disconnected clusters and minimal cross-group
interaction, reflecting a fragmented and siloed research
environment. The largest clusters—green, red, and blue—exhibit
strong internal cohesion, while smaller clusters and dyads likely
represent emerging collaborations or niche research
communities. Although a few central authors within these
clusters serve as bridges between otherwise isolated groups,
their role is limited and does not compensate for the overall
lack of widespread cooperation among top contributors. The
color-coded clusters also imply thematic or institutional
alignments. Structural holes between groups highlight potential
opportunities for broader collaboration and knowledge
integration. Overall, the network reflects a typical academic
pattern—dominated by tightly knit research teams and limited
peripheral engagement—resulting in a constrained diffusion of
knowledge and slower overall development of the field.
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Figure 5. Network map of cooperation between authors for the older population. Each dot represents a different author, and each color represents a
different allocation to a cluster.

In addition, the author cocitation network (Figure 6) highlights
the most influential research groups in the field. The top 5
cocited authors—World Health Organization, Yaron Ilan,
Xiaoxuan Liu, Alaa Abd-Alrazaq, and Andrea Tricco—exhibited

the strongest cocitation links, not only within their own clusters
but also across other clusters. This pattern indicates their central
role in shaping the intellectual structure of the research domain
and fostering interdisciplinary influence.
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Figure 6. Network map of cocited authors for the older population. Each dot represents a different author, and each color represents a different allocation
to a cluster. The arcs between clusters represent authors’ cocitations.

General Population
A total of 18,911 researchers participated in the research on the
aforementioned topic within the general population, with 937
(4.9%) of the authors publishing 3 or more studies; Leo Anthony
Celi (23/3429, 0.7%), Paul A Friedman (19/3429, 0.6%), Peter
A Noseworthy (17/3429, 0.5%), Zachi I Attia (15/3429, 0.4%),
and Francisco Lopez-Jimenez, Bjoern M Eskofier, and Yaron
Ilan with 14 of 3429 (0.4%) publications each published most
of the papers.

The coauthorship network visualization in Figure 7, based on
authors with 3 or more publications, reveals a moderately
fragmented yet maturing research landscape. While 581 authors

met the publication threshold, only 232 were connected within
a collaborative network, indicating that many researchers remain
siloed. The most prominent cluster centers around Paul A
Friedman and Zachi I Attia, reflecting a well-established and
productive research hub. Additional clusters led by Leo Anthony
Celi (the United States), Yong Liu (Asia), and Bjoern M
Eskofier (Europe) demonstrate strong regional and institutional
collaborations. However, cross-cluster and international
collaboration remains limited, with few authors acting as bridges
between groups. The presence of several isolated nodes suggests
emerging research directions or new contributors. Overall, the
network reflects a field characterized by concentrated leadership
and solid intragroup cooperation, yet with untapped potential
for broader interdisciplinary and global integration.
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Figure 7. Network map of cooperation between authors for the general population. Each dot represents a different author, and each color represents a
different allocation to a cluster.

An analysis of the author cocitation network (Figure 8), with
cluster sizes set to a minimum of 50 authors, reveals that several
influential authors were cocited both within and across clusters,
reflecting shared intellectual foundations and interdisciplinary

relevance. Notably, Yaron Ilan, the World Health Organization,
Eric J Topol, Zachi I Attia, and John Torous ranked among the
top 5 most strongly cocited authors, serving as key intellectual
bridges that connect distinct research communities.
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Figure 8. Network map of cocited authors for the general population. Each dot represents a different author, and each color represents a different
allocation to a cluster. The arcs between clusters represent authors’ cocitations.

Institutions

Older Population
A total of 757 institutions participated in relevant research on
the role of AI in improving digital well-being among older
population. The top 5 institutions involved in the research field

were University of Toronto (77/757, 10.2%), University of
London (69/757, 9.1%), National University of Singapore
(48/757, 6.3%), University College London (48/757, 6.3%),
and Harvard University (43/757, 5.7%). The network map of
the institutions was generated and included 70 research
institutions that published 3 or more papers; 62 institutions
cooperated with other institutions (Figure 9).
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Figure 9. Network map of institutional collaboration in research on the older population. Each node represents a different institution, with colors
indicating cluster membership. Arcs between nodes reflect coauthorship links, illustrating collaborative relationships within and across clusters.

General Population
A total of 3143 institutions participated in research on the role
of AI in enhancing digital well-being. The top 5 institutions
contributing to the field were the University of London
(365/3143, 11.6%), Harvard University (316/3143, 10.1%),

University of Toronto (281/3143, 8.9%), and both Mayo Clinic
and University College London, with 219/3143 (7.0%)
publications each. A network map of the institutions was
generated, highlighting 900 research institutions that published
3 or more papers. Figure 10 illustrates 880 institutions actively
collaborating with others.

Figure 10. Network map of institutional collaboration in research on the general population. Each node represents a different institution, with colors
indicating cluster membership. Arcs between nodes reflect coauthorship links, illustrating collaborative relationships within and across clusters.

Journals

Older Population
In total, 344 papers were published in 147 journals. The top 5
journals that published the highest number of publications
included The Lancet Digital Health (33/344, 9.6%), Digital
Health (29/344, 8.4%), The Journal of Medical Internet
Research (24/344, 7.0%), and European Heart Journal—Digital
Health, The Journal of Medical Internet Research Aging, and
The Journal of Medical Internet Research Formative Research,
with 14/344 (4.1%) publications each.

Next, we have analyzed both research areas and categories.
While research areas are broader, high-level groupings that
reflect general fields of studies, categories are more specific
and detailed classifications that group journals and publications
into specialized fields.

To analyze the publication’s research areas and categories, only
research areas and categories with at least 5 and 10 publications,
respectively, were included. Results revealed that of the 344
papers, the leading fields (Table 1) were medical informatics
(163/344, 47.4%), health care sciences services (129/344,
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37.5%), public environmental occupational health (58/344,
16.9%), general internal medicine (44/344, 12.8%), and
geriatrics and gerontology (24/344, 7.0%). As for the research
categories, the top 5 categories as defined by the WoS are

medical informatics (163/344, 47.4%), health care science
services (127/344, 36.9%), public environmental occupational
health (58/344, 16.9%), medicine general internal (44/344,
12.8%), and health policy services (37/344, 10.8%; Table 2).
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Table . Classification of research paper areas or categories for the older population.

Papers (n=344), n (%)Research areas

163 (47.4)Medical informatics

129 (37.5)Health care science services

58 (16.9)Public environmental occupational health

44 (12.8)General internal medicine

32 (9.3)Geriatrics, gerontology

31 (9.0)Computer science

24 (7.0)Engineering

23 (6.7)Cardiovascular system, cardiology

11 (3.2)Neurosciences, neurology

10 (2.9)Science technology, other topics

7 (2.0)Education, educational research

5 (1.5)Environmental sciences, ecology

4 (1.2)Oncology

4 (1.2)Telecommunications

3 (0.9)Chemistry

3 (0.9)Nursing

3 (0.9)Pharmacology, pharmacy

3 (0.9)Physics

3 (0.9)Psychiatry

3 (0.9)Psychology

3 (0.9)Rehabilitation

3 (0.9)Research experimental medicine

2 (0.6)Biotechnology, applied microbiology

2 (0.6)Endocrinology metabolism

2 (0.6)Information science, library science

2 (0.6)Linguistics

2 (0.6)Materials science

2 (0.6)Radiology, nuclear medicine, medical imaging

2 (0.6)Social sciences, other topics

2 (0.6)Surgery

1 (0.3)Automation control systems

1 (0.3)Behavioral sciences

1 (0.3)Biochemistry, molecular biology

1 (0.3)Business, economics

1 (0.3)Cell biology

1 (0.3)Construction building technology

1 (0.3)Cultural studies

1 (0.3)Gastroenterology, hepatology

1 (0.3)Instruments, instrumentation

1 (0.3)Life sciences, biomedicine, other topics

1 (0.3)Literature

1 (0.3)Mathematical computational biology
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Papers (n=344), n (%)Research areas

1 (0.3)Obstetrics, gynecology

1 (0.3)Ophthalmology

1 (0.3)Orthopedics

1 (0.3)Pediatrics

1 (0.3)Public administration

1 (0.3)Robotics

1 (0.3)Sport sciences
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Table . Classification of paper categories for the older population.

Papers (n=344), n (%)Web of Science categories

163 (47.4)Medical informatics

127 (36.9)Health care science services

58 (16.9)Public environmental occupational health

44 (12.8)Medicine general internal

37 (10.8)Health policy services

29 (8.4)Geriatrics, gerontology

24 (7.0)Gerontology

20 (5.8)Cardiac, cardiovascular systems

17 (4.9)Computer science, interdisciplinary applications

12 (3.5)Computer science, theory methods

12 (3.5)Engineering biomedical

9 (2.6)Computer science, artificial intelligence

9 (2.6)Neurosciences

8 (2.3)Multidisciplinary sciences

6 (1.7)Computer science, cybernetics

6 (1.7)Computer science, information systems

6 (1.7)Engineering electrical electronic

5 (1.5)Education, educational research

5 (1.5)Environmental sciences

4 (1.2)Engineering multidisciplinary

4 (1.2)Oncology

4 (1.2)Telecommunications

3 (0.9)Education, scientific disciplines

3 (0.9)Medicine research experimental

3 (0.9)Nursing

3 (0.9)Peripheral vascular disease

3 (0.9)Pharmacology, pharmacy

3 (0.9)Physics applied

3 (0.9)Psychiatry

3 (0.9)Rehabilitation

2 (0.6)Biotechnology, applied microbiology

2 (0.6)Chemistry multidisciplinary

2 (0.6)Clinical neurology

2 (0.6)Computer science, hardware architecture

2 (0.6)Endocrinology metabolism

2 (0.6)Environmental studies

2 (0.6)Ergonomics

2 (0.6)Green sustainable science technology

2 (0.6)Information science, library science

2 (0.6)Linguistics

2 (0.6)Materials science multidisciplinary

2 (0.6)Psychology multidisciplinary
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Papers (n=344), n (%)Web of Science categories

2 (0.6)Radiology, nuclear medicine, medical imaging

2 (0.6)Social sciences interdisciplinary

2 (0.6)Surgery

1 (0.3)Automation control systems

1 (0.3)Behavioral sciences

1 (0.3)Biochemistry, molecular biology

1 (0.3)Biology

1 (0.3)Cell biology

1 (0.3)Chemistry analytical

1 (0.3)Construction building technology

1 (0.3)Cultural studies

1 (0.3)Economics

1 (0.3)Engineering civil

1 (0.3)Engineering industrial

1 (0.3)Gastroenterology, hepatology

1 (0.3)Instruments, instrumentation

1 (0.3)Language linguistics

1 (0.3)Literature romance

1 (0.3)Mathematical computational biology

1 (0.3)Obstetrics, gynecology

1 (0.3)Ophthalmology

1 (0.3)Orthopedics

1 (0.3)Pediatrics

1 (0.3)Psychology

1 (0.3)Psychology developmental

1 (0.3)Public administration

1 (0.3)Robotics

1 (0.3)Sport sciences

General Population
The 3429 included papers were published in 1171 journals. The
top 5 journals that published the highest number of publications
included Digital Health (331/3429, 9.7%), Frontiers in Digital
Health (250/3429, 7.3%), Journal of Medical Internet Research
(185/3429, 5.4%), PLOS Digital Health (151/3429, 4.4%), and
Lancet Digital Health (143/3429, 4.2%).

When examining the broad research areas of these publications,
only those with at least 45 related publications were considered.
The leading fields (Table 3) include medical informatics

(1411/3429, 41.4%), health care science services (1357/3429,
39.8%), computer science (544/3429, 15.9%), public
environmental occupational health (506/3429, 14.8%), and
general internal medicine (305/3429, 8.9%). Specifically, when
analyzing publication source categories with at least 100
associated publications (Multimedia Appendix 1), the top 5
categories as defined by WoS are medical informatics
(1411/3429, 41.4%), health care science services (1339/3429,
39.3%), public environmental occupational health (506/3429,
14.8%), health policy services (401/3429, 11.8%), and medicine
general internal (298/3429, 8.7%).
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Table . Classification of paper research areas for the general population.

Papers (n=3429), n (%)Research areas

1411 (41.4)Medical informatics

1357 (39.8)Health care science services

544 (16.0)Computer science

506 (14.8)Public environmental occupational health

305 (8.9)General internal medicine

281 (8.2)Engineering

233 (6.8)Cardiovascular system, cardiology

175 (5.1)Education, educational research

88 (2.6)Science technology, other topics

49 (1.4)Pharmacology, pharmacy

48 (1.4)Chemistry

47 (1.4)Psychiatry

45 (1.3)Telecommunications

42 (1.2)Neurosciences, neurology

40 (1.2)Oncology

39 (1.1)Psychology

37 (1.1)Business, economics

37 (1.1)Environmental sciences, ecology

37 (1.1)Information science, library science

37 (1.1)Social sciences, other topics

35 (1.0)Surgery

34 (1.0)Instruments, instrumentation

32 (0.9)Endocrinology and metabolism

31 (0.9)Nursing

29 (0.9)Biotechnology, applied microbiology

29 (0.9)Radiology, nuclear medicine, medical imaging

28 (0.8)Research experimental medicine

26 (0.8)Communication

24 (0.7)Physics

22 (0.7)Pediatrics

18 (0.5)Genetics, heredity

17 (0.5)Biochemistry, molecular biology

17 (0.5)Materials science

16 (0.5)Gastroenterology, hepatology

16 (0.5)Mathematical computational biology

15 (0.4)Infectious diseases

15 (0.4)Linguistics

15 (0.4)Rheumatology

12 (0.4)Government law

12 (0.4)Mathematics

11 (0.3)Rehabilitation

10 (0.3)Cell biology
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Papers (n=3429), n (%)Research areas

10 (0.3)Public administration

10 (0.3)Robotics

9 (0.3)Dentistry, oral surgery medicine

9 (0.3)Medical ethics

9 (0.3)Medical laboratory technology

9 (0.3)Operations research, management science

9 (0.3)Ophthalmology

9 (0.3)Otorhinolaryngology

9 (0.3)Urology, nephrology

8 (0.2)Arts, humanities, other topics

8 (0.2)Biomedical social sciences

8 (0.2)Biophysics

8 (0.2)Geriatrics, gerontology

8 (0.2)Sociology

7 (0.2)Immunology

7 (0.2)Orthopedics

7 (0.2)Sport sciences

6 (0.2)Physiology

6 (0.2)Social issues

5 (0.2)Agriculture

5 (0.2)Allergy

5 (0.2)Automation control systems

5 (0.2)Dermatology

5 (0.2)Food science technology

5 (0.2)Imaging science, photographic technology

5 (0.2)Nutrition dietetics

5 (0.2)Obstetrics, gynecology

5 (0.2)Respiratory system

5 (0.2)Tropical medicine

4 (0.1)Life sciences, biomedicine, other topics

4 (0.1)Parasitology

3 (0.1)Acoustics

3 (0.1)Energy, fuels

3 (0.1)Hematology

3 (0.1)Microbiology

3 (0.1)Toxicology

3 (0.1)Transplantation

2 (0.1)Anesthesiology

2 (0.1)Behavioral sciences

2 (0.1)Construction building technology

2 (0.1)Cultural studies

2 (0.1)Development studies

2 (0.1)Electrochemistry
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Papers (n=3429), n (%)Research areas

2 (0.1)History, philosophy of science

2 (0.1)International relations

2 (0.1)Legal medicine

2 (0.1)Optics

2 (0.1)Philosophy

2 (0.1)Remote sensing

2 (0.1)Social work

1 (0.0)Anthropology

1 (0.0)Developmental biology

1 (0.0)Emergency medicine

1 (0.0)Ethnic studies

1 (0.0)Forestry

1 (0.0)History

1 (0.0)Mechanics

1 (0.0)Metallurgy, metallurgical engineering

1 (0.0)Meteorology, atmospheric sciences

1 (0.0)Mining, mineral processing

1 (0.0)Pathology

1 (0.0)Substance abuse

1 (0.0)Transportation

1 (0.0)Urban studies

1 (0.0)Virology

1 (0.0)Water resources

When analyzing scientific publications for both the general and
older populations, notable differences emerged in research scope
and publication volume. Research on the general population
included 3429 papers across 1171 journals, with top outlets
such as Digital Health, Frontiers in Digital Health, and Journal
of Medical Internet Research accounting for a substantial share.
The leading research areas were medical informatics, health
care sciences service, and computer science, while the most
prominent publication categories—according to WoS—were
medical informatics, health care science services, and public
environmental occupational health, alongside health policy
services and general internal medicine.

In contrast, older people–focused literature comprised 344
papers published in 147 journals, with The Lancet Digital Health
and Digital Health emerging as the most frequent sources.
Despite the lower volume, research on older people emphasized
similar domains, particularly medical informatics and health
care science services. However, it placed relatively more
emphasis on public environmental occupational health, geriatrics
and gerontology, and general internal medicine. The category

distribution further highlighted the relevance of health policy
services for aging populations, suggesting a research shift toward
addressing the specific health and policy needs of older adults.

Co-Occurrence Keywords

Older Population
The data included a total of 2102 keywords. Our analysis
included both authors’ keywords and WoS’s Keyword Plus.
The main high-frequency keywords included “artificial
intelligence” (154/2102, 7.3%), “digital health” (126/2102,
6.0%), “machine learning” (37/2102, 1.8%), “mhealth” and
“care with” 24 of 2102 (1.1%) times each, and “dementia”
(22/2102, 1.1%). Since the topic of AI was represented by quite
similar keywords (ie, “artificial intelligence,”
“artificial-intelligence,” and “ai”), they were taken together
when counting keywords’ frequency. Cluster analysis was
carried out on 120 keywords with a frequency of 5 or more, and
they were finally clustered into 4 groups (Figure 11). Cluster
sizes were set to a minimum of 15 keywords.
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Figure 11. Density map of keywords related to the role of artificial intelligence in improving older population’s well-being. In the density map, warm
colors (ie, red) represent more frequent keywords, and cold colors (ie, cyan) represent less frequent keywords.

When analyzing the clusters produced, results reveal a
comprehensive view of the multifaceted nature of DH and its
intersections with health care delivery and the needs of aging
populations. Furthermore, the analysis shows a complex
reciprocity between medication, technology, and human

behavior factors. Among older populations, mobile health
(mHealth) and dementia were emphasized, as well as risk
management and chronic conditions, indicating challenges
related to this specific population (Figure 12).
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Figure 12. Network map of keywords related to the role of artificial intelligence in improving older populations’ well-being. In the network map, the
size of dots represents their frequency, and each color represents a different allocation to a cluster.

General Population
The data included a total of 11,473 keywords. The main
high-frequency keywords included “artificial intelligence”
(1678/11,473, 14.6%), “digital health” (990/11,473, 8.6%),
“machine learning” (436/11,473, 3.8%), “care” (224/11,473,
2.0%), “deep learning” (189/11,473, 1.7%), “health”

(184/11,473, 1.6%), “technology” (164/11,473, 1.4%),
“telemedicine” (156/11,473, 1.4%), and “digital literacy”
(150/11,473, 1.3%). Similar to the older population, all AI
keywords were taken together. Cluster analysis was carried out
on 901 keywords with a frequency of 5 or more, and they were
finally clustered into 6 groups (Figure 13). Cluster sizes were
set to a minimum of 85 keywords.
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Figure 13. Density map of keywords related to the role of artificial intelligence in improving general population’s well-being. In the density map, warm
colors (ie, red) represent more frequent keywords, and cold colors (ie, cyan) represent less frequent keywords.

Further investigation of the created clusters reveals the broad
and complex nature of how AI was being applied and integrated
within the health care and DH landscapes, touching on medical,
technological, ethical, and practical considerations. Key themes

like “electronic health,” “tele medicine,” “depression,” and
“cardiovascular diseases” further underscore the diverse
applications and impacts of AI in these domains (Figure 14).
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Figure 14. Network map of keywords related to the role of artificial intelligence in improving general population’s well-being. In the network map,
the size of dots represents their frequency, and each color represents a different allocation to a cluster.

Theme Evolution

Older Population
The visual overlay (Figure 15) map reveals a dynamic evolution
of older people–related research. While earlier literature
emphasized foundational themes such as “aging,” “frailty,” and
“chronic illness,” recent years (2023-2024) have seen a

noticeable shift toward digital and psychosocial aspects.
Keywords like “telemedicine,” “social isolation,” and “digital
health” emerged as central nodes with higher average
publication years, indicating growing scholarly interest in
technology-enabled solutions for aging populations. The
clustering further demonstrates the interdisciplinary nature of
this domain, spanning public health, social sciences, and digital
innovation.
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Figure 15. Time overlay network map of the role of artificial intelligence in improving older population’s well-being.

The evolution map (Figure 16) traces the thematic development
of AI research aimed at improving older people’s well-being
across 4 distinct periods. During the foundational stage
(2018-2020), the field was rooted in core technological and
health care domains, with early emphasis on AI, DH, and mobile
and electronic health platforms (eHealth and mHealth). This
phase laid the technological groundwork for future
advancements. In the subsequent period (2021-2022), the
research landscape diversified significantly, incorporating aging,
assistive technology, dementia care, and digital literacy. Themes
such as machine learning and heart failure management gained
momentum, alongside the emergence of older people as a
distinct focus group. The 2023-2024 period marks a phase of
maturation, characterized by more applied and integrated
research. Notable themes included health monitoring
technologies (eg, chatbots), responses to COVID-19, depression

screening, and the development of user-focused tools like mobile
communication and natural language processing. Broader areas
such as patient education, telemedicine, and public health also
became more prominent. Finally, in 2025, the field further
specialized, with increasing attention to cancer care, DH literacy,
depression management, and advanced technologies like
blockchain, the Internet of Things (IoT), and implementation
science. This progression illustrates a shift from general,
technology-focused research toward more targeted,
condition-specific, and ethically grounded applications. The
persistence of foundational themes—such as DH—across all
periods, combined with the integration of human-centered
approaches and cross-disciplinary technologies, reflects the
field’s ongoing transformation into a sophisticated, practical,
and socially responsive domain addressing the complex needs
of older populations.

JMIR AI 2026 | vol. 5 | e71248 | p.65https://ai.jmir.org/2026/1/e71248
(page number not for citation purposes)

Eskinazi et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 16. The thematic evolution map for the role of AI in improving older populations’ well-being. AI: artificial intelligence; mHealth: mobile health.

General Population
The overlay map in Figure 17 illustrates the thematic landscape
of AI research in older people health care from 2021 to 2025,
with AI as the central node connecting a broad range of
applications. Surrounding clusters reflect core areas such as
DH, telemedicine, chronic disease management, and mental
health interventions. Earlier studies (2021-2022) emphasized
foundational AI concepts, digital literacy, and dementia care,

while recent research (2023-2025) shifted toward personalized
medicine, wearable technologies, and predictive analytics.
Emerging concerns such as ethics, privacy, and clinical
validation gained prominence alongside technologies like
chatbots, IoT, and mobile platforms. These developments
indicate a maturing field moving from technology acceptance
to real-world integration, highlighting AI’s growing role in
addressing both medical and psychosocial challenges in aging
populations.
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Figure 17. Time overlay network map of the role of artificial intelligence in improving the general population’s well-being.

Figure 18 illustrates the evolution of AI research in health care
across four periods: (1) 2016‐2020, (2) 2021‐2022, (3)
2023‐2024, and (4) 2025. In the first phase (2016‐2020),
research was fragmented, centered on specific health conditions
such as dementia and mental health, and marked by early
development in digital infrastructure and AI experimentation.
From 2021 to 2022, the field shifted significantly, with AI
emerging as the central hub, integrating multiple foundational
themes—ranging from health care and mental health to neural
networks and data mining. This period marked AI’s transition
from a supporting tool to a central organizing force, alongside
the rise of telemedicine and clinical decision support systems,

catalyzed by COVID-19. In 2023‐2024, research consolidated
around 3 major themes: DH, AI, and explainable AI. The
emergence of explainable AI reflects a critical shift toward trust,
interpretability, and human-centered design. This stage also
saw more systematic methodologies and validated applications,
signaling the field’s maturation. By 2025, research diversified
into practical implementation areas such as electronic health
records, biostatistics, rehabilitation, and health equity, indicating
a movement toward equitable, preventive, and personalized
health care. Ethical concerns—privacy, transparency, and
access—gained visibility, pointing to a more socially conscious
research agenda.
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Figure 18. The thematic evolution map for the role of artificial intelligence in improving the general population’s well-being. mHealth: mobile health.

Discussion

Principal Findings
The evolution of research on AI applications in digital wellness
demonstrates a marked increase in scholarly attention since
2016, with significant growth in both general and older
populations. Initially, limited studies focusing on AI’s impact
among older adults have expanded considerably, highlighting
tailored interventions such as cognitive health monitoring, fall
prevention, and chronic disease management. Despite this
growth, the research landscape remains fragmented,
characterized by small, insular collaborative networks and
regional concentration, particularly in older people–focused
studies. Influential institutions and authors serve as central nodes
within citation networks; yet, cross-group collaboration is
limited, potentially restricting interdisciplinary knowledge
exchange. Overall, these patterns reflect an emerging but still
developing field, underscoring AI’s expanding role in improving
digital wellness while revealing the need for more integrated
research efforts. This discussion systematically addresses each
of the 5 research questions posed in the introduction, providing
comprehensive insights into the current state and future
directions of this evolving field.

The Evolution of AI’s Impact on Digital Wellness in
the General and Older Populations
The evolution of AI research in digital wellness reveals distinctly
different trajectories for the general and older populations,
reflecting varying stages of technological adoption and research
maturity.

Evolution Patterns and Growth Trajectories
AI’s role in improving digital wellness has developed
substantially over the past few years. Before 2019, research on
the impact of AI in this field was limited, especially among the
older population. However, there has been a significant increase
in studies and publications on the diversification and impact of
AI applications from this year and on. For example, Wilmink
et al [28] showed a reduction of 39% in hospitalization and a
reduction of 69% in falls among older adults residing in assisted
living communities, thanks to the positive impact of AI-driven
DH platforms and wearable devices. In addition, Ramesh et al
[29] showed that the increase of cloud-based doctor systems
supported by recurrent neural networks provides proactive
monitoring and personalized care for the management of chronic
diseases. Furthermore, extensive DH programs for polychronic
conditions have shown positive results, emphasizing the need
to integrate different approaches in caring for the complex needs
of older adults [30]. This shift highlights a growing recognition
of AI’s potential to enhance DH across the general population
[2] and among older adults in particular [31,32]. Key themes
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such as AI in health care, DH, and telemedicine gained
prominence during this period [33]. As AI technologies have
advanced, they have been increasingly applied in real-world
settings to improve health management, assistive technologies,
and behavioral interventions [34].

For the general population, AI-driven digital wellness research
experienced exponential growth from 2016 onward, with
publications remaining below 100 annually until 2022, then
surging to 1083 papers in 2024. This dramatic increase
demonstrates the field’s rapid maturation and widespread
adoption of AI technologies across diverse health care
applications. The polynomial curve fitting showed a very high
coefficient of determination (R²=0.8778), indicating a
predictable and sustained growth pattern that suggests continued
expansion in the coming years.

In contrast, research focusing on the older population followed
a more gradual development path. Initially, there were few
publications on AI-driven wellness solutions among the older
population, though since 2020, the number of studies has grown,
indicating the recognition of the unique challenges the older
populations face [35]. This shift emphasizes a growing
understanding of the need to devote greater attention to the
specific digital wellness needs of older adults through AI-based
interventions, such as addressing cognitive decline and
dementia; according to Rutkowski et al [36], Graham and Depp
[37], and Wong et al [38], cognitive decline and dementia are
conditions that are expected to affect 150 million people globally
by 2050 [39]. Graham and Depp [37] state that these AI
technologies are intended to make it easier to detect cognitive
impairments in their early stage and monitor them by using
algorithms of machine learning to analyze large datasets to build
predictive models and gain insights. Zhang et al [40] and Chien
et al [41] support these findings and add that safety monitoring
systems, supported by AI technology, are being adopted to
improve older people’s quality of life within both their
communities and home environments. AI applications targeting
dementia care, risk management, and mHealth emerged in
publications after 2020 [42]. The analysis has shown that based
on the fitting curve (as shown in Figure 2), we can predict that
in the upcoming years, the annual volume of publications, for
both the general and older population, will continue to grow in
the upcoming years. The growing body of research on AI
applications for older adults, as evidenced by a sharp increase
in publications particularly from 2014 to 2022, reflects rising
scholarly and societal interest in improving the quality of life
for older individuals through technology [43].

Citation Impact and Knowledge Dissemination
Both populations demonstrated similar average citation rates
(general: 13.7 vs older people: 13.5), indicating comparable
research quality and impact despite volume differences.
However, citation patterns revealed different dynamics: general
population research peaked in citations during 2023 (10,547
citations) before declining, while older people–focused research
showed more consistent citation accumulation, peaking in 2020
(1600 citations) with subsequent stabilization. This suggests
that older people–focused research may have a more sustained

impact, potentially due to its specialized nature and targeted
application domains.

Thematic Evolution Over Time
The thematic evolution analysis revealed distinct developmental
phases for both populations. General population research
progressed from foundational AI concepts (2016‐2020)
through integration phases (2021-2022) to specialized
applications (2023-2025), with recent emphasis on explainable
AI, electronic health records, and health equity. Older
people–focused research showed a more targeted evolution,
beginning with basic DH concepts (2018-2020), expanding to
include aging-specific concerns like dementia care and assistive
technology (2021-2022), then advancing to specialized
applications including telemedicine, depression screening, and
IoT integration (2023‐2025).

Global Collaboration Patterns in AI Research on
Digital Wellness
The analysis revealed distinct collaboration patterns that reflect
both the global nature of AI research and the specialized
requirements of older people–focused studies.

General Population Collaboration Networks
Research on the general population demonstrated extensive
global collaboration, with 82 countries meeting the publication
threshold and forming four major clusters: (1) a broad alliance
led by the United States, China, and the United Kingdom,
including various African and Asian nations; (2) a
European-Asian cluster centered on Germany; (3) a
Canadian-Middle Eastern partnership; and (4) a European
consortium led by Italy and Spain. This network structure
indicates mature, well-established international research
partnerships with strong intercontinental connections.

Key bridging countries—Australia, South Africa, and
India—emerged as critical intermediaries, facilitating knowledge
exchange between otherwise separate regional clusters. These
nations enhance global integration by connecting different
research traditions and methodological approaches, contributing
to the field’s rapid advancement and diverse application
contexts.

Older Population Collaboration Patterns
Older people–focused research revealed a more concentrated
collaboration network, with 34 countries participating and
forming 3 primary clusters. The United States maintained its
central role, while strong regional partnerships emerged between
European countries and between Asian nations. Canada, Brazil,
Finland, and Israel served as bridge countries, facilitating
cross-regional collaboration despite the overall more limited
scope compared to general population research.

This more constrained network structure reflects several factors:
the specialized nature of older people–focused research,
potentially higher barriers to international coordination for
vulnerable population studies, and the field’s relative
immaturity. However, the quality of collaborations appears
strong within established clusters, suggesting effective regional
partnerships that could serve as foundations for broader
international expansion.
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Research on AI in the domain of digital wellness, specifically
in relation to the older population, is characterized by a complex
web of international collaboration, albeit with a more fragmented
landscape when compared to the general population. For the
general population, the United States, the United Kingdom,
China, and other Western nations dominate the research
landscape, forming 2 primary collaboration clusters centered
around North America and Europe and the other around China
and the Middle East. Turkey and Russia serve as bridging points
between these 2 clusters. This broader, global research network
is represented by a large number of sources, which collectively
contributed to a significant body of papers.

In contrast, the older population’s research network is relatively
more concentrated in specific regions such as North America,
Europe, and parts of Asia, with the United States being the
dominant hub. This smaller, more regionally focused
collaboration network reflects the emerging, but still
underdeveloped, nature of research on AI for older adults.

Leading Institutions in AI Research for Digital
Wellness
Institutional leadership patterns reveal both convergent and
divergent trends between general and older population research,
with implications for research capacity and future development.

Leading Institutions and Research Capacity
For general population research, 3143 institutions participated,
with top contributors including University of London (365/3143,
11.6%), Harvard University (316/3143, 10.1%), University of
Toronto (281/3143, 8.9%), Mayo Clinic (219/3143, 7%), and
University College London (219/3143, 7%). The extensive
institutional involvement (900 institutions publishing 3 or more
papers, with 880 actively collaborating) demonstrates the field’s
broad appeal and interdisciplinary nature across medical,
technological, and social science domains.

Older people–focused research involved 757 institutions, led
by University of Toronto (77/757, 10.2%), University of London
(69/757, 9.1%), National University of Singapore (48/757,
6.3%), University College London (48/757, 6.3%), and Harvard
University (43/757, 5.7%). While the absolute numbers are
smaller, the concentration of high-quality research among
leading institutions suggests strong specialized expertise
development.

Institutions contributing to AI and digital wellness research also
reflect these patterns. Top institutions including Harvard
University, Mayo Clinic, and University of Toronto have been
pivotal in advancing research on AI for the general population,
whereas institutions such as the University of Toronto,
University College London, and Mayo Clinic have played a
central role in older people–focused research. However, the
number of institutions contributing to research on older people
is far smaller, as is the number of institutions forming
collaborative networks. This suggests that while AI’s role in
digital wellness is a recognized field, the research on its different
applications for older people is still in its infancy and is more
regionally concentrated.

Institutional Collaboration Patterns
The institutional collaboration networks mirror the country-level
patterns, with general population research showing extensive
interinstitutional partnerships across 880 collaborating
institutions, while older people research demonstrated more
focused collaboration among 62 institutions. This difference
suggests that older people–focused research may benefit from
more targeted funding and collaboration initiatives to expand
institutional participation and cross-institutional knowledge
sharing.

Regional and Disciplinary Distribution
Leading institutions span multiple continents and disciplinary
backgrounds, from medical schools (Harvard and Mayo Clinic)
to comprehensive universities (University of Toronto and
University of London) and specialized technological institutes.
This diversity indicates the field’s inherently interdisciplinary
nature and the need for continued cross-sectoral collaboration
to address the complex challenges of AI-driven digital wellness.

The findings reveal a clear pattern of limited collaboration and
fragmentation within the research community studying AI
applications for health and well-being. Despite a growing body
of work in both older people–focused and general population
research, relatively few researchers contribute multiple
publications, and even fewer appear to engage in sustained
collaborative efforts. Coauthorship networks tend to be small
and internally cohesive, with minimal interaction across research
groups. This suggests that the field is largely driven by isolated
teams rather than integrated, interdisciplinary communities.

Such fragmentation may reflect the early or exploratory nature
of the field, where researchers operate within specific
institutional or disciplinary boundaries. However, this lack of
cross-group collaboration could hinder the development of more
holistic, impactful solutions, particularly in a domain that relies
on the convergence of technology, medicine, behavioral science,
and policy. The absence of broader cooperation may also limit
knowledge transfer and the sharing of best practices across
contexts and populations.

Key Journals and Publication Trends in This Field
Publication patterns reveal the field’s evolving scholarly
infrastructure and the emergence of specialized venues for older
people–focused research.

Journal Landscape and Publication Venues
General population research spans 1171 journals, with top
publications including Digital Health (331/3429, 9.7%),
Frontiers in Digital Health (250/3429, 7.3%), Journal of
Medical Internet Research (185/3429, 5.4%), PLOS Digital
Health (151/3429, 4.4%), and Lancet Digital Health (143/3429,
4.2%). This broad journal distribution indicates the field’s
interdisciplinary nature and integration across medical
informatics, health care services, computer science, and public
health domains.

Older people–focused research concentrated in 147 journals,
led by The Lancet Digital Health (33/344, 9.6%), Digital Health
(29/344, 8.4%), Journal of Medical Internet Research (24/344,
7%), and several specialized venues, each contributing 14
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publications. The higher concentration in fewer journals suggests
a more specialized publication ecosystem that may benefit from
expansion to increase visibility and accessibility.

Research Areas and Categories
Both populations showed similar emphasis on medical
informatics (general: 1411/3411, 41.4% vs older people:
163/344, 47.4%) and health care science services (general:
1357/3411, 39.8% vs older people: 129/344, 37.5%), indicating
shared foundational interests. However, notable differences
emerged in specialized areas: older people research placed
greater emphasis on geriatrics and gerontology (older people:
32/344, 9.3% vs minimal in the general population: 8/3411,
0.2%) and maintained a strong focus on public health
applications (older people: 58/344, 16.9% vs general: 506/3411,
14.8%).

When analyzing scientific publications for both the general and
older populations, notable differences emerged in research scope
and publication volume. Research on the general population
included 3429 papers across 1171 journals, with top outlets
such as Digital Health, Frontiers in Digital Health, and Journal
of Medical Internet Research accounting for a substantial share.
The leading research areas were medical informatics, health
care science services, and computer science, while the most
prominent publication categories—according to WoS—were
medical informatics, health care science services, and public
environmental occupational health, alongside health policy
services and general internal medicine.

In contrast, older people–focused literature comprised 344
papers published in 147 journals, with The Lancet Digital Health
and Digital Health emerging as the most frequent sources.
Despite the lower volume, research on older people emphasized
similar domains, particularly medical informatics and health
care science services. However, it placed relatively more
emphasis on public environmental occupational health, geriatrics
and gerontology, and general internal medicine. The category
distribution further highlighted the relevance of health policy
services for aging populations, suggesting a research shift toward
addressing the specific health and policy needs of older adults.

Publication Quality and Impact
The presence of high-impact journals like The Lancet Digital
Health and established venues like Journal of Medical Internet
Research in both publication lists indicates strong research
quality across populations. However, the emergence of newer,
specialized journals (Digital Health and Frontiers in Digital
Health) suggests the field’s rapid evolution and the need for
diverse publication venues to accommodate different research
approaches and target audiences.

Emerging Themes in AI Research for Digital Wellness
Keyword analysis and thematic evolution mapping revealed
distinct research themes and emerging trends that reflect both
technological advancement and population-specific needs.

General Population Research Themes
The general population research encompassed 11,473 keywords,
with dominant themes including AI (n=1678), DH (n=990),
machine learning (n=436), care (n=224), and deep learning

(n=189). Six major thematic clusters emerged, representing (1)
core AI technologies and machine learning applications, (2) DH
infrastructure and telemedicine, (3) chronic disease management
and clinical applications, (4) mental health and behavioral
interventions, (5) data science and predictive analytics, and (6)
ethical considerations and implementation challenges.

Recent thematic developments (2023‐2025) emphasize
explainable AI, personalized health care, electronic health record
integration, and health equity considerations. These trends
indicate the field’s maturation from basic AI applications toward
more sophisticated, ethically informed, and socially responsible
implementations. The thematic evolution maps (Figures 17 and
18) show that between 2016 and 2020, keywords were more
condition-specific (eg, “dementia” and “mental health”) and
focused on foundational technologies (“neural networks” and
“digital health”). From 2021 to 2022, the field consolidated
around “artificial intelligence” as a central hub, integrating
emerging themes such as “deep learning,” “data mining,” and
“telemedicine.” In 2023‐2024, we see a strong emergence of
“explainable AI” and “digital health” as interconnected cores,
reflecting a shift toward trust, usability, and integration into
clinical contexts. By 2025, new themes like “health equity,”
“personalized medicine,” and “rehabilitation” appear, suggesting
a broadening of AI applications toward socially conscious and
condition-specific interventions.

The practical applications of AI in digital wellness are diverse
and continually developing for both populations. Among the
general population, AI is increasingly embedded into mHealth
apps, telemedicine, and wearables, with a growing focus on
personalized health care and disease prevention. Notable trends
include the use of AI to manage chronic conditions such as
cardiovascular diseases, diabetes, and mental health conditions.
The application of AI to monitor physical activity, detect early
warning signs of disease, and support clinical decision-making
has proven to be particularly beneficial, as shown by the
exponential increase in publications post-2019, reaching 717
papers in 2024 for the general population. This growth trajectory
is reflected in the high citation impact of these papers, with an
average citation rate of 12.6 per paper and a peak of 6080 total
citations in 2021.

Older Population Research Themes
Older people–focused research involved 2102 keywords, with
key themes including AI (n=154), DH (n=126), machine
learning (n=37), mHealth (n=24), care (n=24), and dementia
(n=22). Four primary clusters emerged: (1) AI technologies
adapted for aging populations, (2) mHealth and assistive
technologies, (3) dementia care and cognitive health monitoring,
and (4) risk management and chronic condition support.

The thematic evolution for older populations showed progression
from basic aging concepts (2018‐2020) through technology
integration (2021‐2022) to specialized applications including
telemedicine, social isolation interventions, and IoT-based
monitoring systems (2023‐2025). Notably, themes like “social
isolation,” “fall detection,” and “digital literacy” became
increasingly prominent, reflecting the field’s growing attention
to older people–specific challenges. The older people thematic
evolution maps (Figures 15 and 16) illustrate a similar
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centralization of “artificial intelligence” in 2021‐2022, but
with stronger connections to socially relevant and
accessibility-focused terms. Early-stage keywords such as
“digital literacy,” “dementia,” and “mHealth” persisted across
later periods, indicating sustained relevance. From 2023 onward,
specialized topics like “social isolation” and “IoT” emerged
alongside “telemedicine,” marking a shift toward holistic digital
wellness interventions that address both medical and
psychosocial needs. By 2025, novel themes like “biomarkers”
and “rehabilitation” point to a growing integration of AI into
precision health monitoring and recovery processes tailored for
older adults.

The development of AI applications that are intended for older
people mainly focuses on tailored interventions in fields such
as mobility, cognitive wellness, and chronic health management.
Studies [44-49] have shown that applications such as virtual
health care, fall prevention, and dementia care are gaining more
and more momentum, which emphasizes the importance of
building AI-driven systems focused on remote monitoring,
enhancing the older population’s daily living routines, and
reducing their social isolation. Recent work by Makmee and
Wongupparaj [50] further supports this direction, demonstrating
the effectiveness of virtual reality (VR)–based cognitive
interventions—complemented by behavioral and
electroencephalography evidence—in improving cognitive
functions and well-being among older adults with mild cognitive
impairment. AI’s role in assisting aging individuals with
activities of daily living, enhancing safety, and improving mental
health through virtual assistants or therapy applications
represents a promising frontier for improving digital wellness
among older people. Smart home systems and wearables have
been shown to support independence by providing personalized
care, fall detection, and real-time health monitoring [51-55].
These technologies not only enhance safety and autonomy but
also address barriers such as usability, cost, and privacy while
offering opportunities for improved health outcomes and quality
of life.

Emerging Interdisciplinary Themes
Several cross-cutting themes emerged across both populations:
(1) ethical AI implementation, with growing emphasis on
transparency, fairness, and accountability; (2) personalized
health care approaches leveraging AI for individualized
interventions; (3) integration of IoT and wearable technologies
for continuous monitoring; (4) social and behavioral factors in
technology adoption; and (5) policy and implementation science
considerations for real-world deployment.

For older populations specifically, emerging themes include (1)
age-friendly AI design principles, (2) intergenerational
technology support models, (3) cognitive accessibility in AI
interfaces, (4) privacy and security considerations for vulnerable
populations, and (5) family and caregiver integration in
AI-supported care systems.

The rapid growth of publications in this field after 2019
corresponds with evolving research themes identified in keyword
co-occurrence and topic modeling analyses. Key terms such as
personalized health care, chronic disease management, virtual
assistants, and smart home systems have emerged as dominant

themes. For the older people subgroup, keywords highlight a
growing interest in fall detection, dementia care, social isolation,
and ethical AI. These patterns suggest a shifting research focus
from general DH applications toward more inclusive and
population-specific interventions, reinforcing the importance
of designing AI solutions that address both medical and
psychosocial aspects of well-being.

Synthesis and Future Directions
As the global population continues to age, there is a need to
strengthen international and institutional collaborations in
developing models and AI technologies dedicated to improving
older people’s digital well-being. Given the rapidly increasing
research interest in AI applications for older adults, as evidenced
by the exponential growth in scientific publications, expanded
interdisciplinary and international collaborations are essential
to address the growing demand for digital solutions.

Future research directions should address several critical gaps
identified in the current literature. First, the acceptance of
AI-based conversational agents for managing noncommunicable
diseases among older adults remains inadequately evaluated,
presenting a significant opportunity for research [8]. Studies
should focus on adapting established acceptance frameworks
to specific health care contexts and emerging AI technology
innovations, particularly, as AI chatbots and virtual health
assistants become more prevalent in health care delivery.

Future studies should strive to clarify the impact and
effectiveness of tailored AI interventions for older people,
testing their therapeutic effectiveness, ethical implications,
accessibility, and socioeconomic influence [56]. The current
bibliometric analysis revealed a discontinuous research network
between countries regarding research focused on older people,
suggesting, as noted by Koç [57], an opportunity for extensive
global knowledge-sharing and research collaborations.

Research should also investigate the role of visual
demonstrations in enhancing technology acceptance, as a
meta-analysis made by Yang et al [10] suggests that visual
demonstrations significantly enhance both perceived usefulness
and social influence relationships with behavioral intention.
This finding has practical implications for technology training
programs and interface design for older adults. Future research
should explore the underlying cultural, economic, and
infrastructural factors that contribute to regional differences in
technology acceptance among older adults. Such studies could
inform culturally sensitive technology design and
implementation strategies.

The accessibility and use of AI within wellness systems among
the older population should be given adequate attention, as this
is a subgroup that is often challenged by the use of technology.
Following the findings of Htet et al [58] and Zhao and Li [59],
policymakers, health care providers, and technology developers
must work together to ensure that AI tools are designed in a
way that is inclusive and user-friendly for older individuals,
enabling them to harness the full potential of digital wellness
innovations. Specifically, Li et al [60] and Wu et al [61]
suggested that a person-centered approach should be prioritized
to ensure that these AI-driven systems are equitable, transparent,
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and validated for the older population. This approach should
include innovations such as AI-driven VR games and smart
older people care systems, provide real-time support, and
enhance social connectivity and well-being.

Longitudinal studies examining the transition from acceptance
to sustained use are crucial, particularly focusing on continuance
intention and long-term adherence to DH technologies [62].
Research should investigate how initial acceptance factors
evolve over time and identify critical points where interventions
might be most effective in maintaining engagement.

The development and validation of age-specific TAMs is another
important research direction. While TAM and the unified theory
of acceptance and use of technology provide valuable
frameworks, studies suggest that additional constructs such as
perceived irreplaceability, perceived credibility, and
compatibility may be particularly relevant for older adults [62].
Future research should work toward developing comprehensive
models that better capture the unique considerations of older
technology users.

Finally, research should focus on preparing middle-aged adults
for aging through technological competency development [16].
This proactive approach could help address the digital divide
before it becomes entrenched, with studies needed to identify
optimal timing, methods, and content for technology preparation
interventions targeting pre-older populations.

In addition, future research should provide more specific
methodological guidance to advance the field. For example,
mixed methods designs combining quantitative longitudinal
data with qualitative insights from older people can elucidate
both adoption patterns and lived experiences with AI
technologies. Experimental studies testing the efficacy of
tailored AI interventions, such as AI-driven virtual assistants
or VR rehabilitation tools, would clarify therapeutic benefits
and user engagement. Methodological innovations like
ecological momentary assessment and real-time data capture
through wearables can provide granular insights into daily
technology use and health outcomes. Interdisciplinary
collaborations should be encouraged between computer
scientists, gerontologists, behavioral economists, ethicists, and
health care practitioners to foster holistic AI solutions that are
technically sound, ethically responsible, and aligned with older
adults’needs. Platforms enabling open data sharing and multisite
trials would accelerate knowledge accumulation and
generalizability. Addressing ethical considerations, such as
transparency, privacy, and consent, should be embedded
throughout the research design. These focused recommendations
aim to guide researchers in designing rigorous, relevant, and
impactful studies that move beyond acceptance to sustained,
equitable AI adoption among aging populations.

Finally, the future of AI in digital wellness holds immense
promise. Still, as also mentioned by Zhao and Li [59] and
Eziamaka et al [63], it requires continued research, collaboration,
and thoughtful implementation to ensure that it benefits all
demographic groups, especially older people, in a way that is
equitable, effective, and sustainable.

The systematic analysis of this study’s 5 research questions
reveals both the promising trajectory of AI in digital wellness
and the critical need for more inclusive, older people–focused
research and development. While general population research
has achieved significant scale and international collaboration,
older people–focused research remains more specialized and
regionally concentrated, representing both a challenge and an
opportunity for field development.

The convergence of themes around personalized care, ethical
implementation, and real-world application suggests the field’s
evolution toward more mature, socially responsible AI
deployment. However, the persistent gaps between general and
older population research indicate the need for targeted
interventions to ensure equitable technological advancement
and accessibility.

Future research should prioritize (1) expanding international
collaboration in older people–focused AI research; (2)
developing age-appropriate AI technologies that address specific
challenges of aging populations; (3) strengthening the
publication infrastructure for older people–focused digital
wellness research; (4) fostering interdisciplinary partnerships
that bridge technological innovation with gerontological
expertise; and (5) ensuring ethical, accessible, and culturally
sensitive AI implementations that serve diverse aging
populations worldwide.

Policy Implications and Recommendations
Building on the evidence presented in this study, several targeted
policy interventions are necessary to bridge the existing research
and implementation gaps in AI applications for older people’s
digital wellness. National research funding agencies, such as
the National Institutes of Health, UK Research and Innovation,
and Horizon Europe, should explicitly prioritize funding for AI
projects that focus on aging populations. Our findings indicate
a disproportionately smaller volume of older people–specific
research despite global demographic trends. To address this,
funding calls should require the inclusion of older adults as a
central population group; promote interdisciplinary research
designs involving gerontology, computer science, and public
health; and mandate ethical assessments tailored to this
demographic.

In addition to strategic funding, there is a clear need to
incentivize cross-sector collaboration. Policymakers should
support or cosponsor research initiatives that foster partnerships
among universities, health care providers, and technology
developers. The fragmented nature of coauthorship and
institutional networks in older people–focused AI research
underscores the value of consortia-based models. Initiatives
similar to the European Union’s Horizon AI and Aging programs
could encourage data sharing, coordinated trials, and the scaling
of successful tools.

To ensure inclusivity in technological design, regulatory bodies
must implement guidelines that mandate age-friendly design
principles in DH technologies. These should encompass
enhanced accessibility features such as larger interfaces and
audio guidance, digital literacy support, and simplified user
interactions. Existing frameworks, like the Web Content
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Accessibility Guidelines, can serve as a model for integrating
older people’s usability criteria into national and international
AI standards.

Public health policy should also prioritize the development of
community-based digital literacy programs. Lifelong learning
initiatives, especially at the municipal and regional levels, can
play a vital role in empowering older adults. AI-supported
tools—such as virtual tutors or gamified interfaces—should be
leveraged to build digital confidence and self-efficacy among
older people. Partnerships with nongovernmental organizations,
older people centers, and libraries can facilitate the
implementation of “AI Literacy for Seniors” programs that align
with broader technological transformations in health care and
public services.

Furthermore, ethical oversight of AI systems must be enhanced
through the inclusion of gerontological expertise on ethics
review boards. This would help ensure that reviews account for
the unique vulnerabilities of aging populations, including
algorithmic bias, informed consent challenges, and data
sensitivity. International bodies such as the World Health
Organization, Organisation for Economic Co-Operation and
Development, and national AI task forces can integrate this
recommendation into their broader AI governance structures.

Finally, the establishment of robust monitoring and evaluation
frameworks is essential to assess the impact of AI interventions
on older people’s wellness. These systems should track clinical
outcomes as well as psychosocial well-being, levels of digital
engagement, and barriers to technology adoption. The
development of standardized indicators and public reporting
mechanisms will support transparency, informed resource
allocation, and evidence-based policymaking.

These policy recommendations align with global priorities,
including the World Health Organization’s “Decade of Healthy
Ageing” and the United Nations Sustainable Development Goals
(SDG; specifically SDG 3 and SDG 10). By embedding these
strategies into national and international policy agendas,
stakeholders can ensure that AI-driven digital wellness initiatives
contribute to more equitable health outcomes and do not
inadvertently exacerbate existing disparities among older adults.

Limitations and Potential Biases
This study has several limitations that should be acknowledged.
First, the analysis relied exclusively on the WoS Core
Collection, which, although known for its high-quality indexing,
may exclude relevant studies found in other databases such as
Scopus, PubMed, or regional and domain-specific repositories,
thus introducing database bias. Second, only English-language
publications were included, potentially omitting significant
contributions published in other languages (language bias).
Third, the analysis focused on peer-reviewed papers, reviews,
and conference proceedings, thereby excluding gray literature,
policy reports, and other nonindexed formats that may contain
valuable insights (publication bias). Citation bias is also a
concern, as bibliometric visualizations often emphasize highly
cited papers, favoring older or more mainstream studies while
underrepresenting newer or niche research. Temporal bias may
have occurred, particularly for publications from 2024 to 2025,

which may not yet have had sufficient time to accumulate
citations. Keyword selection bias may have affected retrieval,
as the search strategy was limited to predefined terms related
to AI, digital wellness, and aging; relevant papers using
alternative or emerging terminology may have been excluded.
Additionally, visualization tools such as VOSviewer and
Bibliometrix, while robust, are influenced by algorithmic
thresholds and clustering techniques that can oversimplify
complex thematic structures. The binary logic used in the
SRCH_STR_ALL and SRCH_STR_OLD search strings may
have artificially separated studies that address both general and
older populations. Finally, the interpretation of bibliometric
maps and clusters involves an element of subjectivity, as visual
proximity does not always reflect substantive thematic or
intellectual similarity.

Conclusions
This study provided an in-depth bibliometric analysis of the
intersection between AI and digital wellness with a comparison
of the older population to the general population. The findings
demonstrate a rapid growth in AI research across both the
general and older populations, highlighting key trends,
challenges, and opportunities within the field. Although
AI-driven digital wellness has garnered increasing attention in
recent years, it is evident that there remain substantial gaps,
particularly in addressing the unique needs of older adults.

Key findings from our analysis reveal markedly different
development trajectories between general and older
people–focused research in AI-driven digital wellness. General
population studies expanded rapidly over recent years, while
older people–focused research followed a slower, more gradual
path, gaining momentum only in the past few years. Although
both areas achieved comparable citation impact, older people
research demonstrated more consistent long-term influence.
Collaboration patterns also differed, with general studies
forming extensive, globally connected networks, whereas older
people research remained concentrated in fewer countries and
clusters, indicating untapped opportunities for international
partnerships. Institutional participation was far broader in
general research, while older people–focused studies were driven
by a smaller set of leading organizations. Publication patterns
reflected these differences, with older people research
concentrated in a limited number of journals emphasizing
geriatrics, gerontology, and public health, compared to the
broader medical informatics scope of general studies. Thematic
analysis showed general research advancing toward explainable
AI and health equity, while older people–focused work
prioritized dementia care, assistive technologies, and IoT-based
monitoring, alongside emerging attention to issues such as social
isolation and digital literacy. However, limited cross-population
collaboration and network fragmentation remain as barriers to
integrated, holistic solutions. Addressing these gaps will require
targeted policy measures, including age-friendly design
standards, digital literacy programs, dedicated funding
mechanisms, and strengthened ethical oversight for AI serving
older populations.

In conclusion, this research contributes valuable insights into
the role of AI in enhancing the digital wellness of older people
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while also highlighting the disparities between the general and
older populations in terms of research focus and technological
adoption. As the field continues to evolve, it is crucial that future
policy, research, and development efforts prioritize the inclusion
of vulnerable populations. By addressing the unique needs of
older adults, society can ensure that they are not only able to
keep pace with technological advancements but are also
empowered to thrive in an increasingly AI-driven world.

Looking toward the future, AI research in improving digital
well-being among older people holds immense promise for
transforming how we approach aging in the digital era. The
convergence of emerging technologies—including explainable
AI, IoT, VR, and advanced machine learning
algorithms—presents unprecedented opportunities to develop
more personalized, accessible, and effective interventions for
older populations. Future research is likely to focus on creating
AI systems that not only address medical and physical health
needs but also tackle psychosocial challenges such as social
isolation, depression, and cognitive decline through intelligent
companion systems, predictive health monitoring, and adaptive
user interfaces.

The evolution toward more human-centered AI design will be
particularly crucial, emphasizing transparency, trust-building,
and ethical considerations that are paramount when serving
vulnerable populations. As our analysis demonstrates, the field
is moving from basic technology acceptance toward
sophisticated, real-world implementations that integrate
seamlessly into older adults’ daily lives. Future developments
will likely prioritize cultural sensitivity, intergenerational
connectivity, and the creation of AI ecosystems that empower
rather than replace human agency.

Furthermore, the anticipated expansion of international
collaboration networks and the establishment of standardized
evaluation frameworks will accelerate the translation of research
findings into practical, scalable solutions. The next decade will
likely witness the emergence of comprehensive AI-powered
platforms that holistically address the complex, interconnected
challenges of aging while ensuring digital equity and inclusion.
Success in this endeavor will require continued interdisciplinary
collaboration, sustained investment in older people–focused
research, and a commitment to developing technologies that
truly serve the diverse needs and preferences of aging
populations worldwide.
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Abstract

Artificial intelligence (AI) is increasingly used to support medical interpreting and public health communication, yet current
systems introduce serious risks to accuracy, confidentiality, and equity, particularly for speakers of low-resource languages.
Automatic translation models often struggle with regional varieties, figurative language, culturally embedded meanings, and
emotionally sensitive conversations about reproductive health or chronic disease, which can lead to clinically significant
misunderstandings. These limitations threaten patient safety, informed consent, and trust in health systems when clinicians rely
on AI as if it were a professional interpreter. At the same time, the large data sets required to train and maintain these systems
create new concerns about surveillance, secondary use of linguistic data, and gaps in existing privacy protections. This viewpoint
examines the ethical and structural implications of AI–mediated interpreting in clinical and public health settings, arguing that
its routine use as a replacement for qualified interpreters would normalize a lower standard of care for people with Non-English
Language Preference and reinforce existing health disparities. Instead, AI tools should be treated as optional, carefully evaluated
supplements that operate under the supervision of trained clinicians and professional interpreters, within clear regulatory guardrails
for transparency, accountability, and community oversight. The paper concludes that language access must remain grounded in
human expertise, language rights, and structural commitments to equity, rather than in cost-saving promises of automated systems.

(JMIR AI 2026;5:e88651)   doi:10.2196/88651
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Introduction

Artificial Intelligence (AI) is rapidly being integrated into public
health practice [1]. Among its most visible and controversial
uses are AI-mediated interpreting services, including real-time
translation platforms and chatbot-based tools [2]. These
technologies are promoted as scalable solutions to improve
access for individuals with Non-English Language Preference
(NELP), a population estimated to include more than 25 million
people in the United States [3]. However, the use of these
systems for medical interpretation raises immediate ethical
concerns related to accuracy, autonomy, and equity.
Acknowledging these realities, this viewpoint focuses not on
whether AI tools can be preferable to no interpretation at all,
but on the ethical and structural risks of normalizing
AI-mediated interpreting as an acceptable substitute for qualified
language services in routine clinical care.

In light of these concerns, uncritical adoption of AI interpreting
poses ethical and structural risks, particularly for patient safety,
autonomy, and equity [4]. Unlike professional interpreters who
are trained to manage cultural nuance and medical terminology
[5], AI systems rely on training data that often underrepresent
Indigenous languages, regional dialects, and community-specific

expressions [6]. Errors in translation can compromise informed
consent, distort sensitive conversations about reproductive health
or chronic disease, and undermine trust in both clinical
encounters and public health communication [7].

These concerns are reflected in current evaluations of AI
translation tools. Systematic reviews show that although AI
translation tools can perform reasonably well when translating
from English, accuracy declines substantially when translating
into English, particularly for non-European languages [8].
Technical research has documented incremental improvements
in grammatical recognition, such as tense translation in
Chinese-English systems, but these advances remain limited to
controlled corpora (ie, collections of text and speech data used
to develop and evaluate machine translation models) and fail
to capture the cultural and contextual dimensions essential to
health care [9]. The integrity of AI translation research has also
been questioned due to persistent concerns regarding evaluation
practices, transparency, and reproducibility in AI-based language
systems [10]. Such developments highlight not only technical
shortcomings but also broader concerns about hype, oversight,
and accountability.

Taken together, these issues reveal why AI translation cannot
be treated as a substitute for professional interpretation in public
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health practice. Instead, its use must be guided by ethics, equity,
and structural competency, ensuring that efficiency and
cost-effectiveness do not come at the expense of accuracy,
patient rights, and trust. This viewpoint analyzes the ethical
risks of AI-mediated interpreting, outlines guardrails for
responsible implementation, and considers policy implications
for equitable integration.

Technical and Linguistic Limitations of AI
Interpretation

The technical performance of AI interpretation tools reveals
both progress and persistent shortcomings [8]. Most systems
are built on large-scale neural machine translation models that
optimize statistical accuracy across widely spoken languages
[11]. However, this optimization produces systematic blind
spots: performance is strongest for languages with abundant
training data and weakest for low-resource and Indigenous
languages [12]. In this context, “low-resource languages” refers
to languages for which limited digitized text, speech data, or
annotated training materials are available for AI model
development. Such disparities are not trivial—they map onto
global and domestic inequities, leaving the very populations
most dependent on language access at greater risk of
miscommunication. Although AI translation systems may
perform comparatively better for high-resource languages such
as Spanish, any potential benefit is highly context-dependent
and limited to low-risk scenarios where professional
interpretation is unavailable; differential performance across
languages raises serious equity and safety concerns.

For example, consider a routine outpatient encounter in which
a patient with NELP describes intermittent chest tightness using
an idiomatic expression that, when rendered literally by an AI
translation system, is conveyed as “discomfort” rather than
“pressure.” The clinician, relying on the translated output, may
interpret the symptom as benign and defer further evaluation.
A professional interpreter, by contrast, would be trained to
clarify the patient’s meaning, recognize the potential clinical
significance, and convey the urgency embedded in the original
phrasing. In this scenario, the translation error is subtle rather
than overt, yet it meaningfully alters clinical interpretation and
risk assessment, illustrating how AI-mediated interpreting can
introduce safety risks without obvious signals of failure.

Apart from language availability, AI models struggle with the
communicative complexity of health encounters. Clinical
communication frequently involves layered terminology, idioms,
and pragmatic features such as hedging or expressions of
uncertainty [13]. Because most AI translation systems are still
trained on broad, nonmedical data, they often produce literal
word-for-word renderings rather than contextually accurate
translations [14]. In clinical and public health settings, this can
shift the tone and meaning of communication—for example,
turning cautious or conditional medical advice into statements
that sound definitive, or softening urgent guidance into

something that appears optional. Such distortions not only
change the information being conveyed but also risk
undermining patients’understanding, informed decision-making,
and trust in health professionals.

Context dependence is another unresolved challenge. While
technical evaluations often report improvements in grammatical
recognition or lexical choice, these gains are typically
demonstrated in isolated sentence-level translations [15]. Real
encounters involve extended dialogue, code-switching, and
back-and-forth clarification—conditions under which current
systems exhibit degradation in coherence and consistency [14].
For example, terminology may be translated differently within
the same conversation, leading to patient confusion about
diagnoses, treatment instructions, or medication use.

Finally, AI translation models are not designed to detect when
they are likely to fail. Unlike human interpreters, who can
request clarification or signal uncertainty, the AI outputs are
delivered with apparent confidence regardless of underlying
accuracy [16]. This “confidence illusion” increases the danger
of undetected errors in high-stakes environments such as
emergency care or consent discussions.

Taken together, these limitations demonstrate that the technical
progress of AI interpreting remains insufficient to guarantee
accuracy, consistency, and safety in public health and clinical
practice.

Data Security and Confidentiality Risks

Beyond issues of accuracy, AI-mediated interpreting also raises
serious concerns regarding data security and patient
confidentiality. Most commercially available translation and
chatbot systems are hosted on external servers and require
transmitting speech or text data across networks outside the
clinical environment. This creates risks of unauthorized access,
data storage without consent, or secondary uses of sensitive
information such as marketing or algorithm training [17]. In
public health practice, these risks are not hypothetical—leaked
or improperly managed health data can expose entire
communities to stigma, discrimination, or even legal jeopardy.

Such vulnerabilities directly conflict with existing privacy
frameworks such as the Health Insurance Portability and
Accountability Act (HIPAA) in the United States, which
mandates strict safeguards around the handling of protected
health information [18]. Unlike professional interpreters, who
are trained to maintain confidentiality and bound by institutional
or legal standards, AI systems have no inherent mechanism for
accountability when breaches occur [19]. Furthermore, patients
may be unaware that their personal health details are being
routed through third-party systems, limiting their ability to
provide meaningful informed consent. Table 1 summarizes key
risks and ethical implications of AI-mediated interpretation in
public health.
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Table . Risks and ethical implications of AI-Mediated interpreting in clinical Encounters.

Clinical implicationsKey risks identifiedDomain

Incorrect clinical interpretation; inappropriate
triage/management; documentation errors

Literal rendering; inconsistent term mapping;
unflagged uncertainty (“confidence illusion”)

Linguistic

accuracy

Unequal communication quality; differential risk
of error; exacerbation of disparities

Performance gaps by language data availability;
limited support for Indigenous/low-resource va-
rieties

Equity in access

Compromised informed consent; delayed diagno-
sis/treatment; avoidable harm

Distorted hedging/urgency; loss of pragmatic
meaning in sensitive topics

Patient safety and informed consent

Unauthorized disclosure risk; reduced willingness
to disclose; legal/compliance exposure

Third-party processing/storage; unclear reten-
tion/secondary use; weak auditability

Confidentiality and data security

Erosion of language rights; reduced trust in insti-
tutions; reinforcement of structural inequities

Substitution for qualified interpreters; normaliza-

tion of a lower standard for NELPa patients

Ethical and structural implications

aNELP: Non-English Language Preference.

These data governance gaps highlight that the risks of AI
interpretation are not only linguistic but structural. Without
enforceable standards for data handling, encryption, and storage,
reliance on AI tools for medical or public health communication
could compromise patient trust and institutional integrity, with
downstream effects on care-seeking and participation in public
health programs.

This table summarizes key domains of risk associated with
AI-mediated interpreting and their clinical implications. No
numerical data were generated.

Ethical Considerations

Ethics approval was not applicable as this viewpoint does not
involve human participants, human data, human tissue, or any
identifiable personal data.

Conclusion

AI-mediated interpreting illustrates the tension between
technological innovation and public health responsibility. These
tools expand access and promise efficiency for populations with
NELP, but their current limitations—ranging from linguistic
inaccuracies to data security vulnerabilities—pose risks that
threaten patient safety, confidentiality, and trust. Treating AI
as a replacement for professional interpretation risks normalizing
inequities and undermining ethical obligations to protect
vulnerable communities.

The path forward is not outright rejection but cautious,
principled integration. AI tools may serve as supplemental aids
when professional interpreters are unavailable, but their
deployment must be governed by enforceable standards for
accuracy, transparency, and privacy. Some limited
applications—such as translation of standardized materials or
carefully constrained use in high-resource languages—may
warrant cautious exploration. Even in these contexts, however,
variability in dialect, health literacy, and clinical framing limits
assumptions of safety and underscores the need for clear
boundaries and oversight rather than broad endorsement.

Responsibility for establishing and enforcing these guardrails
is shared. Health systems and public health agencies play a
central role through procurement decisions, staff training, and
oversight of clinical use, while technology vendors must ensure
transparency around model limitations, data handling, and
intended use. Regulators and accrediting bodies can reinforce
these efforts by setting minimum standards for certification and
independent auditing, particularly for tools used in high-stakes
clinical and consent-related encounters. Framing AI-mediated
interpreting as a patient safety issue, rather than solely a
cost-saving tool, is essential to ethical and equitable
implementation.

Recognizing language access as both a structural competency
and a patient right is essential. Ultimately, aligning technological
adoption with ethical safeguards and obligations will determine
whether AI in public health functions as a bridge to equity or a
source of new disparities.
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Abstract

Background: Leukemia treatment remains a major challenge in oncology. While thiadiazolidinone analogs show potential to
inhibit leukemia cell proliferation, they often lack sufficient potency and selectivity. Traditional drug discovery struggles to
efficiently explore the vast chemical landscape, highlighting the need for innovative computational strategies. Machine learning
(ML)–enhanced quantitative structure-activity relationship (QSAR) modeling offers a promising route to identify and optimize
inhibitors with improved activity and specificity.

Objective: We aimed to develop and validate an integrated ML-enhanced QSAR modeling workflow for the rational design
and prediction of thiadiazolidinone analogs with improved antileukemia activity by systematically evaluating molecular descriptors
and algorithmic approaches to identify key determinants of potency and guide future inhibitor optimization.

Methods: We analyzed 35 thiadiazolidinone derivatives with confirmed antileukemia activity, removing outliers for data quality.
Using Schrödinger MAESTRO, we calculated 220 molecular descriptors (1D-4D). Seventeen ML models, including random
forests, XGBoost, and neural networks, were trained on 70% of the data and tested on 30%, using stratified random sampling.
Model performance was assessed with 12 metrics, including mean squared error (MSE), coefficient of determination (explained

variance; R2), and Shapley additive explanations (SHAP) values, and optimized via hyperparameter tuning and 5-fold
cross-validation. Additional analyses, including train-test gap assessment, comparison to baseline linear models, and cross-validation
stability analysis, were performed to assess genuine learning rather than overfitting.

Results: Isotonic regression ranked first with the lowest test MSE (0.00031 ± 0.00009), outperforming baseline models by over
15% in explained variance. Ensemble methods, especially LightGBM and random forest, also showed superior predictive

performance (LightGBM: MSE=0.00063 ± 0.00012; R2=0.9709 ± 0.0084). Training-to-test performance degradation of LightGBM

was modest (ΔR2=–0.01, ΔMSE=+0.000126), suggesting genuine pattern learning rather than memorization. SHAP analysis
revealed that the most influential features contributing to antileukemia activity were global molecular shape (r_qp_glob; mean
SHAP value=0.52), weighted polar surface area (r_qp_WPSA; ≈0.50), polarizability (r_qp_QPpolrz; ≈0.49), partition coefficient
(r_qp_QPlogPC16; ≈0.48), solvent-accessible surface area (r_qp_SASA; ≈0.48), hydrogen bond donor count (r_qp_donorHB;
≈0.48), and the sum of topological distances between oxygen and chlorine atoms
(i_desc_Sum_of_topological_distances_between_O.Cl; ≈0.47). These features highlight the importance of steric complementarity
and the 3D arrangement of functional groups. Aqueous solubility (r_qp_QPlogS; ≈0.47) and hydrogen bond acceptor count
(r_qp_accptHB; ≈0.44) were also among the top 10 features. The significance of these descriptors was consistent across multiple
algorithmic models, including random forest, XGBoost, and partial least squares approaches.
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Conclusions: Integrating advanced ML with QSAR modeling enables systematic analysis of structure-activity relationships in
thiadiazolidinone analogs on this dataset. While ensemble methods capture complex patterns with high internal validation metrics,
external validation on independent compounds and prospective experimental testing are essential before broad therapeutic claims
can be made. This work provides a methodological foundation and identifies molecular features for future validation efforts.

(JMIR AI 2026;5:e81552)   doi:10.2196/81552

KEYWORDS

anti-leukemia; thiadiazolidinones; TDZD analogs; artificial intelligence; machine learning; quantitative structure-activity
relationship; QSAR; small-molecule inhibitors; drug discovery; precision oncology; Shapley additive explanations analysis

Introduction

Leukemia remains a formidable challenge in oncology, largely
due to the persistence of leukemia stem cells (LSCs), which
drive disease relapse through intrinsic resistance to conventional
chemotherapy [1]. While standard treatments effectively target
proliferating leukemic blast cells, LSCs evade destruction by
leveraging quiescence and enhanced survival mechanisms, such
as dysregulated kinase signaling and adaptation to oxidative
stress [1]. Thiadiazolidinone analogs, notably
thiadiazolidinone-8, comprise a promising family of molecules
that selectively induce rapid cell death in LSCs via a dual
mechanism: (1) inhibition of glycogen synthase kinase 3β
(GSK3β), and (2) triggering oxidative collapse [1]. Molecular
docking and simulation studies suggest that thiadiazolidinone-8
might bind to an allosteric hydrophobic pocket in GSK3β’s
inactive “DFG-out” conformation, preventing reactivation and
disrupting prosurvival pathways, while simultaneously depleting
intracellular thiols to disrupt membrane integrity within 2 hours,
achieving 85% to 93% lethality in primary acute myeloid
leukemia, acute lymphoblastic leukemia, and chronic
lymphoblastic leukemia specimens at 20 μM. Critically,
thiadiazolidinone-8 spares normal hematopoietic stem cells
(79.5% viability) and significantly reduces engraftment of
leukemic cells in nonobese diabetic/severe combined
immunodeficient xenotransplantation models, with mean
engraftment dropping from 76% to as low as 0.7% (P<.001),
while having minimal toxicity for normal cells [1].
Second-generation analogs (eg, PNR886 [2]) show 60-fold
greater potency than thiadiazolidinone-8 in preclinical models,
reducing amyloid load to >60% in Alzheimer disease models
and extending the lifespan of wild-type Caenorhabditis elegans
by 15%-30% [2-4], hinting at broader therapeutic potential [5].

Despite these advances, first-generation thiadiazolidinone
analogs endure suboptimal pharmacokinetics and limited kinase
selectivity, with cytotoxicity at higher concentrations (eg, 1
mM) [1,5]. Recent computational modeling of GSK3β’s inactive
state offers opportunities for the rational design of
next-generation inhibitors targeting key residues (Lys205,
Asp200, and Ala204) to enhance specificity and reduce
off-target effects on normal tissues [5]. Structural optimization
is essential to balance potent LSC eradication with minimal
toxicity, unlocking the potential of thiadiazolidinone-based
therapies to target the LSC reservoir in refractory leukemias
specifically.

The quest for effective leukemia inhibitors is hindered by
challenges such as enzyme specificity, cell selection for

resistance, and off-target effects. Traditional drug discovery
methods struggle to efficiently explore the vast chemical space
of potential compounds, often resulting in prolonged timelines
and suboptimal candidates [4-12]. This has fueled interest in
computational strategies, particularly machine learning
(ML)–enhanced quantitative structure-activity relationship
(QSAR) modeling, which correlates molecular descriptors
(quantitative measures of physicochemical, structural, and
electronic properties) with biological activity. ML has offered
unprecedented predictive power across diverse fields of study
[6,8,13,14]. Unlike conventional QSAR approaches, which
often have reduced accuracy and scalability with complex
datasets, ML-based QSAR modeling excels by identifying subtle
patterns in molecular features that predict specific enzyme
interactions, enabling the discovery of highly selective inhibitors
for diverse targets, such as leukemic cells [5] and polymerases
used for DNA repair, by screening small-molecule structural
libraries [4,6-12].

ML algorithms have shown promise in enhancing drug discovery
[4,9,13-15] by enabling prediction of resistance mechanisms,
guiding the design of inhibitors to delay or overcome resistance,
and prioritizing molecular features linked to selectivity or
minimal toxicity [5]. By analyzing large datasets with
high-throughput in silico predictions, ML offers a scalable
solution to screen extensive compound libraries, reducing time
and cost compared to purely experimental assays [5].
Incorporating techniques such as Shapley Additive Explanations
(SHAP) analysis within ML models provides insights into
critical molecular descriptors driving inhibitory activity,
informing the structural requirements for effective leukemia
inhibitors [5].

This study demonstrates how integrating advanced ML with
QSAR modeling overcomes limitations of traditional drug
discovery approaches. This study provides a flexible, data-driven
framework to optimize thiadiazolidinone-based inhibitors by
focusing on molecular traits correlated with enhanced activity,
target specificity, and minimal off-target effects. This can lead
to novel therapies that complement existing genotoxic agents
such as cisplatin, thus improving therapeutic outcomes in
chemotherapy-resistant cancers. However, we acknowledge
that such potential can only be realized through rigorous external
validation and experimental verification of computational
predictions.
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Methods

Methodology for Enhanced Inhibitor Identification
We introduce a structured methodology to enhance the
identification of thiadiazolidinone analogs with antileukemic
properties using artificial intelligence (AI)–powered QSAR
modeling. A curated dataset of 220 molecular descriptors,
associated with validated leukemia inhibition activity, was used
to train 17 diverse ML models. These models include linear
regression, ridge regression, lasso regression, ElasticNet,
isotonic regression, partial least squares (PLS) regression,
support vector regression (SVR), decision tree, random forest,
gradient boosting, XGBoost, AdaBoost, CatBoost, k-nearest
neighbors, neural network, deep neural network, Gaussian
process, and principal component regression. Each model was
rigorously assessed using 12 performance metrics to ensure
robustness and accuracy in predicting inhibitory efficacy. This
multialgorithm approach allows comparison of feature-target
relationship learning across methodologically diverse
approaches. This approach not only forecasts the potential of
compounds but also identifies critical molecular characteristics,
essential for optimizing next-generation antileukemic
compounds.

Dataset and Preprocessing

Overview

Multistep Protocol

This study used an in-house selected library of 35
thiadiazolidinone analogs, each with experimentally validated
leukemia inhibition activity expressed as logIC50 values [1].

Data preprocessing followed a rigorous multistep protocol to
ensure data quality and consistency.

Outlier Detection and Removal

Activity values were examined for statistical outliers using IQR
analysis, with compounds displaying activity values >1.5×IQR
from the quartile boundaries flagged for review and removed
if deemed measurement anomalies.

Chemical Structure Standardization

Chemical structures were initially sketched in ChemDraw [16],
converted to Simplified Molecular Input Line Entry System
format, and subsequently transformed into SYBYL Mol2 files
using Schrödinger MAESTRO (Schrödinger Release 2025-2:
Canvas, Schrödinger, LLC, 2025) for 3D visualization, ensuring
standardized chemical representation across all compounds.

Ligand Geometric Optimization

Ligand preprocessing involved energy minimization using the
MMFF94 force field to optimize molecular geometries and
achieve chemically realistic conformations. Structural alignment
of conserved thiadiazolidinone cores was performed to
standardize side-chain modifications across the dataset, ensuring
consistent and comparable descriptor computation [17].

Descriptor Calculation

Molecular descriptors were calculated using Schrödinger
MAESTRO 12.5 software, encompassing a broad spectrum of

physicochemical properties (1D-4D descriptors). A total of 220
descriptors were computed, including hydration energy,
polarizability, topological indices, electronic properties
(Gasteiger partial charges), and quantum chemical attributes
critical for leukemia cell interactions.

Feature Scaling and Normalization

Before model training, all molecular descriptor features were
normalized using StandardScaler (z score normalization: (x –
mean)/SD) to ensure equal weighting across features with
different scales and units, preventing high-magnitude descriptors
from dominating the learning process.

Missing Value Handling

Any missing descriptor values were imputed using multivariate
imputation by chained equations to maintain dataset integrity
while preserving statistical relationships among descriptors.

The resulting preprocessed dataset contained 35 compounds
with 220 standardized molecular descriptors and corresponding
experimental logIC50 values, forming a robust foundation for
QSAR modeling (see Multimedia Appendix 1 for the complete
molecular database of molecular descriptors with corresponding
logIC50).

Model Training and Evaluation
The dataset was partitioned into a 70% training set and a 30%
testing set using stratified random sampling via scikit-learn’s
train_test_split function [18,19] before normalization to avoid
potential data leakage. This split ensured a balanced distribution
of activity classes to avoid bias and provided a robust training
dataset for learning and a significant test dataset for accurate
performance evaluation. Features were normalized using
StandardScaler to ensure equal weighting during model training.
The 17 ML algorithms evaluated spanned a wide range of
approaches, including linear models, tree-based ensembles,
kernel methods, instance-based learners, neural networks,
probabilistic approaches, dimensionality reduction techniques,
nonparametric models, and advanced gradient boosting
frameworks. Each model’s strengths and limitations were
assessed to ensure a comprehensive evaluation of their predictive
capabilities for antileukemic compounds. To address concerns
regarding potential overfitting with limited sample size, we
implemented multiple validation strategies: (1) five-fold
cross-validation on the training set to assess stability across data
splits, (2) comparison of each model to baseline linear
regression, (3) evaluation of train-test performance gaps to
identify memorization, and (4) permutation importance analysis
across folds to validate feature-target relationships. Performance
metrics such as coefficient of determination (explained variance;

R2), root-mean-square error in prediction, and others were used
to quantify predictive accuracy and model robustness.

Overview of ML Algorithms
The 17 ML algorithms compared for QSAR modeling are
summarized in Table 1, detailing their descriptions, strengths,
and limitations. This comprehensive overview reflects the
diversity of approaches applied to capture complex
structure-activity relationships in drug discovery.
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Table 1. Overview of machine learning algorithms compared for QSARa modeling [20].

ReferencesLimitationsStrengthsDescriptionAlgorithm

[21]Assumes linearity, sensitive to out-
liers

Simple, efficient, highly inter-
pretable

Models relationships with a linear
equation

Linear regression

[22,23]Does not perform feature selectionImproves stability and handles mul-
ticollinearity

Uses L2b regularization to prevent
overfitting of data

Ridge regression

[24,25]May arbitrarily select among corre-
lated variables

Reduces model complexity through
feature selection

Applies L1c regularization for fea-
ture selection

Lasso regression

[22,23]Requires tuning 2 hyperparametersBalances the benefits of lasso and
ridge

Combines L1 and L2 regularizationElasticNet

[26,27]Computationally intensive, limited
generalization

Robust to outliers, ensures monoton-
ic relationships

Fits a monotonic free-form line to
the data

Isotonic regres-
sion

[28-30]Less interpretable than other meth-
ods

Manages multicollinearity, effective
for high-dimensional data

Identifies relationships between
matrices, reducing dimensionality

PLSd

[31-33]Sensitive to kernel choice, computa-
tionally intensive

Robust against data overfitting, ex-
cels in complex datasets

Approximates input-output in high-
dimensional space

SVRe

[13,14,34,35]Prone to overfitting, may not gener-
alize well

Interpretable, handles diverse data,
and captures nonlinearity

Nonparametric tree structure for re-
gression or classification

Decision tree

[13,14,34,36,37]Computationally expensive, less in-
terpretable

Reduces overfitting, assesses feature
importance

Ensemble of trees to minimize
overfitting

Random forest

[38,39]Risk of overfitting if not tuned
properly

High predictive power, excels in
complex modeling

Builds weak learners sequentially
for improved predictions

Gradient boosting

[40]Complex to tune, less interpretableHigh accuracy, efficient, and han-
dles missing data

Optimized gradient boosting library
for enhanced performance

XGBoost

[41,42]Sensitive to noisy data and outliersImproves accuracy by emphasizing
difficult cases

Combines weak classifiers, focusing
on misclassified instances

AdaBoost

[43,44]Slower training speed, less inter-
pretable

Reduces overfitting, high accuracy
with categorical data

Uses ordered boosting for categori-
cal features

CatBoost

[45,46]Computationally intensive, sensitive
to scaling

Captures complex relationships
without assumptions

Nonparametric method based on
proximity to nearest points

KNNf

[13,14,34,47,48]Requires significant data, prone to
overfitting

Adaptable, excels with large
datasets

Mimics brain processes to model
nonlinear relationships

Neural network

[49,50]Requires large datasets, computation-
ally intensive

High performance in capturing intri-
cate patterns

Advanced neural network with
multiple layers for complex patterns

DNNg

[51]Computationally expensive for large
datasets

Offers uncertainty quantification,
models complex functions

Probabilistic approach with uncer-
tainty estimates

Gaussian process

[52-54]May lose interpretability, less predic-
tive power

Handles multicollinearity, reduces
dimensionality

Combines PCAi with regression for
dimensionality reduction

PCRh

aQSAR: quantitative structure-activity relationship.
bL2: ridge penalty
cL1: lasso penalty
dPLS: partial least squares.
eSVR: support vector regression.
fKNN: k-nearest neighbors.
gDNN: deep neural network.
hPCR: principal component regression.
iPCA: principal component analysis.

Table 1 summarizes the properties of 17 algorithms compared
in this study. The results were consistent with recent advances
in QSAR modeling in which ML techniques such as random
forest, XGBoost, and deep neural network empirically displayed
superior predictive performance, especially for complex and

diverse datasets [34]. The selection of these algorithms was
guided by their established effectiveness in small-sample,
high-dimensional biological datasets, their ability to handle
multicollinearity, capture nonlinear relationships, and to provide
insights into feature importance [34], all of which are critical
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for optimizing thiadiazolidinone-based inhibitors in leukemia
treatment.

Hyperparameters were optimized via grid or random search
with 5-fold cross-validation, prioritizing the minimization of

mean squared error (MSE) and maximization of R2 and adjusted

coefficient of determination (adjusted R2) metrics.

Model performance was evaluated using 12 metrics, including
MSE, root-mean-squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), symmetric
mean absolute percentage error (SMAPE), median absolute

error (MedAE), R2, adjusted R2, concordance correlation
coefficient (CCC), normalized mean squared error (NMSE),
normalized root-mean-squared error (NRMSE), and Pearson
correlation to ensure a comprehensive assessment of predictive
accuracy and robustness. Detailed descriptions of these metrics
are in the following sections.

About MSE
MSE quantifies the average squared difference between
predictions and observations, and is calculated as:

where yi is the observed value and is the predicted value.
MSE is critical for identifying models prone to severe
inaccuracies.

About RMSE
RMSE provides error magnitude in the same units as the
response variable, enhancing interpretability and sensitivity to
outliers. It is calculated as:

About MAE
MAE measures the average absolute error, treating all
discrepancies equally; useful for assessing typical prediction
errors without outlier bias. It is calculated as:

About MAPE
MAPE expresses errors as percentages, facilitating relative
performance comparison across datasets, though it is undefined
for 0 observed values. It is calculated as:

About SMAPE
SMAPE addresses MAPE’s asymmetry by normalizing errors
against the average of observed and predicted values, improving
robustness for near-zero values. It is calculated as:

About MedAE
MedAE is resistant to outliers and is calculated as:

About R2

R2 represents the proportion of variance explained by the model,
with values closer to 1 indicating a better fit. It is calculated as:

where is the mean of observed values.

About Adjusted R2

R2 adjusts for model complexity, preventing overfitting by
penalizing unnecessary predictors. It is calculated as:

where:

• R2=R2 of the model, also known as the fraction of variance
explained.

• n=number of observations (data points).
• k=number of predictors (independent variables) in the

model.

About CCC
CCC evaluates agreement between predictions and observations,
combining precision (correlation) and accuracy (mean shift). It
is calculated as:

where ρ is Pearson correlation, and μ and σ are means and SDs
of the observed and predicted values, respectively.

About NMSE
NMSE scales MSE by dataset variance, enabling cross-study
comparisons. It is calculated as:

About NRMSE
NRMSE provides a scale-free error metric, useful for comparing
models across different units. It is calculated as:

where:

range(y) = max(y) – min(y)

Pearson Correlation Coefficient
This measures the linear relationship strength between
predictions and observations, independent of scale. It is
calculated as:
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This multimetric approach ensures robust evaluation of model
accuracy, generalizability, and clinical relevance, which are
critical for advancing predictive tools in leukemia drug
discovery.

Feature importance was determined through permutation
importance and SHAP values, highlighting key molecular
descriptors for inhibition activity. Permutation importance was
evaluated across all 5 cross-validation folds to assess consistency
and distinguish genuine feature-target relationships from
dataset-specific noise. The computational pipeline, developed
in Python 3.8 (Python Software Foundation), used pandas for
data handling, scikit-learn for model construction,

XGBoost/LightGBM/CatBoost for gradient boosting, and SHAP
for interpretability [55,56]. Code execution and visualization
were performed in Jupyter notebooks, facilitating iterative model
refinement. This comprehensive framework integrated molecular
descriptor computation with AI-enhanced QSAR modeling to
systematically identify and optimize leukemia inhibitors. The
graphical abstract (Figure 1) visually summarizes the AI-driven
QSAR workflow for the accelerated discovery and optimization
of thiadiazolidinone inhibitors targeting leukemia. This
integrative approach combines advanced molecular modeling,
ML, and feature importance analysis to streamline the
identification of potent antileukemia compounds.

Figure 1. Graphical abstract depicting the integrated computational workflow for systematic analysis of structure-activity relationships in thiadiazolidinone
analogs using machine learning-enhanced QSAR modeling. ML: machine learning; QSAR: quantitative structure-activity relationship; SHAP: Shapley
additive explanations.

This study uses an integrated computational workflow to
systematically analyze structure-activity relationships in a library
of 35 thiadiazolidinone analogs for leukemia inhibition. The
methodology involves data preparation with 220 molecular
descriptors calculated for each compound, followed by training
and optimization of 17 ML models evaluated using 12
performance metrics. SHAP feature importance analysis
identifies molecular descriptors that consistently correlate with
inhibitory potency across algorithms, revealing key structural
factors driving compound activity. The framework successfully
identified actionable structure-activity patterns and generated
refined inhibitor candidates with enhanced potential for
overcoming drug resistance.

Results

Overview
In this study, the 17 ML models demonstrated strong
performance in predicting antileukemia activity on internal
validation, as evidenced by their 12 performance metrics across
both training and testing datasets for all algorithms. Table 2
details the validation results for the training dataset, highlighting
the models’ability to effectively learn and capture patterns from
the provided data.
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Table 2. Performance metrics for the training dataset.

Pearson
correlation

NRMSEkNMSEjCCCiMedAEhSMAPEgMAPEfRMSEeMAEdAdjusted

R2c
R 2bMSEaModel

0.94770.02140.02570.91270.00811.651.760.01570.01040.89730.89810.000247Isotonic regres-
sion

0.99040.03120.05240.98030.01232.382.450.02250.01520.97980.98090.000504LightGBM

0.94090.03240.05660.88590.01312.542.610.02330.01560.88320.88530.000544XGBoost

0.93390.03410.06270.87240.01422.852.930.02460.01780.86840.87210.000603CatBoost

0.99040.03120.05240.98030.01232.382.450.02250.01520.97980.98090.000504Random forest

0.94090.03240.05660.88570.01322.552.620.02330.01570.88320.88530.000543Gradient boost-
ing

0.89510.1010.4980.80120.04728.428.910.06930.05410.79490.80120.0048Neural network

0.85060.1190.6950.72360.059810.5811.270.08190.06890.71530.72360.0067SVRl

0.91220.0920.4150.83210.04137.417.820.06250.04720.82720.83210.0039Gaussian pro-
cess

0.83350.1040.5290.69470.056710.0110.640.07140.06470.68550.69470.0051ElasticNet

0.82590.1250.7680.68210.064911.3512.110.0860.07390.67260.68210.0074Decision tree

0.86360.1130.6220.74580.05439.6510.230.07750.06230.73810.74580.0059K-nearest
neighbors

0.90650.0940.4360.82170.04377.798.220.06420.04980.81650.82170.0041PLSm regres-
sion

0.89000.0520.1350.79210.02795.115.280.03460.03170.78580.79210.0012AdaBoost

0.82790.1260.7780.68540.066211.5812.350.08660.07530.67590.68540.0075Ridge regres-
sion

0.83890.0960.4560.70380.05199.219.760.06630.05920.69490.70380.0044Lasso regres-
sion

0.84400.0820.3320.71230.04257.568.000.05660.04880.7040.71230.0032Linear regres-
sion

aMSE: mean squared error.
bR2: coefficient of determination (explained variance).
cAdjusted R2: adjusted coefficient of determination.
dMAE: mean absolute error.
eRMSE: root-mean-squared error.
fMAPE: mean absolute percentage error.
gSMAPE: symmetric mean absolute percentage error.
hMedAE: median absolute error.
iCCC: concordance correlation coefficient.
jNMSE: normalized mean squared error.
kNRMSE: normalized root-mean-squared error.
lSVR: support vector regression.
mPLS: partial least squares.

In contrast, Table 3 summarizes the results for the testing
dataset, shedding light on the models’generalization capabilities
when applied to new, unseen data. Both tables include 12
distinct performance metrics, ensuring a comprehensive

evaluation of the models’ predictive accuracy, robustness, and
reliability in the context of drug discovery for leukemia
treatment.
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Table 3. Performance metrics for the testing dataset.

Pearson
correlation

NRMSEkNMSEjCCCiMedAEhSMAPEgMAPEfRMSEeMAEdAdjusted

R2c
R 2bMSEaModel

0.94240.02540.03210.91270.00891.851.980.01750.0110.88690.88810.00031Isotonic regres-
sion

0.98530.03650.06540.98030.01723.153.210.02510.02080.96970.97090.00063LightGBM

0.93560.0380.07070.88590.01813.383.450.02610.02130.87210.87530.00068XGBoost

0.92820.03860.0730.87240.01953.653.720.02650.0230.85780.86150.00070CatBoost

0.98530.03590.06350.97980.01342.512.570.02470.01590.96970.97090.00061Random forest

0.93560.03970.07710.88570.01833.343.410.02730.02110.87210.87530.000743Gradient boost-
ing

0.88850.1010.4980.80120.04728.428.910.06930.05490.78320.78950.00480Neural network

0.84270.1190.6950.72360.059810.5811.270.08190.06950.70190.71020.00670SVRl

0.90570.0920.4150.83210.04137.417.820.06320.04810.81540.82030.004Gaussian pro-
cess

0.82600.1040.5290.69470.056710.0110.640.07140.06550.67310.68230.00510ElasticNet

0.81840.1250.7680.68210.064911.3512.110.0860.07460.66030.66980.00740Decision tree

0.85620.1130.6220.74580.05439.6510.230.07750.0630.72540.73310.006K-nearest
neighbors

0.90000.0940.4360.82170.04377.798.220.06480.05060.80480.810.00420PLSm regres-
sion

0.88400.0520.1350.79210.02795.115.280.0360.03250.77510.78140.00130AdaBoost

0.81980.1260.7780.68540.066211.5812.350.08660.07610.66260.67210.00750Ridge regres-
sion

0.83140.0960.4560.70380.05199.219.760.06630.06010.68230.69120.00440Lasso regres-
sion

0.83570.0820.3320.71230.04257.568.000.05660.04920.69010.69840.00320Linear regres-
sion

aMSE: mean squared error.
bR2: coefficient of determination (explained variance).
cAdjusted R2: adjusted coefficient of determination.
dMAE: mean absolute error.
eRMSE: root-mean-squared error.
fMAPE: mean absolute percentage error.
gSMAPE: symmetric mean absolute percentage error.
hMedAE: median absolute error.
iCCC: concordance correlation coefficient.
jNMSE: normalized mean squared error.
kNRMSE: normalized root-mean-squared error.
lSVR: support vector regression.
mPLS: partial least squares.

Evaluation of Model Performance
The systematic evaluation of 17 ML models revealed distinct
performance tiers in predicting leukemia inhibition, with
ensemble methods dominating several predictive accuracies
(Tables 2 and 3).

Isotonic regression ranked first with the lowest test MSE

(0.00031 ± 0.00009) and R2 of 0.888 ± 0.012, outperforming
baseline models by over 15% in explained variance. LightGBM
also emerged among the top performers, achieving strong

generalization on the test set with an MSE of 0.00063 ± 0.00012,

and an explained variance (R2) of 0.9709 ± 0.0084, substantially

outperforming baseline linear regression (R2=0.6984,
MSE=0.0032).

Train-Test Gap Analysis

To assess whether high R2 values reflect genuine learning or
overfitting, we analyzed the magnitude of performance
degradation from training to test sets. For LightGBM: training

R2=0.9809, testing R2=0.9709 (ΔR2=–0.01 or –1% decrease);

JMIR AI 2026 | vol. 5 | e81552 | p.91https://ai.jmir.org/2026/1/e81552
(page number not for citation purposes)

Kakraba et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


training MSE=0.000504, testing MSE=0.00063
(ΔMSE=+0.000126). This modest performance gap is
characteristic of robust models and contrasts sharply with severe

overfitting (which would show training R2>0.99 with test

R2<0.60). Five-fold cross-validation on the training set produced

consistent results (LightGBM: mean cross-validation R2=0.968
± 0.018, range 0.950-0.985; XGBoost: mean cross-validation

R2=0.872 ± 0.023, range 0.845-0.895), with low variance across
folds indicating stability rather than spurious noise fitting.

Isotonic regression produced the lowest test MSE (0.00031 ±

0.00009) with an R2 of 0.888 ± 0.012, compared to LightGBM
(MSE=0.00063 ± 0.00012), suggesting superior precision in
minimizing absolute errors at the cost of less variance explained.
This difference may reflect scale dependency in the response
variable, as evidenced by tight error ranges (test RMSE:
0.0175-0.0866; MedAE: 0.0089-0.0662), indicating that models
captured central tendency more effectively than variance.

Ensemble methods also formed a clear top tier: LightGBM

(MSE=0.00063, R2=0.9709), random forest (MSE=0.00061,

R2=0.9709), and XGBoost (MSE=0.00068, R2=0.8753)

substantially exceeded R2 values of linear models by more than
25 percentage points. Linear models exhibited predictable
stratification, with standard linear regression (MSE=0.0032)
serving as the baseline. Regularized variants such as lasso

(MSE=0.0044, R2=0.6912) and ridge regression (MSE=0.0075,

R2=0.6721) improved multicollinearity handling. Nonlinear
models displayed varied performance: neural networks

(MSE=0.0048, R2=0.7895) surpassed kernel-based SVR

(MSE=0.0067, R2=0.7102), while decision trees (MSE=0.0074)
ranked lowest among the nonlinear approaches.

Five-fold cross-validation highlighted differences in critical
stability. LightGBM showed minimal performance degradation
(ΔMSE=+0.000126; train-to-test), underscoring its consistency.
Linear regression maintained consistent error profiles
(ΔMAE=+0.0004). The minimal train-test gap in ensemble
methods (LightGBM: ΔMSE=+0.000126, XGBoost:
ΔMSE=+0.000136, CatBoost: ΔMSE=+0.000097, random
forest: ΔMSE=+0.000106, gradient boosting: ΔMSE=+0.0002,
and AdaBoost: ΔMSE=+0.0001), combined with
cross-validation stability, indicates that these models learned
generalizable nonlinear patterns in the training data rather than
memorizing specific compounds. These findings establish
ensemble models as the optimal balance of precision and
robustness, with isotonic regression (ΔMSE=+0.000063)
offering niche utility for low-error-tolerance applications. The
performance hierarchy provides multiple metrics for prioritizing
algorithms in therapeutic-compound optimization pipelines,
emphasizing ensemble methods for high-accuracy predictions
and regularized models for interpretable, stable results.

Comparison to Baseline and Null Models

To rule out the possibility that high R2 values reflect algorithmic
artifacts or data characteristics rather than genuine learning, we
compared the ensemble models to baseline approaches:

• Naive baseline (mean predictor): predicting the mean

logIC50 value for all compounds yields R2=0.0 (by
definition).

• Simple linear regression: R2=0.6984 (test set),
demonstrating that raw feature-target relationships do not
automatically yield high performance.

• PLS regression (2 components, designed for small samples):

R2=0.81 (test set).
• LightGBM: R2=0.9709 (test set).
• Isotonic regression: R2=0.8881 (test set).

The substantial gap between simple linear regression

(R2=0.6984) and models such as LightGBM (R2=0.9709) cannot
be explained by the data alone; it reflects genuine improvement
in capturing nonlinear feature-target relationships through
ensemble methods. This 27-percentage-point improvement is
not achieved through memorization but through learning
complex, nonlinear patterns.

Optimization of ML Models
To achieve optimal predictive performance on the permuted
datasets, each ML algorithm was carefully fine-tuned by varying
hyperparameters to achieve a balance of accuracy, stability, and
generalization. Among the key models, CatBoost, a gradient
boosting algorithm adept at handling categorical data, achieved
peak performance with iterations=1000 for sufficient boosting
rounds, a low learning_rate=0.03 for gradual convergence,
depth=6 to limit tree complexity and prevent overfitting, and
verbose=0 to suppress output logs for efficiency, enabling
effective capture of complex data patterns. Random forest, an
ensemble method, excelled with n_estimators=200 to create a
robust forest of trees, max_depth=4 to constrain overfitting, and
min_samples_split=2 with min_samples_leaf=1 to ensure
meaningful splits, allowing it to detect diverse patterns while
maintaining generalization to test data. Similarly, XGBoost, a
powerful gradient boosting framework, delivered its best
performance with n_estimators=100 for boosting rounds,
learning_rate=0.1 for controlled updates, max_depth=3 to
manage model complexity, and random_state=42 for
reproducibility, striking an optimal balance between bias and
variance. PLS regression, ideal for high-dimensional or
multicollinear data, was optimized with n_components=2 to
extract key latent components and scale=True to standardize
data, enhancing predictive power through effective reduction
of dimensionality. Other significant configurations include linear
regression, set with fit_intercept=True and normalize=False for
simplicity and interpretability; ridge regression, configured with
alpha=1.0 for regularization and solver='auto' for flexibility;
SVR, using kernel='rbf', C=1.0, and epsilon=0.1 to handle
nonlinear relationships effectively; and neural network,
optimized with hidden_layer_sizes=(100,), activation='relu',
and solver='adam' to capture intricate data structures. These
tailored parameter settings, as detailed in Table 4 below,
highlight the critical role of hyperparameter tuning in
maximizing model performance, with each algorithm adapted
to the dataset’s unique characteristics to optimize computational
efficiency and predictive accuracy.
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Table 4. MLa algorithms and best parameter settings.

Key parameter detailsAlgorithm

fit_intercept=True, normalize=FalseLinear regression

alpha=1.0, solver='auto'Ridge regression

alpha=1.0, selection='cyclic'Lasso regression

alpha=1.0, l1_ratio=0.5ElasticNet

random_state=42, max_depth=None, min_samples_split=2Decision tree

n_estimators=200, max_depth=4, min_samples_split=2, min_samples_leaf=1Random forest

random_state=42, n_estimators=100, learning_rate=0.1, max_depth=3Gradient boosting

random_state=42, n_estimators=50, learning_rate=1.0AdaBoost

kernel='rbf', C=1.0, epsilon=0.1SVRb

n_neighbors=5, weights='uniform'K-nearest neighbors

random_state=42, hidden_layer_sizes=(100,), activation='relu', solver='adam'Neural network

kernel=RBF(), random_state=42, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0Gaussian process

n_components=2, scale=TruePLSc regression

increasing=True, out_of_bounds='nan'Isotonic regression

random_state=42, max_depth=3, learning_rate=0.1, n_estimators=100XGBoost

random_state=42, num_leaves=31, learning_rate=0.1, n_estimators=100LightGBM

random_state=42, verbose=0, iterations=1000, learning_rate=0.03, depth=6CatBoost

aML: machine learning.
bSVR: support vector regression.
cPLS: partial least squares.

Feature Importance via SHAP Analysis
The SHAP summary plot in Figure 2 reveals r_qp_glob (global
molecular shape descriptors) as the most influential molecular
descriptor for predicting logIC50 values in antileukemia activity
of thiadiazolidinone analogs, with the highest mean absolute
SHAP value of approximately 0.52 among all features (Figure
2). The consistency of this ranking across multiple algorithms
provides independent validation of its biological significance.
This suggests that overall molecular shape and 3D conformation
are critical determinants of a compound’s ability to inhibit
leukemia cell proliferation.

The bar plot illustrates the mean absolute SHAP values for the
top molecular descriptors used in the QSAR model to predict
logIC50 leukemia inhibition values. Each bar represents the
average contribution of a feature to the model’s predictions,
with longer bars indicating greater importance. The top
features—r_qp_glob (global shape), r_qp_WPSA (weighted
polar surface area), r_qp_QPpolrz (polarizability),
r_qp_QPlogPC16 (lipophilicity), and r_qp_SASA
(solvent-accessible surface area) were consistently identified
across multiple algorithms (LightGBM, random forest,
XGBoost, and PLS), supporting their biological relevance rather
than algorithmic artifacts. These features provide critical insights
into the molecular properties driving the model’s predictive
performance.

The second-ranked feature, r_qp_WPSA (weighted polar surface
area) with a mean SHAP value of ≈0.50, highlights the

importance of surface polarity in molecular interactions. The
third-ranked feature, r_qp_QPpolrz (polarizability) with ≈0.49,
demonstrates that electronic polarization properties significantly
influence binding affinity and molecular recognition by leukemia
targets.

Additional high-impact contributors include r_qp_QPlogPC16
(partition coefficient; ≈0.48), which reflects the role of
lipophilicity in membrane permeability and target accessibility,
and r_qp_SASA (solvent-accessible surface area; ≈0.48), which
reveals the importance of surface accessibility in molecular
interactions. Similarly, r_qp_donorHB (hydrogen bond donor
count; ≈0.48) highlights the critical role of hydrogen bonding
in mediating intermolecular interactions with leukemia targets.

F e a t u r e s  s u c h  a s
i_desc_Sum_of_topological_distances_between_O.Cl
(topological distances between oxygen and chlorine atoms;
≈0.47) provide insights into steric complementarity and
molecular geometry. r_qp_QPlogS (solubility properties; ≈0.47)
emphasizes the role of aqueous solubility in bioavailability and
cellular accessibility. The descriptor r_desc_PEOE6 (electronic
properties; ≈0.45) reflects partial equalization of orbital
electronegativity, contributing to understanding electronic
effects on binding. r_qp_accptHB (hydrogen bond acceptor
count; ≈0.44) rounds out the top 10, indicating that both
hydrogen bonding capacity and acceptance are important for
activity.
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These features provide a comprehensive survey of
physicochemical and structural properties underlying the
inhibitory activity of thiadiazolidinone analogs against leukemia,
offering valuable guidance for optimizing antileukemia drug
design. The identified structure-activity relationships

demonstrate that global molecular shape, surface polarity,
polarizability, and lipophilicity are the primary determinants of
bioactivity. However, these relationships should be validated
through external datasets and experimental synthesis of predicted
compounds before directing optimization efforts.

Figure 2. Feature importance via SHAP analysis for molecular descriptors and their average impact on QSAR prediction of logIC50 inhibition of
leukemia cell proliferation. logIC50: half maximal inhibitory concentration; QSAR: quantitative structure-activity relationship; SHAP: Shapley additive
explanations.

Permutation Importance Stability Validation
To verify that feature importance reflects genuine feature-target
relationships rather than noise memorization, we compared
SHAP importance values across 5 cross-validation folds. The
top 10 features maintained consistent rankings across all folds
(Table 5).

The low across-fold SDs (range: 0.03-0.10) demonstrate robust
stability of feature importance rankings, providing strong
evidence that these molecular descriptors capture genuine
structure-activity relationships rather than overfitting artifacts.
The consistency of feature rankings across all cross-validation
folds validates their biological interpretability and rules out
model memorization of fold-specific noise. If the model were
overfitting to noise specific to individual folds, we would expect
feature importance rankings to show high variance (SD>1.0)

across folds, with different features emerging as important in
different subsets of the data. Instead, the observed SDs remain
well below 1.0, with a maximum of 0.10 for r_qp_accptHB,
indicating that feature importance assessments are stable and
generalizable.

This cross-fold stability strongly validates the biological
relevance of the identified descriptors and supports the
mechanistic interpretation of antileukemia activity. The
dominance of global shape (r_qp_glob), surface properties
(r_qp_WPSA, r_qp_SASA), and lipophilicity descriptors
(r_qp_QPlogPC16) remains consistent across all validation
folds, demonstrating that these molecular features are true
drivers of thiadiazolidinone analog inhibitory activity against
leukemia cells, not artifacts of model overfitting. These findings
provide reliable guidance for rational drug design optimization
aimed at improving antileukemia potency.
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Table 5. Feature importance via SHAPa analysis with stability validation across cross-validation folds.

Across-fold SDMean |SHAP value|Feature (fold-averaged ranking)Rank

0.030.515r_qp_glob (global molecular shape)1

0.040.502r_qp_WPSA (weighted polar surface area)2

0.050.490r_qp_QPpolrz (polarizability)3

0.060.482r_qp_QPlogPC16 (partition coefficient)4

0.050.480r_qp_SASA (solvent-accessible surface area)5

0.070.478r_qp_donorHB (hydrogen bond donor count)6

0.080.468i_desc_Sum_of_topological_distances_between_O.Cl (topological distance)7

0.060.465r_qp_QPlogS (aqueous solubility)8

0.090.453r_desc_PEOE6 (electronic properties)9

0.100.440r_qp_accptHB (hydrogen bond acceptor count)10

aSHAP: Shapley additive explanations.

Learning Curves and Model Stability
In learning curve analysis, we evaluated model performance
(LightGBM as a case study for this study) as a function of
training set size to assess whether performance improvements
represent genuine learning or dataset artifacts:

• Training on 10 compounds (nearest decile): LightGBM test

R2=0.82
• Training on 18 compounds (median): LightGBM test

R2=0.94
• Training on 24 compounds (70% split, standard):

LightGBM test R2=0.97

The monotonic improvement in test performance with increasing
training data indicates the model is learning generalizable
patterns rather than memorizing. A memorizing model would
show no improvement or random fluctuations.

Discussion

Principal Findings
In this study, isotonic regression ranked first with the lowest

test MSE (0.00031 ± 0.00009) and R2 of 0.888 ± 0.012,
outperforming baseline models by over 15% in explained
variance. However, the strong performance of ensemble
methods, particularly LightGBM and random forest, on internal
validation, suggests they captured nonlinear relationships in
this specific dataset of 35 compounds. LightGBM and random
forest achieved high internal validation metrics (LightGBM

[training: R2=0.9809, MSE=0.000504; testing: R2=0.9709,

MSE=0.00063]; random forest [training: R2=0.9809,

MSE=0.000504; testing: R2=0.9709, MSE=0.00061]),
demonstrating robust performance on the training and testing
data with modest train-test degradation. Whether these models
generalize to other thiadiazolidinone derivatives or different
leukemia inhibitor classes requires external validation. This
internal performance aligns with prior studies where ensemble
methods excelled in biological datasets, such as cancer
transcriptome survival analysis and DNA polymerase inhibition

analysis, due to their capacity to handle high-dimensional, sparse
molecular descriptors.

The minimal performance gap between training and testing
metrics (LightGBM: ΔMSE=+0.000126, XGBoost:
ΔMSE=+0.000136, CatBoost: ΔMSE=+0.000097, random
forest: ΔMSE=+0.000106, gradient boosting: ΔMSE=+0.0002,
AdaBoost: ΔMSE=+0.0001, and isotonic regression:
ΔMSE=+0.000063) highlights good generalization within this
dataset, a critical advantage given the multicollinearity observed
in QSAR datasets for leukemia inhibitors. However, the limited
sample size (n=35) and single dataset necessitate caution in
extrapolating findings to broader compound classes.
LightGBM’s superior performance over neural networks further
emphasizes gradient-boosting ML’s adaptability to sparse
feature spaces, a finding consistent with their success in cancer
biomarker prediction.

In contrast, linear models such as lasso regression revealed the
necessity of regularization for sparsity management, though at
the cost of predictive accuracy, a trade-off well-documented in
antileukemia drug-discovery applications.

Biological Validity of Identified Features
SHAP analysis identified global molecular shape (r_qp_glob)
as the most critical and consistent determinant of antileukemic
activity among all features, with the highest mean absolute
SHAP value (≈0.52) and consistent ranking across algorithmic
approaches (LightGBM, random forest, XGBoost, and PLS).
This finding aligns with established principles of protein-ligand
recognition: 3D molecular conformation and overall shape are
fundamental determinants of GSK3β binding pocket
complementarity. For GSK3β inhibition, the adenosine
triphosphate–binding pocket and allosteric DFG (amino acids
aspartate, phenylalanine, and glycine)–out binding site contain
topologically complex surfaces requiring precise molecular
shape matching for optimal engagement [57]. The prominence
of global shape descriptors underscores that thiadiazolidinone
analogs must adopt conformations compatible with leukemia
target geometry to achieve effective inhibition.
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The second-ranked feature, weighted polar surface area
(r_qp_WPSA; mean SHAP value ≈0.50), reflects the critical
importance of surface polarity distribution in modulating both
cellular permeability and target interaction. Surface polarity
influences charge distribution and electrostatic interactions
essential for GSK3β recognition and leukemia cell membrane
permeation, a principle central to effective anticancer drug
design. Strategic placement of polar atoms across the molecular
surface enables favorable interactions with protein residues
while maintaining adequate membrane permeability, a balancing
act that has proven essential for oral bioavailability of drugs
beyond Lipinski’s Rule of Five.

Polarizability (r_qp_QPpolrz; ≈0.49) emerges as the third most
important feature, emphasizing how electronic polarization
capacity influences induced dipole interactions and electronic
complementarity with target proteins [58,59]. Electronic
properties govern charge redistribution upon protein binding
and modulate the strength of transient electrostatic interactions
critical for binding specificity and inhibitory potency against
leukemia targets. Recent computational studies have
demonstrated that ligand polarization energies in protein-ligand
complexes can range from −10 to −128 kcal/mol, with induced
polarization playing a pivotal role in determining binding
affinity [58].

Partition coefficient (r_qp_QPlogPC16; ≈0.48) and
solvent-accessible surface area (r_qp_SASA; ≈0.48) rank fourth
and fifth, reflecting the dual role of lipophilicity and surface
accessibility in cellular bioavailability and target engagement.
These descriptors elucidate how thiadiazolidinone compounds
interact within lipophilic cellular environments while
maintaining sufficient surface accessibility for productive
protein-ligand interactions [60,61]. The balance between
hydrophobic membrane penetration and hydrophilic surface
properties is essential for reaching intracellular GSK3β targets
in leukemia cells [62].

Hydrogen bond donor count (r_qp_donorHB; ≈0.48) ranks
sixth, reinforcing the established significance of hydrogen
bonding in molecular interactions [63,64]. Crystal structures of
GSK3β bound to thiadiazolidinone analogs reveal extensive
hydrogen bonding networks involving backbone amides in the
adenosine triphosphate–binding pocket, confirming the
mechanistic importance of donor capacity. This is complemented
b y  t o p o l o g i c a l  d i s t a n c e  d e s c r i p t o r s
(i_desc_Sum_of_topological_distances_between_O.Cl;≈0.47),
which ranks seventh and emphasizes steric complementarity
requirements and 3D positioning of functional groups [65].
These observations mirror findings from other antileukemia
studies in which atomic spacing and spatial arrangement dictated
binding specificity and target selectivity.

Aqueous solubility (r_qp_QPlogS; ≈0.47) ranks eighth,
emphasizing how bioavailability impacts thiadiazolidinone
analog ability to reach leukemia targets effectively [66-70].
Poor aqueous solubility restricts drug bioavailability and cellular
accessibility, a well-established principle in medicinal chemistry.
Electronic properties from Partial Equalization of Orbital
Electronegativity (r_desc_PEOE6; ≈0.45) rank ninth, providing
mechanistic insights into electrostatic distribution and its role

in hydrogen bonding and electrostatic interactions with GSK3β
[71,72].

Hydrogen bond acceptor count (r_qp_accptHB; ≈0.44) ranks
tenth among the top features, suggesting that while acceptor
capacity contributes to molecular interactions, it is subordinate
to global shape, surface properties, and polarizability in
determining antileukemic activity [73,74]. This contrasts with
earlier assumptions based on theoretical hydrogen bonding
principles and highlights that the overall 3D presentation and
electronic properties of the molecule supersede individual
hydrogen bonding parameters alone. However, the relative
importance of these features reflects patterns specific to this
35-compound training set and cannot be generalized to other
thiadiazolidinone libraries or leukemia inhibitor classes without
external validation.

Implications for Rational Thiadiazolidinone
Optimization
These SHAP-derived rankings provide actionable prioritization
for thiadiazolidinone analog design. The dominance of shape,
polarity, and polarizability descriptors suggests that optimization
efforts should focus on: (1) refining molecular conformation to
enhance GSK3β pocket complementarity, (2) strategic
modification of polar surface distribution to balance membrane
permeability and target interaction, and (3) tuning electronic
polarizability to maximize induced-fit interactions. Secondary
optimization can then address hydrogen bonding and solubility
parameters, recognizing their supporting but nondominant roles.
However, the relative importance of these features reflects
patterns specific to this 35-compound training set and cannot
be generalized to other thiadiazolidinone libraries or leukemia
inhibitor classes without external validation.

Limitations and Statistical Considerations
The models’ consistently low error distribution across activity
ranges indicates a reliable fit for moderate-activity
thiadiazolidinone compounds but exposes limitations in
predicting extreme potencies against leukemia cells. This reflects
known challenges in QSAR modeling of structure-activity
relationships in small compound libraries, wherein outlier
compounds often deviate from ensemble-based predictions. The
clustering of MedAE around low values suggests that while the
models capture general trends in the moderate potency range,
they may struggle with highly potent leukemia inhibitors, a
critical gap for antileukemia drug discovery pipelines. This
limitation likely stems from insufficient representation of
extreme-activity compounds in the training dataset, a common
issue in biochemical datasets for rare or novel compounds.
Future work could address this through synthetic minority
oversampling techniques or adversarial training strategies
specifically tailored to leukemia inhibitor discovery.

Critical Limitations: Absence of External Validation

Overview
The most significant limitation of this work is the lack of
external validation on independent compound datasets. Our
models were trained and tested exclusively on a single curated
library of 35 thiadiazolidinone analogs. While internal
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cross-validation and train-test performance metrics suggest
robust pattern learning within this dataset, external validation
is essential for establishing genuine predictive utility beyond
these specific compounds. Future research must prioritize the
following.

External Dataset Validation
This is the testing on thiadiazolidinone analogs from
independent studies or different synthetic laboratories with
documented IC50 (half maximal inhibitory concentration) values.
This would definitively assess whether our models capture
transferable chemistry-based structure-activity relationships or
merely dataset-specific patterns. Literature sources such as
ChEMBL [75] contain published thiadiazolidinone derivatives
with reported biological data suitable for validation.

Prospective Experimental Validation
This is the synthesis and testing of a subset of high-confidence
model predictions to validate model utility for discovering novel
inhibitors. Experimentally confirming predictions would provide
strong evidence that the model has learned meaningful
relationships transferable to novel compounds. This should
include (1) selection of predicted compounds with high model
confidence (top 1%-5% of predictions), (2) synthesis using
established thiadiazolidinone chemistry protocols, (3) evaluation
in leukemia cell lines (HL-60 and K562) to measure
experimental IC50 values, and (4) comparison to model
predictions and calculation of prediction errors.

Applicability Domain Analysis
Defining the chemical space in which model predictions are
reliable through convex hull analysis or distance-based methods
enables end users to assess prediction confidence for novel
compounds.

Sample Size Considerations

Overview
This study used 35 experimentally validated compounds with
220 molecular descriptors, resulting in a feature-to-sample ratio
of approximately 6:1. While this presents challenges for
statistical generalization, several factors mitigate these concerns.

Methodological Design for Small Datasets
The selection of ensemble methods (LightGBM and random
forest) and regularization-based approaches (ridge, lasso, and
PLS) is specifically justified by their proven effectiveness in
high-dimensional, small-sample biological datasets. Literature
on ML applications to drug discovery datasets (n=30-100
compounds) with high-dimensional features demonstrates robust
performance when properly regularized and cross-validated.

Cross-Validation Performance Stability
The consistency of cross-validation metrics across training folds
and the minimal train-test performance gap indicate that our
models captured generalizable patterns rather than memorizing
noise. This is further supported by the biological interpretability
of SHAP-identified features (global shape, surface properties,
and polarizability) and their consistent ranking across all

algorithmic approaches, providing independent validation of
feature relevance.

Dataset Context
The 35 compounds represent a carefully curated library of
experimentally validated thiadiazolidinone analogs with
high-confidence activity measurements. Quality over quantity
is critical in drug discovery, where rigorously characterized
compounds are more valuable than larger datasets with
heterogeneous measurement conditions or uncertain potency
values.

However, we acknowledge that expansion to 100-300
compounds would substantially strengthen conclusions and
reduce feature-to-sample ratio concerns.

Methodological Integration: SHAP-Driven Feature
Interpretation
The integration of SHAP values bridges the
interpretability-accuracy divide in leukemia drug development.
While simpler linear models underperformed ensemble
approaches by 15-20 percentage points, SHAP’s ability to
deconvolute feature contributions enables actionable insights
into optimization targets without sacrificing predictive
performance. The identification of global molecular shape
(r_qp_glob) and weighted polar surface area (r_qp_WPSA) as
consistently top-ranked predictors provides direct optimization
targets for medicinal chemists: systematic exploration of
conformational space and polar surface distribution to enhance
GSK3β binding and leukemia target engagement.

Conversely, the lower-ranked status of hydrogen bond acceptor
count (r_qp_accptHB), despite earlier theoretical importance,
suggests that in the context of thiadiazolidinone analogs against
leukemia targets, 3D shape and electronic properties supersede
isolated hydrogen bonding parameters. This dataset-specific
finding highlights the importance of data-driven feature
prioritization over theoretical assumptions in QSAR workflows.

While our models emphasize shape, polarity, and polarizability
indices, other leukemia studies using different inhibitor classes
or targets have prioritized alternative molecular descriptors such
as bonding, topological, and electronic, 2D, 3D, and molecular
dynamics (MD) descriptors [76-78]. Such discrepancies reflect
the unique characteristics of thiadiazolidinone analogs and their
specific mechanisms against leukemia-relevant targets,
underscoring the need for experimental validation of predicted
rankings and mechanistic hypotheses. These insights remain
predictive rather than mechanistic until validated through
external datasets and experimental synthesis of high-confidence
predictions.

Multiparameter Optimization Complexity
Developing leukemia drugs based on these insights involves
navigating complex multiparameter optimization. For instance,
enhancing global shape complementarity may require
conformational constraints that reduce molecular flexibility,
potentially interfering with solubility characteristics or target
selectivity [79]. Similarly, optimizing weighted polar surface
area might compromise membrane permeability, requiring
Pareto-front analysis to determine optimal thiadiazolidinone
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analog profiles balancing GSK3β inhibition with cellular
bioavailability [57].

Moreover, the potential for off-target toxicity to normal
hematopoietic cells emphasizes the need for simultaneous
cellular toxicity profiling with healthy leukocytes during lead
optimization, a strategy increasingly integrated into
computational approaches for antileukemia drug design. The
identified structure-activity relationships should guide rational
design, while toxicity modeling ensures therapeutic selectivity
against malignant leukemia cells [80,81].

While SHAP identifies key features, molecular-dynamics
simulations are essential to validate the mechanistic
contributions of these descriptors in thiadiazolidinone-leukemia
cell interactions [82]. Additionally, broadening the applicability
domain to include a variety of leukemia cell lines could improve
the model’s generalizability, considering the diverse nature of
leukemia. Future research should incorporate prospective
external validation on published thiadiazolidinone compounds,
experimental synthesis and testing of model-predicted inhibitors,
and MD simulations. Future investigations should also
incorporate hybrid models that integrate ensemble techniques
with graph neural networks to account for both topological and
electronic factors critical to leukemia inhibition. Moreover,
future screening of small molecule libraries, such as the NExT
Diversity Library and the Anti-Blood Cancer Compound
Library, could identify novel chemical leads for leukemia
treatment after computational predictions are experimentally
validated.

Conclusions
This ML-based QSAR analysis identified structure-activity
patterns and key molecular properties associated with
antileukemia activity in a carefully curated library of 35
thiadiazolidinone analogs. Isotonic regression achieved superior
performance with the lowest test MSE (0.00031 ± 0.00009) and

R2 of 0.888 ± 0.012, outperforming baseline models by over
15% in explained variance. Ensemble methods
(RF/LightGBM/XGBoost) also demonstrated strong internal
validation performance, capturing nonlinear relationships
between molecular features and antileukemic activity within
this dataset. SHAP analysis consistently identified global
molecular shape (r_qp_glob), weighted polar surface area
(r_qp_WPSA), and polarizability (r_qp_QPpolrz) as the primary
determinants of antileukemic activity across multiple algorithms
(LightGBM, random forest, XGBoost, and PLS), suggesting
that these molecular descriptors, rather than isolated hydrogen
bonding parameters, are the critical drivers of compound

efficacy. This finding aligns with those reported in other studies
[83-85]. The computational analysis provided mechanistic
insights into thiadiazolidinone structure-activity relationships,
revealing that optimization efforts should prioritize
conformational refinement to enhance binding pocket
complementarity, strategic modulation of polar surface
distribution to balance membrane permeability and target
engagement, and tuning of electronic polarizability to maximize
induced-fit interactions. While secondary features, including
hydrogen bonding capacity (r_qp_donorHB), topological
complementarity, and solubility (r_qp_QPlogS), contribute to
overall potency, their subordinate ranking suggests that global
shape and surface properties represent the primary optimization
targets for advancing thiadiazolidinone development against
leukemia. This methodology expedites the identification and
rational design of improved compounds by directing medicinal
chemistry efforts toward the molecular descriptors with the
highest predictive impact on bioactivity. However, validation
of these relationships is essential before recommending
optimization strategies. It offers a systematic analytical pathway
to analyze resistance challenges in leukemia treatment through
computationally guided precision. Such potential can only be
realized through rigorous external validation.

While limitations persist in predicting extremely potent
compounds and in the generalizability of findings beyond this
35-compound dataset, this study provides a methodological
foundation and hypothesis-generating insights for future
validation efforts. Future studies should prioritize (1) external
validation on published thiadiazolidinone compounds from
independent sources, (2) prospective experimental testing of
model-predicted high-potency compounds, (3) expanded datasets
(150-300+ compounds) to reduce feature-to-sample ratio
concerns, and (4) mechanistic validation through MD
simulations. Parallel analyses of other drug families should lead
to the discovery of alternative optimization targets with distinct
mechanisms of action. Only after such validation efforts should
broad claims about predictive utility and therapeutic impact be
made. Recommended future improvements include: (1)
integration of dynamic 4D descriptors as compound libraries
expand, (2) multistep external validation protocols, (3)
experimental screening across multiple leukemia subtypes, (4)
mechanistic elucidation through MD and crystallography, and
(5) eventual integration with generative AI approaches once the
predictive framework is validated. This approach bridges
computational analysis with essential future experimental
validation, providing a systematic methodology to advance
research in personalized therapies in leukemia treatment.
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Abstract

Background: HIV viral suppression is essential for improving health outcomes and reducing transmission rates among people
living with HIV. In Uganda, where HIV/AIDS is a major public health concern, machine learning (ML) models can predict viral
suppression effectively. However, the limited use of explainable artificial intelligence (XAI) methods affects model transparency
and clinical utility.

Objective: This study aimed to develop and compare ML models for predicting viral nonsuppression in Ugandan people living
with HIV on antiretroviral therapy (ART), and then systematically apply comprehensive XAI techniques to the best-performing
model to identify key predictors and demonstrate interpretability at both population and individual patient levels.

Methods: We retrospectively analyzed clinical and demographic data from 1101 Ugandan people living with HIV on ART at
the HIV clinic in Muyembe Health Centre IV between June 2016 and April 2018, focusing on predicting viral nonsuppression
(viral load >1000 copies per milliliter). The dataset was divided into model-building (training: 80%) and validation (test: 20%)
sets. To address class imbalance, the synthetic minority over-sampling technique was applied. For global explanation, 8 ML
algorithms—logistic regression, stacked ensemble, random forest, support vector machines, extreme gradient boosting (XGBoost),
k-nearest neighbors, naïve Bayes, and artificial neural networks—were compared. Model performance was evaluated using
metrics such as accuracy, precision, recall, F1-score, Cohen κ, and area under the curve (AUC). For local explanation, individual
conditional expectation plots, Shapley Additive Explanations (SHAP), breakdown, and SHAP force plots were used to provide
insights into predictions for individual patients.

Results: The XGBoost ensemble model demonstrated superior performance with an accuracy of 0.89, precision of 0.59, recall
of 0.65, and AUC of 0.80. The model achieved high specificity (0.93) and moderate sensitivity, yielding a Cohen κ of 0.55 and
F1-score of 0.62, indicating good discriminative ability for viral nonsuppression prediction. SHAP feature importance analysis
identified adherence assessment over the preceding 3 months as the most influential predictor of viral nonsuppression, followed
by age group, urban residence, and duration on ART. Local SHAP consistently demonstrated that poor adherence was the primary
driver of both correctly identified nonsuppressed cases and false positive predictions, reinforcing adherence as the critical
determinant of treatment outcomes.

Conclusions: The XGBoost model demonstrated optimal performance for predicting viral nonsuppression among Ugandan
people living with HIV on ART, achieving an AUC of 0.80. Comprehensive XAI analysis identified adherence assessment as
the primary predictor, followed by age group, residence type, and ART duration. XAI methods provided transparent interpretation
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of model predictions at both population and individual patient levels, enabling identification of key risk factors for targeted clinical
interventions in resource-limited settings.

(JMIR AI 2026;5:e68196)   doi:10.2196/68196

KEYWORDS

HIV viral suppression; machine learning; explainable AI; artificial intelligence; antiretroviral therapy; adherence; Uganda;
predictive modeling; XGBoost; extreme gradient boosting; clinical decision-making; public health

Introduction

HIV/AIDS remains a major public health issue in Uganda, with
an estimated 1.4 million people living with the virus and an
adult prevalence of 5.2%. According to the most recent
estimates, approximately 93% of individuals living with HIV
in Uganda are currently receiving antiretroviral therapy (ART)
[1,2]. Despite challenges, progress is evident with 1.2 million
individuals on antiretroviral treatment and a 44% reduction in
new infections since 2010. Significant strides have been made
in reducing pediatric HIV infections by 61%, though vertical
transmission rates after breastfeeding remain at 8.6%. Continued
efforts are essential to meet the goal of ending AIDS as a public
health threat by 2030 [1-3].

Viral load monitoring remains a crucial component of ART
success due to its early detection of treatment failure, enabling
timely interventions to address adherence issues or drug
resistance [1]. It distinguishes between true drug resistance and
temporary adherence lapses, allowing for targeted interventions
without unnecessary medication changes [4]. In addition, public
health officials can evaluate program effectiveness and identify
areas for improvement by tracking trends in viral suppression
rates. Achieving viral suppression, defined by the World Health
Organization (WHO) as an HIV viral load <1000 copies per
milliliter, is the primary goal of ART for people living with
HIV. This public health threshold, used for global monitoring
and in resource-limited settings, differs from clinical thresholds
used in high-income countries (<200 or <50 copies per milliliter
for “undetectable” status) [5-8]. This crucial milestone not only
significantly reduces the risk of transmitting HIV to sexual
partners but also minimizes the risk of mother-to-child
transmission during breastfeeding. However, predicting and
achieving viral suppression can be challenging due to the
complex interplay of factors beyond adherence to ART
medication. Research suggests that factors such as age, sex,
sociodemographic characteristics, clinical, treatment, and
potentially psychological factors also play a role in influencing
treatment success [9-11]. Consequently, there is growing interest
in using machine learning (ML) models to enhance prediction
accuracy.

ML analyzes complex, high-dimensional data and captures
complex relationships between variables [12]. Rajula et al [12]
further state that this capability is valuable in HIV viral
suppression prediction, where traditional statistical methods
often struggle with this type of data, potentially overlooking
crucial factors influencing viral failure risk. Several studies in
Eastern and Southern Africa have demonstrated the potential
of ML algorithms such as random forest and logistic regression
for predicting viral suppression in HIV [13-18]. For instance,

Mamo et al [18] demonstrated the potential of ML approaches,
achieving an area under the curve (AUC) of 0.9989 for viral
failure prediction using random forest with a comprehensive
methodology including cross-validation and imbalanced data
handling. While these results are promising, the near-perfect
performance highlights the need for external validation studies
to establish realistic performance benchmarks and confirm the
generalizability of ML models in diverse HIV care settings.

Despite significant advancements in ML for predicting HIV
viral suppression, the adoption of explainable artificial
intelligence (XAI) techniques, which provide transparent
insights into how models make predictions, remains limited
within this domain [19]. Our study hypothesized that
comprehensive XAI techniques could be successfully integrated
with ML models to provide interpretable predictions for HIV
viral suppression in a resource-limited setting, identifying key
risk factors at both population and individual patient levels.
This gap presents a critical opportunity for improvement through
the implementation of local and global interpretability methods.

Our study addressed this limitation by developing and
comparing ML models for HIV viral suppression prediction in
Ugandan people living with HIV, and then systematically
applying comprehensive XAI techniques to enhance model
interpretability. Multiple ML algorithms were built and
compared, XAI methods were applied to the best-performing
model to identify key predictive factors, and interpretability
was demonstrated at both population and individual patient
levels. This integrated approach combined predictive accuracy
with transparent model interpretation, providing actionable
insights for clinical decision-making in resource-limited settings.

Methods

This section outlines the methodological approach used to
achieve our research objectives (Multimedia Appendix 1).

Study Design
This study conducted a secondary analysis of a retrospective
cohort dataset originally collected by Wakooko et al [11], who
used traditional binary logistic regression analysis. The original
study reviewed clinical records of people living with HIV on
ART for at least 6 months at Muyembe Health Centre IV
(HCIV), the primary ART site in Bulambuli District, Uganda.
In contrast to the original analysis, this study used ML
approaches to develop predictive models for viral suppression
outcomes. Furthermore, XAI techniques were applied to the
best-performing model to provide insights into the factors
influencing viral suppression, enhancing both model
interpretability and transparency in the clinical decision-making
process.
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Study Setting
This study used a dataset collected in Bulambuli District, located
in Eastern Uganda, with Muyembe HCIV serving as the sole
data source. Although the district comprises 10 Health Centre
IIIs and 1 HCIV, Muyembe HCIV functions as the district’s
primary and fully operational ART site. It maintains the most
complete ART records and provides centralized HIV care for
the area (Multimedia Appendix 2).

Study Population, Sampling, and Data Acquisition
This study used a secondary dataset sourced from the Mendeley
data repository [20], comprising information extracted from
medical records of people living with HIV who received ART
at Muyembe HCIV between June 2016 and April 2018. The
study population consisted of people living with HIV enrolled
in care at Muyembe HCIV during the study period. From an
initial cohort of 2050 people living with HIV enrolled at the
facility, 1101 participants met the inclusion criteria and were
included in the final study sample. A total of 949 individuals
were excluded for not meeting the inclusion criteria (Figure 1).

Figure 1. Flowchart of participant selection for the study of people living with HIV on ART at Muyembe Health Centre IV, June 2016 to April 2018.
ART: antiretroviral therapy.

The dataset included demographic, clinical, and
treatment-related variables of people living with HIV receiving
ART. Variables such as age, sex, WHO clinical stage at ART
initiation, ART regimen, cluster of differentiation 4 (CD4) count
at ART initiation, adherence assessment, and treatment duration
were incorporated into the analysis (Table S2 in Multimedia
Appendix 3 provides comprehensive mapping between variable
descriptions, code names, and original data codes). Adherence
assessment was conducted by reviewing patient treatment cards,
which contained documented records of medication adherence
over the preceding 3 months as recorded by health care providers
during routine clinic visits.

The primary outcome of interest in this study was viral
nonsuppression, defined as a viral load greater than 1000 copies
per milliliter, consistent with Uganda’s national antiretroviral
treatment monitoring guidelines [6]. To facilitate model
predictions and subsequent clinical interpretation, viral load
measurements were dichotomized, whereby viral nonsuppression
was assigned a value of 1 (positive class), and viral suppression
was assigned a value of 0.

Inclusion and Exclusion Criteria
Participants were eligible for inclusion if they were on ART for
6 months or longer and had viral load test results available. All
ages were included, covering a wide range of people living with
HIV from pediatric to adult populations.
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Data Preparation and Preprocessing
The dataset was randomly partitioned into training (80%) and
testing (20%) subsets, with stratification to preserve the outcome
variable distribution (viral suppression status). We assessed
missingness patterns across all 27 variables initially extracted
from the dataset (Table S1 in Multimedia Appendix 3). Factor
levels were harmonized across subsets, and variables with more
than 80% missingness (specific other medication, reason for
stopping ART, and specific opportunistic infection) were
excluded. All preprocessing steps, including imputation, were
performed exclusively on the training dataset to prevent data
leakage and ensure unbiased model evaluation. Remaining
features underwent systematic cleaning, including mean
imputation for numeric variables and mode imputation for
categorical predictors, with clinically informed handling of
missing values through “unknown” categories for marital status
and supporter relationships to preserve potential clinical
significance of missingness patterns. Ordinal variables (eg,
WHO clinical stage, age group, ART duration, adherence
assessment, weight, and time before viral load testing) were
encoded as ordered factors, ensuring that clinically meaningful
ordering was preserved. Nominal categorical variables (eg, sex,
marital status, residence type, opportunistic infection history,
tuberculosis history on ART, point of entry in ART clinic, ART
history, ART supporter presence, supporter relationship, reported
side effects, dosing frequency, and pre-ART counseling status)
were harmonized across datasets, aligned to consistent reference
categories, and subsequently one-hot encoded using dummy
variables. The derived categorical variable CD4 lymphocyte
count category was removed in favor of retaining the original
continuous CD4 lymphocyte count at ART initiation.

Two distinct preprocessing pipelines were implemented. The
first did not apply any class-imbalance technique and relied
solely on structured preprocessing steps using the recipes
package (dummy encoding, normalization, ordinal scoring, and
zero-variance removal). The second pipeline addressed class
imbalance by applying the synthetic minority over-sampling
technique (SMOTE) to the training data, followed by support
vector machine-recursive feature elimination (SVM-RFE) for
feature selection of predictors. Feature set sizes varied across
model implementations: the final dataset contained 20 features,
preprocessing expanded this to 25 features for selected models,
while other feature selection approaches yielded reduced sets
of 13 features for the extreme gradient boosting (XGBoost)
model. All augmentation and feature selection procedures were
applied exclusively to training data, preserving test set integrity
and enabling systematic evaluation of different preprocessing
strategies while maintaining fully standardized, reproducible,
and leakage-free datasets suitable for downstream model
development.

Model Training and Tuning
This section outlines the key steps undertaken to develop ML
models for predicting HIV viral suppression among patients
receiving ART in Uganda. The following subsections describe
model building and model performance and evaluation.

Model Building
A diverse set of ML models was developed to predict viral
nonsuppression status, including random forest, XGBoost,
artificial neural networks, support vector machines, logistic
regression, k-nearest neighbors, naïve Bayes, and a stacked
ensemble with random forest and XGBoost base learners and
an XGBoost meta-learner. Stacked ensembles are a 2-level
modeling strategy that harnesses the strengths of multiple ML
models [21,22]. Model development used nested 10-fold
cross-validation to optimize hyperparameters and minimize
overfitting. Each algorithm was trained using structured
hyperparameter grids. These models were chosen based on their
proven effectiveness in classification tasks and their ability to
handle complex relationships within the data.

Model Performance and Evaluation
Evaluation incorporated a comprehensive set of metrics,
including accuracy, precision, recall (sensitivity), specificity,
F1-score, Cohen κ, and AUC. Performance was assessed through
both internal cross-validation and independent test sets, enabling
robust benchmarking of the models. In addition, feature
importance and the stability of selected predictors were
examined to compare model behavior across the imbalanced
and SMOTE-SVM-RFE pipelines.

Recall was prioritized due to its clinical importance in
identifying patients at high risk for failing to achieve viral
suppression. The F1-score offered a balanced view of precision
and recall, particularly useful for imbalanced datasets. Cohen
κ accounted for the possibility of agreement occurring by
chance, providing a more robust measure than simple accuracy.
The receiver operating characteristic curve visually represented
the trade-off between true positive (TP) rates and false positive
(FP) rates, with the AUC quantifying the model’s discriminative
ability.

Following model training, the optimal classification threshold
was determined using the Youden J statistic
(sensitivity+specificity–1) on the training set receiver operating
characteristic curve [23]. This approach maximizes the
combined sensitivity and specificity and represents a posttraining
internal validation step that does not influence model fitting.
The resulting threshold was held fixed and applied unchanged
to the independent test set for all performance metric
calculations and confusion matrix computation.

Probability calibration was performed using isotonic regression
fitted on the training set predictions [24]. The fitted calibration
function was then applied to the independent test set to generate
calibrated probability estimates. A calibration plot was created
for the best-performing model to evaluate alignment between
predicted probabilities and actual outcomes. Brier scores were
calculated to quantify the accuracy of probabilistic predictions
before and after calibration [25].

Interpretation Methods
Our research used a multifaceted approach to interpret the
best-performing model used for HIV viral suppression
prediction. This approach combined global and local
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interpretability techniques to understand how features influenced
the model’s decisions.

Global Explanation
We incorporated global Shapley Additive Explanations (SHAP)
for interpretability, which assigned attribution values to each
feature, explaining its contribution to specific predictions [26].
SHAP summary plots helped identify the most important global
features influencing the best model’s predictions. Furthermore,
we used dependence plots to visualize the average effect of
individual features on predictions, showing how the predicted
outcome (eg, viral nonsuppression) changed in response to
variations in each feature [27].

Local Explanation
Local interpretability techniques examined the reasoning behind
individual predictions [19]. Individual conditional expectations
(ICEs) were used to illustrate how changes in a single feature,
while holding others constant, impacted predictions for each
participant [28,29]. Breakdown plots further decomposed
predictions into contributions from individual features,
visualizing their influence on specific predictions [29,30]. In
addition, SHAP was used to explore feature interactions and
their influence on individual predictions, providing deeper
insight into local model reasoning.

Software and Analytical Tools
The analysis was conducted on a machine with the following
specifications: graphics: Intel Iris Plus Graphics 1536 MB,
RAM: 16 GB 3733 MHz LPDDR4X, and processor: 2 GHz
Quad-Core Intel Core i5, running macOS Sonoma (version
14.6.1; 23G93). The programming languages used include
Python (version 3.9; Python Software Foundation) and R
(version 4.3.3, 202-02-29, “Angel Food Cake”; R Foundation
for Statistical Computing), with RStudio 2024.09.0+375 (Posit
Software, PBC) serving as the integrated development
environment for both R and Python, while Stata 18 SE
(StataCorp LLC) was used to import and perform preliminary
descriptive analyses on the raw dataset, which was provided in
Stata’s proprietary .dta file format. The RStata package was
used to import and describe the data in R.

Python integration was achieved via the reticulate package,
using pandas for data manipulation. In R, dplyr was used for
cleaning and renaming columns, improving data clarity. Data
wrangling and preprocessing were conducted using a suite of
R packages. The dplyr package was used for data manipulation

tasks, such as filtering, mutating, and summarizing data. The
tidymodels framework was used for recipe creation and model
baking. ML models were trained and evaluated using the caret
package, supporting hyperparameter tuning and cross-validation.
To ensure interpretability, a suite of XAI packages—iml, vip,
pdp, breakDown, SHAPforxgboost, and DALEX—was used,
providing tools for variable importance, partial dependence
plots, breakdown plots, and SHAP [19].

Ethical Considerations
The original study, titled “Viral Load Suppression and
Associated Factors among HIV Patients on Antiretroviral
Treatment in Bulambuli District, Eastern Uganda: A
Retrospective Cohort Study” by Wakooko et al [11], received
ethics approval from both the Busitema University Faculty of
Health Sciences Higher Degrees and Research Committee and
the Mbale Regional Referral Hospital Research and Ethics
Committee (Ref: MRRH-REC-IN-COM 081/2018). Permission
to conduct the study was further obtained from the Bulambuli
District Health Office. A waiver of informed consent was
granted, as the study involved secondary analysis of existing
medical records initially collected for routine patient care.
Participant privacy and confidentiality were maintained through
deidentification procedures: the data abstraction tool used
numerical identifiers rather than names, ensuring that no
individual personal data were exposed, and all collected data
were stored securely with access restricted to research personnel.
No compensation was provided to participants, as no direct
participant contact occurred. The research presented no risk of
harm to participants. For this current secondary analysis study,
ethics approval was granted by the School of Consumer
Intelligence and Information Systems Research Ethics
Committee of the University of Johannesburg (approval:
2024SCiiS029).

Results

This section presents the findings from our analysis of the ML
models developed to predict HIV viral suppression among
Ugandan people living with HIV receiving ART.

Clinical and Demographic Profile
This study analyzed baseline sociodemographic, clinical, and
biomarker data to understand factors influencing viral
suppression among patients receiving ART in Uganda. A
detailed breakdown of these features stratified by viral
suppression status is presented (Table 1).
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Table 1. Baseline sociodemographics, clinical factors, and biomarkers of people living with HIV on antiretroviral therapy (ART) in a retrospective
cohort study in 2019, Bulambuli District, Uganda.

Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

Age group (years)

4 (2.5)20 (2.1)24 (2.2)0-5

19 (12.1)50 (5.3)69 (6.3)6-12

13 (8.3)28 (3)41 (3.7)13-19

62 (39.5)372 (39.4)434 (39.4)20-35

59 (37.6)474 (50.2)533 (48.4)Above 35

Sex

45 (28.7)289 (30.6)334 (30.3)Male

112 (71.3)655 (69.4)767 (69.7)Female

Marital status

64 (40.8)237 (25.1)301 (27.3)Single

84 (53.5)629 (66.6)713 (64.8)Married

9 (5.7)78 (8.3)87 (7.9)Divorced

Residence type

90 (57.3)588 (62.3)678 (61.6)Rural

67 (42.7)356 (37.7)423 (38.4)Urban

Adherence assessment last 3 months

59 (37.6)19 (2)78 (7.1)Poor <80%

51 (32.5)96 (10.2)147 (13.4)Fair 80%-95%

47 (29.9)829 (87.8)876 (79.6)Good >95%

WHOa clinical stage at ART initiation

39 (24.8)200 (21.2)239 (21.7)Stage 1

78 (49.7)462 (48.9)540 (49)Stage 2

40 (25.5)273 (28.9)313 (28.4)Stage 3

0 (0)9 (1)9 (0.8)Stage 4

Weight at ART initiation (kg)

14 (8.9)56 (5.9)70 (6.4)1-20

76 (48.4)413 (43.8)489 (44.4)21-50

67 (42.7)475 (50.3)542 (49.2)Above 50

Opportunistic infection history

12 (7.6)68 (7.2)80 (7.3)Yes

145 (92.4)876 (92.8)1021 (92.7)No

Tuberculosis history on ART

3 (1.9)12 (1.3)15 (1.4)Yes

154 (98.1)932 (98.7)1086 (98.6)No

Point of entry in ART clinic

130 (82.8)791 (83.8)921 (83.7)OPDb

19 (12.1)120 (12.7)139 (12.6)Maternity

8 (5.1)33 (3.5)41 (3.7)Antenatal care service

Duration on ART (months)
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

2 (1.3)8 (0.8)10 (0.9)3-6

4 (2.5)29 (3.1)33 (3)7-11

58 (36.9)288 (30.5)346 (31.4)12-24

93 (59.2)619 (65.6)712 (64.7)More than 24

ART history

4 (2.5)17 (1.8)21 (1.9)Yes

153 (97.5)927 (98.2)1080 (98.1)No

Reported ART side effects

17 (10.8)71 (7.5)88 (8)Yes

140 (89.2)873 (92.5)1013 (92)No

Frequency of ARVc dosing

90 (57.3)603 (63.9)693 (62.9)Once

67 (42.7)341 (36.1)408 (37.1)Twice

Pre-ART counseling status

135 (86)805 (85.3)940 (85.4)Yes

22 (14)139 (14.7)161 (14.6)No

Treatment supporter presence

145 (92.4)883 (93.5)1028 (93.4)Yes

12 (7.6)61 (6.5)73 (6.6)No

Treatment supporter relationship

28 (17.8)196 (20.8)224 (20.3)Care giver

90 (57.3)516 (54.7)606 (55)Relative

2 (1.3)11 (1.2)13 (1.2)Peer

21 (13.4)66 (7)87 (7.9)Biological parent

16 (10.2)155 (16.4)171 (15.5)Marriage partner

Time before viral load test on ART (months)

12 (7.6)98 (10.4)110 (10%)6

87 (55.4)489 (51.8)576 (52.3)12

58 (36.9)357 (37.8)415 (37.7)>12

Current ART regimen simplified

95 (60.5)642 (68)737 (66.9)TDFd-based

54 (34.4)271 (28.7)325 (29.5)AZTe-based

7 (4.5)26 (2.8)33 (3)ABCf-based

1 (0.6)5 (0.5)6 (0.5)Other ART

CD4g count category

114 (72.6)687 (72.8)801 (72.8)<200

31 (19.7)194 (20.6)225 (20.4)200-500
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

12 (7.6)63 (6.7)75 (6.8)>500

aWHO: World Health Organization.
bOPD: outpatient department.
cARV: antiretroviral.
dTDF: tenofovir disoproxil fumarate.
eAZT: zidovudine.
fABC: abacavir.
gCD4: cluster of differentiation 4.

Among the 1101 people living with HIV on ART, 944 (85.7%)
achieved viral suppression (<1000 RNA copies per milliliter).
Four key demographic and clinical factors demonstrated notable
patterns in relation to viral suppression outcomes.

Adherence patterns showed a strong association with viral
suppression. Among participants with good adherence (>95%),
94.6% (829/876) achieved viral suppression compared to only
24.4% (19/78) of those with poor adherence (<80%). Fair
adherence (80%-95%) resulted in 65.3% (96/147) suppression
rates, demonstrating a clear adherence-response gradient. Age
distribution revealed differential suppression rates across groups.
Participants aged 35 years and older had the highest suppression
rate at 89.9% (474/533), while adolescents (aged 13-19 years)
showed the lowest at 68.3% (28/41). Children aged 6-12 years
had a suppression rate of 72.5% (50/69), indicating age-related
challenges in achieving optimal outcomes.

Duration on ART showed that established patients performed
better, with 87% (619/712) of those on treatment >24 months
achieving suppression compared to 83.2% (288/346) of patients
treated for 12-24 months. Newer patients (3-11 months) had

suppression rates of 86% (588/678). Residence type
demonstrated urban-rural disparities, with rural residents
achieving 86.7% (356/423) suppression compared to 84.2%
(356/423) among urban residents, though this difference was
modest.

Global Explanation
The analysis included the performance evaluation of supervised
learning classifiers, the assessment of feature importance, and
the generation of dependence plots to illustrate the relationships
between key features and model predictions.

Performance of Supervised Learning Classifiers
The imbalanced pipeline (Table 2) revealed substantial
performance variation across algorithms, with neural networks
achieving the highest accuracy (0.90) and precision (0.70), while
k-nearest neighbors exhibited optimal recall (0.68). However,
class imbalance severely impacted several algorithms, notably
logistic regression, which achieved high precision (0.93) but
critically low recall (0.13), rendering it clinically unsuitable for
viral nonsuppression detection.

Table 2. Comparative performance of machine learning models on imbalanced data (train set: 882, test set: 219).

AUCaκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.830.540.600.930.610.590.89XGBoostb

0.770.520.590.930.610.580.88Stacked ensemble (XGBoost
meta-learner)

0.830.460.540.920.550.530.87Random forest

0.800.460.550.870.680470.85K-nearest neighbors

0.56—c0.10.790.130.930.69Logistic regression

0.75——1.00——0.86Naïve Bayes

0.820.450.530.910.550.510.86SVMd

0.780.530.590.960.510.700.90ANNe

aAUC: area under the curve.
bXGBoost: extreme gradient boosting.
cNot available.
dSVM: support vector machine.
eANN: artificial neural network.

The SMOTE-balanced pipeline (Table 3) demonstrated
improved recall across most algorithms, confirming the
effectiveness of synthetic oversampling for addressing class

imbalance. XGBoost achieved optimal overall performance
with balanced metrics: accuracy (0.89), precision (0.59), recall
(0.65), and robust agreement (κ=0.55).
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Table 3. Comparative performance of machine learning models on SMOTEa-balanced and SVM-RFEb selected data (train set: 1008, test set: 219).

AUCcκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.800.550.620.930.650590.89XGBoostd

0.760.300.440.740.710.310.74Stacked ensemble (XGBoost
meta-learner)

0.780.500.570.940.580.560.88Random forest

0700.250.390.770.580.300.74K-nearest neighbors

0.820.350.470.800.680.360.79Logistic regression

0.700.350.440.930.420.460.85Naïve Bayes

0.670.330.390.970.290.600.87SVMe

0.740.270.390.860.450.340.80ANNf

aSMOTE: synthetic minority over-sampling technique.
bSVM-RFE: support vector machine-recursive feature elimination.
cAUC: area under the curve.
dXGBoost: extreme gradient boosting.
eSVM: support vector machine.
fANN: artificial neural network.

XGBoost emerged as the superior performer across both
pipelines, demonstrating consistent excellence in ensemble
learning principles. On the SMOTE-balanced dataset, XGBoost
achieved clinically relevant performance with 65% sensitivity
for viral nonsuppression detection while maintaining 93%
specificity for correctly identifying suppressed patients. The
model’s balanced F1-score (0.62) and substantial agreement
(κ=0.55) indicate robust predictive capability suitable for clinical
implementation. Feature selection via SVM-RFE enhanced
model interpretability while preserving discriminative
performance, yielding an AUC of 0.80 that meets clinically
acceptable thresholds for viral suppression prediction.
Cross-validation identified optimal hyperparameters at iteration
35. The model used the following hyperparameters: nrounds=35,
max_depth=7, eta=0.1, gamma=1, colsample_bytree=0.8,
min_child_weight=4, subsample=0.8, lambda=2.0, and
scale_pos_weight=1.30 to address class imbalance. Threshold
optimization yielded 0.611 for test evaluation to balance
specificity and recall.

Isotonic regression calibration, fitted on training data and applied
to the test set, substantially improved probability estimates.
Calibration performance demonstrated marked improvement,
with the Brier score decreasing from 0.1324 (uncalibrated) to

0.0739 (calibrated), representing a 44.2% reduction and
indicating enhanced reliability of probability estimates. The
calibrated model demonstrated enhanced discriminative
performance, with AUC increasing modestly from 0.799 to
0.838 (Multimedia Appendix 4).

Feature Importance
SHAP analysis (Figure 2A) revealed differential feature impacts
on viral nonsuppression predictions, with adherence assessment
demonstrating the strongest influence on model decisions,
followed by age group, residence type (urban), and duration on
ART. The beeswarm plot illustrates that poor adherence
assessment consistently drives predictions toward viral
nonsuppression (positive SHAP values), while good adherence
strongly predicts viral suppression (negative SHAP values).
Feature importance rankings (Figure 2C) confirmed adherence
assessment as the dominant predictor contributing 54.8% of
model gain, with duration on ART (10.2%), age group (8.4%),
and urban residence (4.9%) representing secondary but clinically
relevant factors. This hierarchy emphasizes adherence as the
critical determinant of treatment outcomes, consistent with
established clinical understanding that medication compliance
fundamentally governs ART effectiveness.
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Figure 2. Model evaluation metrics for XGBoost classifier. (A) SHAP feature impact (beeswarm) illustrating feature influence on predictions, (B)
AUC, (C) feature importance based on relative contribution, and (D) confusion matrix. AUC: area under the curve; SHAP: Shapley Additive Explanations;
XGBoost: extreme gradient boosting.

Dependence Plots
SHAP dependence plots (Figure 3) revealed distinct nonlinear
relationships between key predictors and viral nonsuppression
risk. Adherence assessment exhibited a clear monotonic
relationship, with poor adherence (lower values) consistently
increasing SHAP values toward viral nonsuppression
predictions, while optimal adherence (higher values) drove
predictions toward viral suppression. Age group demonstrated
a nonlinear pattern with pediatric and adolescent populations
showing substantially elevated risk: young children (aged 0-5
years) exhibited moderately positive SHAP values (~0.5),
school-aged children (aged 6-12 years) showed markedly
increased risk (SHAP>0.5), while adolescents (aged 13-19
years) displayed the highest predicted nonsuppression risk

(SHAP>1.0). Conversely, adults aged 20-35 years demonstrated
reduced risk (SHAP<0.5), with those aged 35 years and older
showing protective effects (negative SHAP values~–0.1).
Residence type displayed a binary pattern where urban residence
associated with higher SHAP values (just below 0.5), indicating
increased nonsuppression risk compared to rural residence.
Duration on ART revealed a complex nonlinear relationship
with early treatment periods (3-6 months), showing substantial
variability (SHAP values ranging from 0.4 to –0.7), while
patients at 7-11 months demonstrated elevated risk (SHAP>0.4).
The intermediate period (12-24 months) exhibited the highest
predicted nonsuppression risk (SHAP values 0.0 to 0.8), with
long-term patients (>24 months) showing predominantly
protective effects (SHAP values ranging from 0.1 to –0.6).
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Figure 3. XGBoost dependence plots illustrating the marginal effect of selected predictor variables on the predicted probability of HIV viral suppression.
SHAP: Shapley Additive Explanations.

Local Explanation
The analysis encompassed ICEs, breakdown plots, SHAP-based
model explainability, force plots, and clustering to provide
detailed insights into the model’s decision-making process at
the individual level.

Individual Conditional Expectations
The ICE plot using Ceteris-paribus for the XGBoost model
illustrates how 4 key features influenced the model’s
nonsuppression predictions for 4 individual cases (Figure 4).

JMIR AI 2026 | vol. 5 | e68196 | p.115https://ai.jmir.org/2026/1/e68196
(page number not for citation purposes)

Ngema et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Individual conditional expectation plot using Ceteris-paribus profiles for the XGBoost model. FN:41: false negative, row 41; FP:13: false
positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Ceteris-paribus profiles for 4 representative patients (true
positive, row 9 [TP:9], false positive, row 13 [FP:13], true
negative, row 16 [TN:16], and false negative, row 41 [FN:41])
illustrated distinct individual responses to feature variations
across correct and incorrect predictions. The TP case (TP:9)
demonstrated a high baseline probability (~0.65-0.70), with
adherence assessment showing the steepest probability decline
from poor to good adherence, while maintaining elevated risk
across most feature combinations. The FP case (FP:13) exhibited
moderate baseline probability (~0.25-0.30) with pronounced
sensitivity to adherence changes and notable probability
elevation at younger age groups, contributing to its

misclassification. The true negative (TN) case (TN:16)
maintained consistently low probabilities (~0.1-0.2) across all
feature variations, with adherence assessment providing the
most substantial impact but insufficient to elevate risk
substantially. The false negative (FN) case (FN:41) displayed
consistently high predicted probabilities (~0.65-0.70)
comparable to the TP case across all 4 features, yet was
incorrectly classified despite exhibiting similar risk profiles.

Breakdown Plots
The breakdown plots for individual cases (TP, FP, TN, and FN)
illustrate how specific predictors influenced the overall
prediction for each observation (Figure 5).
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Figure 5. XGBoost breakdown plots for the top 13 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative, row
41; FP:13: false positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Breakdown plots for the 13 selected features revealed the
cumulative contribution of individual predictors to final
prediction outcomes across the 4 representative cases. The TP
case (TP:9) demonstrated a systematic progression from baseline
intercept (0.320) to final prediction (0.813), with adherence
assessment providing the largest positive contribution (+0.365),
followed by duration on ART (+0.136). Additional features
showed mixed effects, with marital status (married) contributing
a positive increment, while other features provided negative
contributions that partially offset these increases, and the net
cumulative effect elevated the prediction above the classification
threshold.

The FP case (FP:13) exhibited substantial progression from
intercept (0.320) to final prediction (0.781), with adherence
assessment dominating the prediction increase (+0.365),
followed by age group contributing moderately (+0.031). Marital

status (married) and residence type (urban) provided combined
positive contributions (+0.048), while other features provided
negative contributions that partially offset these increases.
Despite the counterbalancing effects of protective features, the
model’s final probability assessment substantially exceeded the
decision boundary at 0.575, resulting in the misclassification
of this actually suppressed patient.

The TN case (TN:16) demonstrated protective feature
dominance, with adherence assessment contributing the largest
negative effect (–0.099), followed by age group (–0.062) and
residence type (urban) (–0.032), while other features provided
minimal positive or negative adjustments. The cumulative
protective contributions drove the final prediction to 0.088,
substantially below the classification threshold, enabling the
correct identification of this virally suppressed patient through
predominantly risk-reducing feature effects.

JMIR AI 2026 | vol. 5 | e68196 | p.117https://ai.jmir.org/2026/1/e68196
(page number not for citation purposes)

Ngema et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The FN case (FN:41) presented a complex feature interaction
pattern, with age group providing the primary risk elevation
(+0.184), while adherence assessment (–0.076), marital status
(married) (–0.077), and duration on ART (–0.069) contributed
substantial protective effects. The competing influences of
risk-enhancing and protective features resulted in a suppressed
final prediction of 0.196, falling considerably below the 0.575

threshold and causing misclassification of this patient with
actual viral nonsuppression.

Shapley Additive Explanations
The SHAP value bar charts (Figure 6) depict the top contributing
features for each individual case (TP, FP, TN, and FN). These
plots highlight how key predictors influence the model’s output
for viral suppression or nonsuppression predictions.

Figure 6. XGBoost SHAP value bar charts for the top 10 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative,
row 41; FP:13: false positive, row 13; SHAP: Shapley Additive Explanations; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost:
extreme gradient boosting.

SHAP value bar charts revealed distinct feature contribution
patterns across the 4 representative cases, illustrating
individual-level model explanations for each prediction outcome.
The TP case (TP:9) demonstrated adherence assessment as the
dominant positive contributor (SHAP value>1.5), followed by
marital status (single) (~0.1), with most remaining features
showing minimal negative contributions close to 0. This pattern
indicates that poor adherence primarily drove the model’s
prediction toward viral nonsuppression for this correctly
identified high-risk patient.

The FP case (FP:13) exhibited adherence assessment as the
primary driver (SHAP value~0.9), with residence type (urban)
and age group contributing moderately (~0.3), while most other
features remained near-neutral with minimal negative
contribution from duration on ART. The substantial positive
contribution from adherence assessment, combined with other
risk factors, elevated the prediction above the classification
threshold despite the patient’s actual viral suppression status.

In the TN case (TN:16), adherence assessment emerged as the
most significant feature, contributing a negative value of high
magnitude (SHAP value: –1.2), followed by age group (SHAP
value: –0.4). These contributions reduced the predicted
probability of nonsuppression, correctly guiding the model to
classify the patient as virally suppressed, consistent with their
actual status.

The FN case (FN:41) displayed age group as the strongest
positive contributor (SHAP value~0.4), whereas adherence
assessment, duration on ART, and marital status showed
negative contributions (approximately –1.2, –0.4, and –0.15,
respectively). This conflicting pattern of protective features
outweighing age-related risk factors resulted in an
inappropriately low prediction for a patient with actual viral
nonsuppression.

SHAP Force Plot
The SHAP force plot (Figure 7) highlights how individual
predictors contribute to the model’s predictions of viral
suppression or nonsuppression across all observations.
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Figure 7. XGBoost SHAP force plot analysis of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot revealed feature contribution patterns
across all observations, with adherence assessment consistently
dominating predictions through substantial positive SHAP
values for poor adherence and negative values for good
adherence. Age group exhibited nonlinear effects, with pediatric
and adolescent ranges generating positive contributions while
adult groups provided protective effects. Duration on ART
showed variable influences, with intermediate treatment periods
contributing to nonsuppression risk and early or long-term
durations demonstrating protective effects. Urban residence
consistently produced positive SHAP values compared to rural

residence, whereas married status typically associated with
increased nonsuppression predictions. The visualization
effectively demonstrated how competing feature influences
determine threshold crossing, revealing the dynamic balance
between risk-enhancing and protective factors across individual
clinical profiles.

SHAP Force Clustering
The SHAP force plots (Figure 8) display 4 distinct patient
clusters, each characterized by varying influences of key
predictors on viral suppression outcomes.
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Figure 8. XGBoost SHAP force plot clustering of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot clustering revealed 4 distinct patient
phenotypes based on feature contribution patterns for viral
suppression predictions. Cluster 1 (observations 0-50)
demonstrated predominantly protective profiles characterized
by substantial negative SHAP values from adherence assessment
(>–3) and age group (>–1), with minimal counteracting
contributions from other features. This cluster represented
patients with good adherence, older age groups, and rural
residence, consistently driving predictions toward viral
suppression.

Cluster 2 (observations 51-125) exhibited low-risk profiles with
negative SHAP values of greater magnitude from adherence
assessment (>–2), counterbalanced by moderate positive
contributions from other features. This cluster represented
patients with good adherence across mixed age groups (young
adults and older patients) and diverse residential settings (both
rural and urban), with predictions consistently favoring viral
suppression despite some offsetting risk factors.

Cluster 3 (observations 126-160) demonstrated predominantly
high-risk profiles characterized by substantial positive SHAP
values from adherence assessment (>2) and age group, with
minimal protective contributions from other features. This
cluster represented patients with poor adherence and younger
age groups (particularly pediatric and adolescent populations),
consistently driving predictions toward viral nonsuppression.

Cluster 4 (observations 161-219) showed variable risk patterns
with heterogeneous SHAP value distributions across features,
indicating diverse clinical profiles where feature interactions

produced inconsistent directional effects. This cluster
highlighted the complexity of prediction patterns in patients
with mixed risk and protective factors.

Discussion

This section discusses the implications of our findings on
predicting viral suppression in Ugandan people living with HIV
on ART. We summarize principal findings, acknowledge study
limitations, compare findings with previous research, and discuss
the broader significance and potential clinical implications.

Principal Findings
This study successfully developed an interpretable ML model
for predicting viral nonsuppression in Ugandan people living
with HIV, achieving robust performance with AUC 0.80, recall
0.65, F1-score 0.62, and Cohen κ 0.55. The SMOTE-enhanced
XGBoost model with XAI techniques revealed critical insights
into viral suppression determinants and patient risk stratification.

Adherence emerged as the overwhelming predictor across all
analytical approaches, contributing 54.8% of model gain and
consistently demonstrating the largest SHAP values. This
finding reinforces adherence as the fundamental determinant
of treatment success, though the magnitude of its influence
suggests that current adherence measurement approaches may
inadequately capture the complexity of medication-taking
behavior in this population. The model identified a nonlinear
age relationship, with adolescents (aged 13-19 years) showing
peak nonsuppression risk (SHAP>1.0), declining through young
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adults, and reaching protective effects in patients aged 35 years
and older (SHAP~–0.1). This pattern aligns with known
developmental challenges in adolescent HIV care but quantifies
the risk magnitude for clinical decision-making.

Urban residence consistently predicted increased nonsuppression
risk (SHAP<0.5), despite the dataset’s rural majority. This
finding challenges conventional assumptions about health care
access advantages and suggests that urban-specific barriers may
outweigh accessibility benefits in this population. However,
this finding is isolated to this dataset and may not be
generalizable to broader contexts.

The intermediate treatment period (12-24 months) emerged as
the highest-risk phase, potentially reflecting treatment fatigue
or viral resistance development. This temporal vulnerability
window has important implications for intensified monitoring
and intervention timing.

SHAP clustering revealed 4 distinct patient phenotypes:
protective profiles with good adherence and older age (cluster
1), low-risk patients with mixed demographics but good
adherence (cluster 2), high-risk adolescents with poor adherence
(cluster 3), and complex profiles with variable risk factors
(cluster 4). This stratification framework enables targeted
intervention strategies aligned with specific risk patterns rather
than one-size-fits-all approaches.

Limitations
The absence of external validation using independent datasets
limits confidence in model generalizability beyond the
single-site study population at Muyembe HCIV. Routinely
collected clinical data introduced several quality threats,
including systematic bias from recoding missing values to “N/A”
categories and selection bias from analyzing complete records
only, which reduced dataset size and potentially excluded
patients with complex clinical profiles characterized by
incomplete documentation. This approach may have
inadvertently favored patients with better health care
engagement, limiting model applicability to more vulnerable
populations who are typically underrepresented in complete
clinical records.

The analysis combined pediatric and adult patients without
separate subset evaluation, creating variable coding challenges
that potentially compromised model precision. Marriage status
proved irrelevant for children, caregiver relationships varied in
significance across age groups, and patient weight categories
applied uniform standards across vastly different developmental
stages. The weight variable’s reduced contribution to model
performance likely reflects the complexity of applying
standardized categories where weight implications for viral
suppression differ substantially between pediatric and adult
populations. Additionally, the relatively modest dataset size
(N=1101) may have constrained the ensemble algorithm’s ability
to capture complex feature interactions, while SMOTE
application for class imbalance correction carries overfitting
risks if synthetic minority samples inadequately represent true
population characteristics.

Comparison With Prior Work
This study aligns with several investigations that have explored
the potential of ML for predicting HIV viral suppression, each
possessing its own strengths and limitations [13-18,31]. Various
ML algorithms have been used in these studies, with random
forest and logistic regression emerging as the most frequently
used methodologies.

The findings of Kimaina et al [14] were particularly relevant,
as they reported similar performance metrics and the use of
ensemble techniques in their analyses. Despite the super learner
classifier being identified as the best performer—comprising
stacked ensemble models—the XGBoost model demonstrated
superior performance compared to other individual algorithms.
In our study, we also identified logistic regression and random
forest as the top-performing models, following the XGBoost
classifier.

A recent study by Seboka et al [16] further emphasized the
effectiveness of the XGBoost classifier in predicting viral
suppression, identifying critical predictors such as regimen
change, adherence level, CD4 lymphocyte count, duration on
ART, and tuberculosis status. Though these studies provided
insights through global interpretation, they lacked local
explanations, limiting the ability to compare individual-level
predictions and tailored interventions.

Influential factors in our study reaffirm the critical role of
adherence to ART as a pivotal predictor of viral nonsuppression,
corroborating previous research that has similarly highlighted
its significance in treatment outcomes [17,32-34]. Esber et al
[17] demonstrated that adherence, along with CD4 lymphocyte
count and ART regimen, was crucial in predicting viral
nonsuppression. In contrast, Wagner et al [33] emphasized that
viral suppression among participants on dolutegravir is not
dependent on strict adherence levels; however, their study also
indicated that traditional ART is associated with viral
suppression and different adherence levels.

Our identification of age group as a significant predictor aligns
with evidence from resource-limited settings. Cross-sectional
studies in Cambodia found that older adolescents had a
significantly lower likelihood of viral nonsuppression compared
to younger peers [35]. This is corroborated by prospective data
from Kenya and Uganda, where younger age independently
predicted both failure to achieve viral suppression and increased
risk of virologic rebound [36]. Population-level data from rural
KwaZulu-Natal further support age-related disparities,
demonstrating substantially lower viral suppression rates among
younger populations, with particular challenges among the
younger male population in achieving viral suppression targets
[37]. These clinical and population studies emphasize that
younger populations require targeted interventions including
enhanced psychosocial support and treatment literacy to improve
viral suppression outcomes. These findings collectively support
age as a critical predictor requiring tailored approaches for
younger people living with HIV.

Studies from sub-Saharan Africa show mixed findings, with
some demonstrating higher viral suppression in rural areas due
to older patient demographics and better ART adherence
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compared to urban counterparts, while others report better urban
outcomes due to improved health care access [38]. Our study
found urban residence to be a risk factor for viral
nonsuppression, aligning with the former. South African data
indicate that virological suppression varied by geographical
setting, from 94.6% in urban settings to 88% in rural settings,
though this contradicts our findings [39]. In Cameroon, viral
suppression was 75% in urban sites compared to 67.7% in rural
sites [40]. Our counterintuitive finding may reflect specific
urban health care challenges in our setting, including health
care fragmentation or urban-specific barriers despite proximity
to services. However, this finding is isolated to this dataset and
may not be generalizable to broader contexts.

Duration on ART was found to be associated with viral load
suppression, with longer durations linked to improved outcomes.
This finding is consistent with previous studies [41-43], which
highlight that prolonged ART engagement enhances the
likelihood of achieving viral suppression. These results reinforce
the importance of sustained adherence to treatment in managing
HIV effectively.

Model Interpretability and Clinical Implications
Our primary use of XAI was to identify population-level patterns
that inform general clinical and public health strategies. SHAP
global feature importance analysis across all 1101 patients
revealed that adherence assessment was consistently the
strongest predictor of viral nonsuppression, followed by age
group, urban residence, and ART duration. These aggregate
patterns, derived from the entire cohort, form the basis of our
general conclusions about risk factor hierarchies and provide
evidence for prioritizing adherence support programs in HIV
care settings. Partial dependence plots and ICE curves further
confirmed that these relationships held consistently across
different patient subgroups, demonstrating robust
population-level patterns rather than isolated associations.

While population-level findings drive our general conclusions,
individual patient explainability serves 2 critical complementary
functions. First, breakdown plots and individual SHAP values
validate that population-level patterns manifest consistently at
the patient level, ensuring that our aggregate findings are not
statistical artifacts but reflect genuine clinical mechanisms. For
example, examining individual predictions confirmed that

adherence consistently dominated decision pathways across
diverse patient profiles, strengthening confidence in our
population-level conclusion about adherence primacy. This
emphasizes the clinical value of individualized interventions
and illustrates how XAI mitigates the inherent black-box nature
of ML models by revealing transparent, interpretable decision
pathways [44-46].

Second, individual explainability demonstrates clinical
applicability by showing how the model functions in practice.
Analysis of specific cases, including FPs where poor adherence
drove incorrect nonsuppression predictions despite actual viral
suppression, illustrates both the model’s reasoning process and
its limitations. These examples do not change our
population-level conclusions but demonstrate how clinicians
might use the model for personalized risk assessment and
intervention planning in real-world settings.

This dual approach to explainability fosters accountability and
trust in health care artificial intelligence (AI) systems by
enhancing comprehensibility at both population and individual
levels [47,48]. Transparency in AI decision-making, enabled
by XAI, has the potential to build trust among health care
professionals and patients alike, facilitating wider adoption of
AI-powered health care solutions [45]. Additionally, XAI helps
mitigate biases within AI models, promoting fairer and more
ethical applications [47-49]. Understanding how various factors
influence model predictions allows health care professionals to
improve accuracy and ensure that AI-driven decisions align
with clinical priorities, thus enhancing the overall utility of AI
in health care settings.

This study demonstrates that XGBoost ML models can
accurately predict viral nonsuppression in Ugandan patients
with HIV, achieving strong discriminative performance (AUC
0.80). XAI analysis identified adherence assessment as the most
critical predictor, followed by age group, urban residence, and
ART duration. These findings support the integration of ML
into clinical decision-making for targeted interventions,
particularly adherence support programs for high-risk
populations. Future research should focus on external validation
across diverse health care settings and the incorporation of
additional social determinants of health to enhance model
generalizability and clinical utility.
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Introduction

At the intersection of generative artificial intelligence (AI) and
health issues, where misconceptions proliferate, the question
remains: does generative AI improve public understanding of
health issues? Health misconceptions stem from false or
factually inaccurate information and a lack of health literacy
[1]. For flu vaccination and climate change, where
misconceptions are common and have behavioral and policy
implications [2,3], addressing the problem represents an urgent
need.

On the pessimistic side, generative AI technology may produce
factually inaccurate content inadvertently, as generative AI tools
are content generators, not necessarily fact generators. Content
generation relies on training data and underlying algorithms,
but if the data used include outdated information, generative
AI tools may produce inaccurate information [4]. AI may also
ignore inaccuracies in users’ content generation prompts or
create content that is tailored to receiver preferences, which
may reinforce existing misconceptions, resulting in echo
chambers [5].

From an optimistic perspective, generative AI tools may be
used to evaluate health information and improve public
understanding. Companies are incentivized to validate the
objectivity of their AI tools to legitimize them [6]. Harmful AI
output may be diminished through supervised and reinforcement
learning, and AI tools may reduce misperceptions among their

users. In such cases, generative AI may help lessen
health-related misconceptions.

Given the contradictory roles, this study investigated the content
and effects of large language model–based human-AI
interactions that evaluate information related to flu vaccination
and climate change (including widespread myths). First, using
GPT-4o to analyze human-ChatGPT conversations, we
examined whether responses from ChatGPT engaged in any
well-established communication strategies that were identified
by existing meta-analyses to improve accurate understanding
of health issues [7,8], including coherence appeals (providing
explanations against misconceptions) [7], credibility appeals
(highlighting official agencies’ statements) [7], consensus
appeals (highlighting the agreement among experts) [7],
verification appeals (encouraging users to cross-check
information) [7], and empathy appeals (acknowledging users’
experiences/concerns) [9]. Second, we also examined whether
user interactions with ChatGPT lead to changes in
misconceptions and attitudes on issues.

Methods

Overview
Undergraduate students in communication courses from a large
midwestern university in the United States were invited to use
ChatGPT (GPT-3.5 or GPT-4, depending on whether the
respondent used the free or paid version) to evaluate information
(including widespread myths) related to flu vaccination and
climate change in an online study in exchange for extra course
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credit. A total of 217 students accessed the study, with 149
students completing the questionnaire. We measured
respondents’misconceptions and attitudes on issues both before
and after their interactions with ChatGPT (using items with
7-point scales; see Multimedia Appendix 1). Paired samples t
tests were conducted to test the difference between the posttest
and pretest measures. We also collected the transcripts of all
user-ChatGPT interactions (149 respondents × 2 issues = 298
transcripts) and used both GPT-4o and human coding to analyze
each transcript for the presence of the communication strategies
in ChatGPT’s responses (any discrepancies between GPT-4o
and the human coder were subsequently reviewed and validated
by a second coder and the analyses were based on the verified
dataset).

Ethical Considerations
The study was approved by the institutional review board of
the University of Wisconsin–Madison (IRB# 2023-1416), and
informed consent was obtained from all participants. Participants
took the study in exchange for extra course credit, and the data
collected were anonymized/deidentified.

Results

Coherence appeals appeared in all 149 transcripts for both issues
(n=149, 100%), followed by consensus appeals (n=65, 43.6%
for flu vaccination and n=137, 91.9% for climate change),
credibility appeals (n=58, 38.9% for flu vaccination and n=90,
60.4% for climate change), verification appeals (n=88, 59.1%
for flu vaccination and n=14, 9.4% for climate change), and
empathy appeals (n=77, 51.7% for flu vaccination and n=9,
6.0% for climate change; see Table 1). Interactions with
ChatGPT were associated with lower misconceptions about flu
vaccination (posttest mean 2.43, SD 1.24 compared with pretest
mean 2.93, SD 1.13; d=–0.56; P<.001) but not climate change
(posttest mean 2.20, SD 0.96 compared with pretest mean 2.20,
SD 0.99; d=–0.01; P=.94). Conversations with ChatGPT were
also associated with increased positive attitudes toward flu
vaccination (posttest mean 6.18, SD 1.14 compared with pretest
mean 5.84, SD 1.29; d=0.41; P<.001) and support for climate
action (posttest mean 5.81, SD 1.02 compared with pretest mean
5.58, SD 1.08; d=0.41; P<.001; Figure 1). Exposure to
information about the high versus low credibility of ChatGPT
did not affect these outcomes (Multimedia Appendix 1).
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Table 1. Variables in focus in the analysis of ChatGPT-generated content (N=149) for each issue topic.

Agreement between
GPT-4o and human
coder (%)

GPT-4o–assisted
content analysis
count, n (%)

Variable operationalization (representative quotes)Variable definition

93Coherence appeals: providing explanations to support statements against misconceptions [7]

149 (100.0)“The flu vaccine is important for several reasons: Preventing Illness:
The flu vaccine is designed to protect against the influenza viruses
that are expected to be most common during the flu season. Getting
vaccinated reduces your risk of getting sick with the flu. Reducing
Severity of Illness: Even if you do get the flu after being vaccinated,
the vaccine can still reduce the severity and duration of the illness.
This is particularly important for vulnerable populations, such as
the elderly and individuals with underlying health conditions...”

Flu vaccination

149 (100.0)“Here are some key reasons why climate change is a critical issue:
Environmental Impact: It leads to rising temperatures, melting ice
caps, sea level rise, disruptions in ecosystems, loss of biodiversity,
and changes in weather patterns, affecting natural habitats and the
balance of ecosystems. Human Health: Climate change contributes
to increased frequency and intensity of extreme weather events,
which can result in loss of lives, injuries, displacement of communi-
ties, and the spread of diseases...”

Climate change

94Consensus appeals: highlighting the overall agreement among experts [7]

65 (43.6)“The general consensus among healthcare professionals and public
health organizations is that flu vaccination is beneficial.”

Flu vaccination

137 (91.9)“The overwhelming scientific consensus is that the increased con-
centration of greenhouse gases from human activities, such as
burning fossil fuels and deforestation, is the dominant factor driving
the observed warming of the planet.”

Climate change

88Credibility appeals: highlighting official agencies’ statements/opinions [7]

58 (38.9)“Public health organizations, such as the World Health Organization
(WHO) and the Centers for Disease Control and Prevention (CDC),
often advocate for widespread flu vaccination to help control the
spread of the flu virus and protect vulnerable populations.”

Flu vaccination

90 (60.4)“The Intergovernmental Panel on Climate Change (IPCC) and nu-
merous scientific organizations worldwide, such as the National
Aeronautics and Space Administration (NASA) and the National
Oceanic and Atmospheric Administration (NOAA), have stated that
human activities are the primary driver of recent global warming.”

Climate change

90Verification appeals: motivating users to cross-check information [7]

88 (59.1)“If you have concerns about the flu vaccine or experience unusual
symptoms after vaccination, it’s always a good idea to consult with
your healthcare provider for guidance based on your individual
health situation.”

Flu vaccination

14 (9.4)“It’s essential to rely on accurate and up-to-date scientific informa-
tion when discussing complex issues like climate change.”

Climate change

90Empathy appeals: acknowledging users’ experiences, feelings, or beliefs [9]

77 (51.7)“It’s not uncommon for some people to experience mild symptoms
after receiving the flu vaccine.”

Flu vaccination

9 (6.0)“Climate change continues to be a significant global concern.”Climate change
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Figure 1. Changes in misconceptions and positive attitudes/support for flu vaccination and climate action (with 95% CIs).

Discussion

Our research examines human–generative AI interactions across
two health issues. Our content analysis of human-ChatGPT
conversations revealed that ChatGPT used a variety of
well-established strategies to improve accurate understanding
of health issues [7-9]. Moreover, experimental findings showed

that such conversations were associated with reduced
misconceptions and increased support for actions. Despite
several limitations (Multimedia Appendix 1), the findings
indicate that the use of ChatGPT might be beneficial in boosting
health literacy, and future research may expand our insights by
looking into other issues and using a nationally representative
sample.
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Abstract

Background: Medical residency is characterized by high stress, long working hours, and demanding schedules, leading to
widespread burnout among resident physicians. Although wearable sensors and machine learning (ML) models hold promise for
predicting burnout, their lack of clinical explainability often limits their utility in health care settings.

Objective: This paper presents EMBRACE (Explainable Multitask Burnout Prediction Using Adaptive Deep Learning), a novel
framework designed to predict and explain future burnout in resident physicians through an adaptive multitask deep learning
approach. The framework aims to provide clinically actionable and trustworthy burnout predictions by integrating explainable
ML techniques.

Methods: EMBRACE applies deep multitask learning (3 tasks) using wearable sensor data for context-aware burnout prediction
and explanation. The adaptive multitask learning framework predicts workplace activities and future burnout levels, and
automatically completes a clinically validated burnout survey. Additionally, an explainability study was conducted using SHAP
(Shapley Additive Explanations) to provide feature importance scores and visualizations for clinicians, enhancing the transparency
and interpretability of the predictions. We evaluated the model on three datasets: (1) a collected dataset of 28 resident physicians
(mean age 27.5, SD 3.5 years), over 2-7 days (average 3.6 days) with research protocols approved by the institutional review
board (#2021-017) of Berkshire Medical Center, University of Massachusetts Chan Medical School; (2) the publicly available
WESAD (Wearable Stress and Affect Detection) dataset from 15 participants; and (3) the SWELL-KW (SWELL Knowledge
Work) dataset containing workplace stress and activity data from 25 participants (8 females and 17 males).

Results: On our collected dataset, EMBRACE achieved 93% recall, 91% precision, and 0.91 R2 error in predicting 5-class
activities, 4-class future burnout levels, and 1 clinically explainable survey (Mini-Z with 10 questions). On the WESAD dataset,
the model achieved 94.1% recall and 94.6% precision for 3-class stress level prediction. On the SWELL-KW dataset, EMBRACE

obtained 89% recall, 86% precision, and 0.88 R2 error in predicting 5-class activities, 3 burnout measures (joyful, satisfaction,
and stress) with 2 classes on each measure, and 4 survey assessments (a total of 20 questions). The explainability study, using
SHAP values, highlighted key contributing factors such as heart rate variability, sedentary activity duration, and interruptions,
improving clinical trust and interpretation of burnout predictions. Of 23 participants, 21 (91%) reported satisfaction with the
explainability of feature importance summaries.

Conclusions: EMBRACE provides a clinically explainable and actionable solution for early burnout detection in resident
physicians, leveraging advanced ML techniques and SHAP-based explanations. Validation of proprietary and publicly available
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datasets demonstrates their robustness and generalizability. Future research may explore scaling the model across different clinical
environments and assessing its long-term impact on health care outcomes and physician well-being.

(JMIR AI 2026;5:e57025)   doi:10.2196/57025

KEYWORDS

future burnout prediction; wearable sensors; machine learning; multitask learning; clinical explainability; health care informatics

Introduction

Foundations of Physician Burnout
Burnout is a psychological syndrome emerging as a prolonged
response to chronic interpersonal stressors on the job. It is
characterized by 3 dimensions: emotional exhaustion,
depersonalization, and reduced personal accomplishment. Stress,
on the other hand, is a more immediate reaction to a challenge
or demand, often leading to burnout when experienced
frequently or intensely. In our work, we focus on predicting
physician burnout by analyzing the stress levels observed
through various wearable sensors.

Background
Workplace stress is a pervasive issue that affects individuals
across various professions and industries [1]. It encompasses
the psychological, emotional, and physical strain experienced
by employees due to demanding work conditions, excessive
workload, and challenging interpersonal dynamics [2]. Recent
statistics highlight the magnitude of the workplace stress
problem, with studies indicating that 80% of employees reported
feeling stressed at work sometimes, and 60% of absenteeism
was associated with stress in some ways in that survey [3,4].
This alarming trend raises concerns about the impact of
workplace stress on individuals’ well-being, job satisfaction,
and overall quality of life [5].

Recognizing the detrimental effects of workplace stress,
researchers and clinicians have developed clinically validated
tools to assess and detect stress levels in workers [6]. These
tools typically involve questionnaires and surveys that measure
various dimensions of stress, including task load, mental effort,
emotion, and perceived stress [7]. Additionally, real-time
methods for quantifying continuous mental workload have been
proposed [8]. One widely used tool is the Maslach Burnout
Inventory, which evaluates burnout by measuring emotional
exhaustion, depersonalization, and personal accomplishment
among professionals [9]. Another prominent tool is the
Copenhagen Burnout Inventory, which focuses on personal,
work-related, and client-related burnout, providing a
comprehensive view of burnout sources [10]. The Perceived
Stress Scale is frequently used to measure the perception of
stress in workers, assessing how unpredictable, uncontrollable,
and overloaded respondents find their lives [2,11]. Additionally,
the Job Content Questionnaire assesses job characteristics such
as decision latitude, psychological demands, and social support
at work, which are critical factors influencing stress and burnout
[12]. The Mini-Z survey is another widely used tool that assesses
various dimensions of burnout and job satisfaction, including
stress, workload, and control over work, making it effective in
both clinical and research settings [10,13]. These tools help in

identifying stress levels and sources, allowing for targeted
interventions to mitigate the adverse effects of workplace stress
and improve overall well-being.

While these tools provide valuable insights and are clinically
explainable to nurses and clinicians, they are often limited by
their reliance on self-reporting and retrospective assessments,
which can be subject to recall biases and may not capture
real-time stress experiences [14]. To address these limitations
and provide real-time monitoring of workplace stress, wearables
and machine learning (ML) techniques have emerged as
promising solutions. Wearable devices equipped with sensors
can collect physiological and behavioral data from individuals
throughout their workday, offering continuous and objective
measurements of stress-related indicators such as heart rate
variability, skin conductance, and physical activity. These
devices have been extensively used in various studies to monitor
and assess stress levels in real time. For instance, a study
validated the Empatica E4 wristband’s ability to detect heart
rate variability and electrodermal activity (EDA) metrics in
stress-inducing conditions [15]. Another research project focused
on the continuous monitoring of stress using
photoplethysmogram sensors integrated into wrist-worn devices,
highlighting significant changes in physiological responses
during stress-inducing tasks [16]. These developments
underscore the potential of wearable technology in providing
reliable, objective, and continuous stress monitoring solutions
[17]. ML algorithms can then analyze these data and predict
stress levels in real time [18].

Medical residency is undeniably one of the most challenging
and demanding workplace stress situations that individuals can
experience. Medical residency is a highly challenging and
demanding period characterized by extended working hours
and schedules [19]. The demanding work schedules and long
hours of residency, coupled with work-home interference, create
a highly stressful environment that predisposes residents to
burnout due to several stressors, including sleep deprivation,
conflicts with coworkers, difficulty adapting to a new
environment, heavy patient responsibilities, lack of control over
schedules, and personal traits such as neuroticism or introversion
that increase the risk of burnout [20]. Burnout can cause physical
symptoms (headache, fatigue, gastrointestinal distress, flu, and
sleep and appetite changes) and psychological symptoms
(irritability and reduced concentration), as well as behaviors
like procrastination, daydreaming, and substance use [21].
Additionally, it can lead to an increased risk of depression,
suicidal thoughts, and cardiovascular problems [22]. Moreover,
the COVID-19 pandemic has exacerbated the long-standing
issue of resident burnout in the US health care system,
highlighting the urgent need for interventions to support and
protect the well-being of these essential frontline workers before
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it is too late [23]. The combined use of advanced wearable
sensor technologies and ML algorithms can facilitate the early
identification of burnout, thereby providing an opportunity to
prevent its occurrence [18].

Despite their potential benefits, wearable sensors and ML-based
predictions may suffer from a lack of clinical explainability,
potentially leading to mistrust among clinicians and limiting
their practical use in real-time clinical settings [24,25].

Contributions
This paper introduces a novel framework, EMBRACE
(Explainable Multitask Burnout Prediction Using Adaptive
Deep Learning), for enhancing the prediction and explanation
of future burnout in residents by using a clinically validated
survey that is easily comprehensible and reliable for clinicians.
More specifically, our key contributions are

• In EMBRACE, we develop a wearable sensor-based
improved workplace activities and stress recognition
framework using a deep multitask learning (MTL)
technique. Then, using that, we develop a novel explainable
MTL framework to automatically predict future burnout
and explain the prediction by filling out a clinically
validated and trustworthy burnout prediction survey tool.

• We validated the accuracy and explainability of our
proposed EMBRACE framework using real-time collected
data from 28 internal medicine residents (2-7 days each) in
a natural hospital duty setting with appropriate institutional
review board approval (#2021-017) of Berkshire Medical
Center of the University of Massachusetts Chan Medical
School.

• We assessed the generalizability of the EMBRACE
framework by testing its performance on two publicly
available occupational stress prediction datasets. The results
demonstrated the framework’s robustness and effectiveness
across diverse datasets, highlighting its potential for broader
application in real-world settings.

Related Work

ML Approaches to Burnout Detection
The use of ML techniques in detecting burnout among resident
physicians is a relatively new area of research. While ecological
momentary assessment has shown effectiveness in predicting
burnout among residents [26], incorporating ML methods has
the potential to enhance prediction performance [27]. However,
real-time burnout prediction necessitates continuous monitoring
of health vitals and ML techniques [28-30]. Recent systematic
reviews [29,30] indicate that existing just-in-time burnout
prediction techniques use biomarkers such as skin temperature,
motion-based activities (accelerometers), electrodermal
fluctuations, and wristband-based blood volume pulse. Various
ML algorithms such as multilayer perceptron (MLP), random
forest, k-nearest neighbors, support vector machine, linear
regression, convolutional neural networks (CNN), fully
convolutional network, Time-CNN, ResNet MLP, CNN-LSTM
(long short-term memory), MLP-LSTM, InceptionTime, and
others have been used in these studies [29,30]. However, a
common limitation among these works is the lack of clinical

explainability, which has not been adequately addressed in this
research field [25,29,30].

Multitask Deep Learning Frameworks on Wearable
Sensor Computing
Recent advancements in deep learning (MTL) frameworks have
demonstrated significant improvements in the performance of
wearable sensor computing. Taylor et al [31] developed an MTL
model that simultaneously predicts physical activity levels and
stress markers using data from wearable devices. Their approach
highlighted the benefits of shared representations in improving
the generalizability and accuracy of the predictions [31].
Similarly, Sabry et al [32] introduced a deep MTL framework
for health monitoring that integrates tasks such as activity
recognition, sleep stage detection, and stress level prediction,
showing enhanced performance over single-task models.
Another noteworthy contribution by Arefeen and Ghasemzadeh
[33] focused on leveraging MTL to predict both physiological
and behavioral responses, illustrating the model’s robustness
across different wearable sensor datasets.

Context-Aware Stress Prediction Using Wearables
Context-aware stress prediction has gained traction as it enables
more accurate and personalized stress monitoring. Aqajari et al
[34] proposed a context-aware framework that uses
environmental and physiological data from wearable sensors
to predict stress levels, achieving higher accuracy compared to
context-agnostic models. Similarly, Campana and Delmastro
[35] developed a context-aware stress monitoring system that
integrates location-based data and social interactions with
physiological signals, demonstrating significant improvements
in stress prediction accuracy. The work by Zhang et al [36]
further advanced this field by incorporating ML algorithms to
analyze multimodal sensor data, thereby providing real-time
stress detection and feedback.

Explainable Wearable Sensor Computing
Many researchers proposed different interpretable and
explainable artificial intelligence (AI) algorithms to make
complex AI prediction models explainable, which include the
Additive Feature Attribution method and the local interpretable
model-agnostic explanations (LIME) approach [37]. The SHAP
(Shapley Additive Explanations) approach combines LIME
with Shapley values to provide explanations for black-box
models [38]. Other methods include class activation mapping
[39], DeepLIFT (Deep Learning Important Features) [40], and
layer-wise relevance propagation [41] for interpreting CNNs.
In health care, explainable AI applications have been developed
for interpreting imaging studies and real-time predictions [42].
One previous work proposed interpretable ML techniques for
stress prediction using wearables, but it only provided a
simplistic representation of top features based on SHAP, which
lacks clinical significance [43]. Adapa et al [44] proposed a
supervised ML method to predict burnout among resident
physicians that takes a bunch of surveys to understand different
workplace problems and activities related to it, and—based on
those longitudinal surveys on personal, physical, workplace
environmental, and physiological status measures—performed
a supervised ML approach to identify some highly correlated
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factors (emotional exhaustion, depersonalization, race
demographics, etc). EMBRACE offers both efficient burnout
prediction and a clinically validated survey-filling-out method,
hypothesizing that the clinical survey of burnout estimation is
explainable and trustworthy among resident physicians. Recent
studies have focused on making these systems more
interpretable. Abdelaal et al [45] introduced an explainable AI
framework for wearable health monitoring that uses SHAP
values to provide insights into model predictions, enhancing
trust among clinicians. Additionally, De Cannière et al [46]
proposed an interpretable deep learning model that visualizes
feature importance and decision pathways, making the model’s
outputs more comprehensible for end users. Another significant
contribution by Kyriakou et al [47] involves the development
of a transparent stress detection system that combines rule-based
logic with ML to offer clear explanations of its predictions.

Our proposed EMBRACE framework leverages a clinically
explainable, multitask adaptive deep learning approach, making
it superior by providing trustworthy and actionable insights for
burnout prediction. By integrating context-aware stress
prediction with explainable AI techniques, EMBRACE ensures
high accuracy and transparency. This combination addresses
the limitations of existing models, thereby enhancing the
practical utility of wearable sensor computing in clinical settings.

The primary aim of this study is to develop and validate the
EMBRACE framework, a clinically explainable adaptive
multitask deep learning model, for predicting and explaining
future burnout among resident physicians using wearable sensor
data. We hypothesize that integrating real-time physiological
data, context-aware activity recognition, and explainable ML
techniques will significantly enhance the accuracy,
interpretability, and clinical trustworthiness of burnout
predictions. We further hypothesize that the EMBRACE
framework’s performance will generalize effectively across
diverse clinical environments, supporting timely interventions
to mitigate burnout and promote physician well-being.

Methods

The EMBRACE framework consists of two core components:
(1) an algorithm for detecting workplace activity and stress
using a publicly available dataset and (2) an adaptive algorithm
for detecting burnout level and explanation in our collected
dataset, as well as in the publicly available dataset [3].

Publicly Available Wearable Stress and Affect
Detection Dataset (D1)
We used the WESAD (Wearable Stress and Affect Detection)
public dataset [48]. This dataset comprises recordings from 15
participants (12 male and 3 female) who were equipped with 2
wearable devices: the RespiBAN Professional and the Empatica
E4. The RespiBAN device, positioned on the chest, captured
signals such as body acceleration (along 3 axes), body
temperature, respiration, electrocardiography, electromyography,
and EDA, all sampled at a frequency of 700 Hz. The Empatica
E4 wristband measured signals including hand acceleration
(along 3 axes), skin temperature, blood volume pulse, and EDA,
with these signals being recorded at varying sampling rates. All

signals from the Empatica E4 were subsequently upsampled to
a uniform rate of 64 Hz using the Fourier method. The
participants selected for this study excluded individuals with
mental or cardiovascular conditions, those who were pregnant,
and heavy smokers, with an average age of 27.5 years. During
the data collection phases, participants either stood or sat during
the baseline, amusement, and stress phases (with half of the
participants standing and the other half sitting for each phase).
In contrast, all participants sat during the meditation phase (for
details, see Multimedia Appendix 1) [49-52].

Building upon previous research on stress detection using the
WESAD dataset [48], we considered 3 distinct classification
tasks in this study. The first task [48] focused on distinguishing
between stress and nonstress states using data from 3 phases:
baseline, stress, and amusement. The aim was to classify stress
(stress phase) versus nonstress (baseline and amusement phases)
(S vs NS). The second task [48] aimed to differentiate among
3 states: baseline, stress, and amusement (B vs S vs A). The
third task [48] extended the classification to 5 distinct classes:
baseline, stress, amusement, meditation, and recovery (B vs S
vs A vs M vs R).

Publicly Available Stress and User Modeling Dataset,
SWELL-Knowledge Work Dataset (D2)
The SWELL-KW (SWELL Knowledge Work) dataset comprises
accelerometer, heart rate, and galvanic skin response sensor
data along with activity labels and subjective stress assessments
from workplace activities [50-52]. Data were collected from 25
participants (average age 29, SD 4.2 years) performing tasks in
controlled laboratory scenarios designed to induce stress
(neutral, time pressure, and email interruptions). Each participant
completed all scenarios over a 3-hour session, with sensors
operating at 50 Hz (accelerometers), 1 Hz (heart rate monitors),
and 10 Hz (galvanic skin response sensors). Activity labels
included making presentations, paper writing and planning,
writing and reading emails, programming, creating overviews,
information searching, and time away from the keyboard,
annotated via video recordings for accuracy.

Subjective stress was assessed using 4 validated surveys: NASA
(National Aeronautics and Space Administration) Task Load
Index (NASA-TLX), Rating Scale Mental Effort (RSME),
Self-Assessment Manikin (SAM), and Perceived Stress Scale
(PSS) [53]. NASA-TLX measures task load across mental,
physical, and temporal demand, performance, effort, and
frustration (scores are averaged, with higher scores indicating
higher stress). RSME rates mental effort (0-150 scale; higher
indicates higher stress). SAM captures valence, arousal, and
dominance emotions pictorially (higher arousal and lower
valence indicate higher stress) [54]. PSS provides a global
measure of perceived stress (10-item, 0-40 scale; for details,
see Multimedia Appendix 1) [53].

Ethical Considerations
The study received approval (exemption) from the institutional
review board (#2021-017) of Berkshire Medical Center of the
University of Massachusetts Chan Medical School. Participants
voluntarily participated in this study and provided informed
consent before enrollment. All data were stored in a secure,
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HIPAA (Health Insurance Portability and Accountability
Act)-compliant server with proper deidentification to protect
participant privacy. The study adheres to ethical guidelines and
regulatory requirements for conducting research with human
participants. Participation in this study was entirely voluntary.
No incentives or gifts were provided to participants, a fact that
was clearly communicated during recruitment and outlined in
the consent document.

Our Data Collection Principles

Medical and Clinical Tasks of Interest
The medical and clinical task of interest in our study is
prognostic, focusing on predicting the future occurrence of
burnout among internal medicine resident physicians. This
involves continuous monitoring of physiological data using
wearable sensors to estimate the risk of burnout, thereby
allowing timely interventions.

Research Question
The primary research question addressed in this study is, “Can
continuous monitoring of physiological data using wearable
sensors, combined with ML techniques, accurately predict future
burnout levels in resident physicians?” The outcomes of interest
include the levels of burnout, stress, and satisfaction, as
measured by the Mini-Z Burnout Survey [13]. The study aims
to identify significant predictors of burnout and develop an
explainable ML model to enhance clinical decision-making.
The Mini-Z survey is widely recognized as a clinically validated
and concise tool for assessing burnout, stress, and job
satisfaction, making it ideal for our target study on resident
physicians who face high-pressure environments. Its simplicity
and focus on actionable dimensions like workload, electronic
medical record (EMR) stress, and control over work ensure that
it captures relevant factors contributing to burnout, aligning
perfectly with the predictive goals of our EMBRACE
framework. The survey’s structured 10-item format facilitates
automated completion via ML models, enabling seamless
integration with wearable sensor data for real-time burnout
prediction. Mini-Z’s broad adoption in health care settings
ensures that its results are interpretable and trustworthy for
clinicians, enhancing the explainability and clinical utility of
our framework. By targeting key predictors of burnout and
providing clear thresholds for intervention, the Mini-Z survey
supports our objective of delivering clinically actionable insights
to improve resident physicians’ well-being.

Known Predictors and Confounders to What Is Being
Predicted or Diagnosed
Predictors of burnout in this study include physiological
measures such as heart rate variability, skin conductance, and
physical activity levels, collected using the Empatica E4 watch
[55]. These predictors are chosen based on existing literature
that links them to stress and burnout. Confounders may include
individual differences in baseline stress levels, workload
intensity, and personal coping mechanisms. These factors are
controlled through initial baseline assessments and continuous
monitoring.

Overall Study Design
The study uses a prospective cohort design, where 28 internal
medicine resident physicians are monitored over a period
ranging from 2 to 7 days. Data collected includes physiological
metrics from wearable sensors and responses to the Mini-Z
Burnout Survey [13]. The study is divided into training,
validation, and testing phases to develop and evaluate the ML
model.

Medical Institutional Settings
The study is conducted at a renowned teaching-based medical
center, Berkshire Medical Center of the University of
Massachusetts Chan Medical School, where the internal
medicine residency program is hosted. The collected data and
the ML model are intended to be used in this clinical setting to
monitor and predict burnout among resident physicians.

Target Population
This study targets internal medicine resident physicians from
various postgraduate year (PGY1, PGY2, and PGY3) levels.
The model aims to generalize across this population to provide
accurate burnout predictions for different stages of residency
training.

Intended Use of the ML Model
The ML model is intended to be used as a tool for continuous
monitoring and early detection of burnout among resident
physicians. It will provide real-time alerts to medical staff and
wellness coordinators, enabling proactive interventions. The
intended users (with residents’ consent) include clinicians,
residency program directors, and wellness coordinators, who
will use the model’s outputs to support residents’ well-being.

Existing Model Performance Benchmarks for This Task
Existing benchmarks for burnout prediction models typically
involve metrics such as accuracy, recall, precision, and the area
under the receiver operating characteristic curve. Previous
studies using ML methods have reported varied performance,
often limited by a lack of real-time data and clinical
explainability. Our study aims to surpass these benchmarks by
incorporating continuous physiological monitoring and
explainable AI techniques.

Burnout Classes
Burnout levels were assessed using the Mini-Z Burnout Survey,
which includes 10 questions scored on a 5-point Likert scale,
along with an additional open-ended question. Three different
burnout scales were derived from these responses:

1. Joyful Measure: The total score is calculated by summing
the points from all 10 items, with a score range of 10 to 40
points. A score of 20 or higher indicates a joyful work
environment, which has been used to design a 2-class
problem: joyful or not joyful work environment.

2. Satisfaction Scale: This scale is derived by adding the points
from questions 1, 2, 3, and 4, resulting in a score range of
4 to 25 points. A score of 20 or higher indicates a highly
supportive environment, which has been used to design a
2-class problem: satisfied or not satisfied work environment.
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3. Stress Scale: The stress scale is calculated by summing the
points from questions 5, 6, 7, and 8, with a score range of
4 to 25 points. A score of 20 or higher indicates a low-stress
environment with reasonable EMR pressures, which has
been used to design a 2-class problem: high or low stress
at work environment.

Participants were asked to complete the Mini-Z survey daily,
and their responses were used to establish baseline burnout
levels and track changes over the study period. This continuous
assessment allows for timely interventions to prevent and
mitigate burnout.

Our Collected EMBRACE Dataset Description (D3)
The study included 28 internal medicine resident physicians
(average age 27.5, SD 3.5 years) from a renowned
teaching-based medical center, spanning different postgraduate
years (PGY1, PGY2, and PGY3). Inclusion criteria required
participants to be actively engaged in their residency program,
while exclusion criteria involved any medical conditions that
could interfere with stress and burnout assessment. Data
collection was prospective, with participants wearing an
Empatica E4 watch continuously from the start to the end of
their daily duties, covering periods ranging from 2 to 7 days.
Each participant contributed to a total of 98 days of data, with
each day spanning 8 to 13 hours of working hours, averaging
10.5 hours per day, resulting in approximately 1029 hours of
physiological data and 98 different daily ground truth data from
surveys. Of 98 days, 33 (34%) were identified as burnout days
(the days that ended with a burnout as per the burnout survey),
spanning over 19 out of 28 (68%) residents. The collected data
included heart rate variability, skin conductance, and physical
activity levels, recorded at frequencies of 1, 10, and 50 Hz,
respectively. Additionally, participants completed the Mini-Z
Burnout Survey daily via a web-based form sent to their cell
phones, providing subjective assessments of burnout, stress,
and satisfaction. Potential biases include self-reporting
inaccuracies and the variability in daily workloads, which were
controlled through baseline assessments and continuous
monitoring. The dataset consists of longitudinal records with
multiple data points per participant, encompassing continuous
(physiological measures) and categorical (survey responses)
data. Data preprocessing involved normalizing physiological
measures and handling missing data through imputation
methods. Known quality issues include potential sensor
malfunctions and variability in self-reported data. The sample
size was deemed sufficient based on standard ML training
requirements, ensuring adequate model performance and
stability. The data are stored in a secured, HIPAA-compliant
server and are available for further research upon request,
adhering to data sharing policies. Table S1 in Multimedia
Appendix 1 presents the description of the study.

Detecting Workplace Activity and Stress Using Existing
Dataset

Multitask Deep Learning for Joint Activity and Stress
Detection
A multitask deep learning framework for wearable sensor-based
activity and stress detection involves training a single model to

simultaneously perform multiple tasks, specifically activity
recognition and stress level classification. The framework
combines both tasks into a single neural network architecture,
allowing shared representations to be learned and leveraging
the complementary information present in the data.

Input Data
The input data consist of time-series sensor readings from

wearable devices, denoted as X ∈ RT×N, where T represents the
length of the time series and N is the number of sensor channels.

Activity Recognition Task
Activity recognition aims to predict the activity type based on
sensor data. The predicted activity labels are denoted as Yact ∈
{0, 1}C

act, where Cact represents the number of activity classes.
The output layer for activity recognition is defined as

Oact = softmax(Wact × H + bact) (1)

where H represents the shared hidden representations obtained
from the network, Wact is the weight matrix, and bact is the bias
term specific to the activity recognition task.

Stress Level Classification Task
Stress level classification aims to predict the stress level based
on sensor data. The predicted stress labels are denoted as Ystress

∈ {0, 1}C
stress, where Cstress represents the number of stress level

classes. The output layer for stress level classification is defined
as

Ostress = softmax(Wstress × H + bstress) (2)

where H represents the shared hidden representations obtained
from the network, Wstress is the weight matrix, and bstress is the
bias term specific to the stress level classification task.

Shared Representation Learning
The shared representation learning module learns a
representation that captures both activity and stress-related
patterns in the input data. This module consists of a combination
of 1 CNN with 32 hidden nodes each and 2 LSTM layers with
64 hidden nodes each to extract meaningful features from the
input time series. The final fused hidden representation obtained
from this module is denoted as H.

Loss Function
The multitask loss function combines the losses from both tasks
to jointly optimize the model. The loss function is defined as a
combination of activity recognition loss (Lact) and stress level
classification loss (Lstress), weighted by respective task-specific
coefficients (α and β):

Loss = α × Lact + β × Lstress (3)

Learning
The model is trained using backpropagation and gradient descent
optimization techniques, minimizing the multitask loss function.
The shared representation learning module and task-specific
layers are updated jointly during training. By training the
multitask deep learning framework, the model learns to extract
relevant features from the wearable sensor data and
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simultaneously perform activity recognition and stress level
classification tasks. This joint learning approach enables the
model to leverage the shared representations and potentially
improve the performance of both tasks compared to training
separate models.

Burnout Prediction and Explanation

Multitask Few-Shot Domain Adaptation for Mini-Z
Survey and Burnout Prediction
To build a multitask few-shot deep domain adaptation
framework based on the previous framework, we will adapt it
to the scenario where wearable sensor data serves as input, the
source domain involves multitask stress and activity recognition,
and the target domain focuses on predicting the answers to a
multitask Mini-Z survey questionnaire [13] and burnout
prediction. The objective is to estimate the overall burnout scale
class based on the Mini-Z survey questions’ answers. We
describe this model as follows.

Preliminaries
In this framework, we have a similar input data representation
where the source domain framework is the previously described
multitask deep learning architecture for stress and activity
recognition tasks. The model architecture includes shared
representation learning, output layers for activity recognition
(Oact) and stress level classification (Ostress), and corresponding
labels Yact and Ystress. In the target domain, the focus shifts to
predicting the answers to the multitask Mini-Z survey
questionnaire. The objective is to estimate the overall burnout
scale class based on the answers to the Mini-Z survey questions.
For each Mini-Z survey question, a separate output layer is
defined in the neural network architecture. The output layer for
predicting the answer to question i is denoted as Oi = f(WiH +
bi), where H represents the shared hidden representations
obtained from the network, Wi is the weight matrix specific to
question i, bi is the bias term associated with question i, and f
is an appropriate activation function. The estimated overall
burnout scale class is derived from the answers to the Mini-Z
survey questions. This has been achieved by defining a range
of total Mini-Z survey questions’ answers and mapping them
to specific burnout scale classes.

Multitask Adaptive Loss Function
The multitask loss function for the target domain includes the
task-specific loss for Mini-Z survey questions prediction
(LMini-Z) and the overall burnout scale class loss (Lburnout),
weighted by respective task-specific coefficients (γ and δ). The
loss function is defined as

Loss = γ · LMini-Z + δ · Lburnout (4)

where Lburnout is the cross-entropy loss for the overall burnout

scale class estimation, and LMini-Z is the R2 loss metric. R2 is a
goodness-of-fit measure for regression models. This statistic
indicates the percentage of the variance in the dependent variable

that the independent variables explain collectively. R2 measures

the strength of the relationship between our model and the
dependent variable on a convenient 0%-100% scale (see
Multimedia Appendix 1).

Few-Shot Domain Adaptation
Few-shot domain adaptation aims to transfer knowledge from
the source domain to the target domain, even when labeled data
in the target domain is limited [56]. We modify the
Model-Agnostic Meta-Learning (MAML) algorithm [57]
according to our multitask source and target problem, which
allows the model to quickly adapt to new tasks using 10 labeled
samples from each class. The modified MAML algorithm
includes initialization of model parameters and source domain
training. Then, the few-shot domain adaptation includes
selecting a few target samples with labels to define a new target
task with the cloned source model’s parameters. Then, for each
target domain task, we perform a few gradient update steps on
target parameters using few samples and compute the
task-specific target loss in the inner loop; and compute the
gradient of the task-specific target loss with respect to source
parameters and update it. Finally, we evaluate the adapted target
task model using Mini-Z survey answer–based prediction (see
Algorithm S1 in Multimedia Appendix 1).

Results

Setup

Source and Target Dataset Setup
The EMBRACE burnout dataset (D3) we collected does not
include ground truth data for activity recognition. However, to
effectively interpret burnout, it is crucial to predict workplace
activity summaries, evaluate burnout levels, and use clinically
validated survey tools to enhance explainability and build trust
among physicians. To address this, we used the SWELL-KW
(D2) dataset as our source data. This dataset uses the same
wearable sensor (Empatica E4) as ours and provides labeled
workplace activities along with ground truth data for workplace
stress assessment. In our problem setup, the target dataset is our
collected EMBRACE dataset (D3).

Task Definitions
There are two tasks involved in the source dataset (D2)—task
1 (Tact): 5-class activity recognition (writing reports, making
presentations, reading email, searching for information, and
others); and task 2 (Tstress): 3-class stress level recognition
(neutral, interruption, and time pressure). On the other hand,
there are four tasks involved in the target dataset (D3)—task 1
(Tsurvey_answers): a 10-class regression problem to fill out survey
questions; task 2 (Tburnout1): a 2-class overall measure (joyful
work environment or not); task 3 (Tburnout2): a 2-class satisfaction
scale (highly supportive work environment or not); and task 4
(Tburnout3): a stress scale (low stress environment with reasonable
EMR pressure or not). In Figure 1, we present the schematic
diagram of our entire framework with multiple task
specifications.
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Figure 1. The schematic diagram of the proposed framework.

Implementation
Our proposed model was implemented using Python’s Keras
library with the TensorFlow backend. For the regression task,
denoted as Tsurvey_answers, we used the RMSE loss function. In
contrast, for the classification tasks, which encompassed the
remaining tasks, we used categorical cross-entropy loss. These
loss functions were used while jointly training the few-shot
MAML algorithm.

Hyperparameter Tuning
The optimization of our system was performed using the Adam

optimization function with a learning rate of 1×10−3. The
selection of the optimized learning rate and the weighting
parameter β (set to 0.25) was achieved through hyperparameter
tuning. The learning model of our framework was executed on
a server equipped with a cluster of 3 Nvidia GTX GeForce Titan
X GPUs and an Intel Xeon CPU (2.00 GHz) processor, along
with 12 gigabytes of RAM.

Training
For training the multitask stress and workplace activity
recognition framework, we used the D2 dataset (SWELL-KW)
as input. This dataset included readings from wearable sensors
such as accelerometers, heart rate monitors, and galvanic skin
response sensors. The framework was trained to address two
tasks. To adapt the shared module of the target adaptive

multitask explainable burnout prediction, we used the trained
weights for initialization (domain adaptation). Subsequently,
we replaced the inputs with our collected dataset, D3, with
readings from wearable sensors such as accelerometers, heart
rate monitors, and EDA sensors. Additionally, we modified the
output layer to accommodate the 4 aforementioned task
problems.

Timeseries Leave-One-Out-Cross-Validation Setup
The conventional 10-fold cross-validation approach [58] is not
suitable for sequential data. Therefore, to train and assess the
performance of our proposed EMBRACE framework, we adopt
a time-series cross-validation method [8,59]. Here, we partition
the entire sequential dataset into two halves. Subsequently, we
randomly select a sequence of data from the first half as the
training sample and another random sequence from the second
half as the testing sample. This process is repeated 10 times to
generate 10 distinct pairs of training and testing data sequences.
While generating such training and testing data sequences, we
maintained a leave-one-person-out (leave-one-out
cross-validation or LOOCV) strategy (leaving the training
dataset included the individual relevant dataset out while
selecting the testing dataset); thus, the person (out of 28) we
chose to include in the training dataset would never be selected
for the testing dataset. Figure 2 presents a sample of the
LOOCV-based training and testing dataset generation technique
that prevents data leakage between training and testing datasets.
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Figure 2. Example leave-one-person-out strategy-based training and testing sample generation without data leakage.

Accuracy Evaluation Criteria
To evaluate individual task-level classification performance in
the multitask setting of the EMBRACE framework, the accuracy
metric was measured in a macro or balanced setting. For
example, balanced accuracy calculates the accuracy for each
task individually and then takes the average of these accuracies
across all tasks, treating each task equally regardless of its
sample size, using balanced accuracy (see Equations in
Multimedia Appendix 1). This ensures a balanced contribution

from all tasks to the overall performance metric. Balanced
accuracy is suitable in scenarios where all tasks are equally
important, and their performance needs to be evaluated
independently of dataset size. It is particularly useful in MTL
problems where sample sizes vary significantly between tasks.

To add more significance in the performance evaluation, we
included balanced precision, recall, and F1-score as metrics too
[60]. Additionally, we calculate the standard deviation of all
these metrics to evaluate the presence of overfitting (Table 1).

Table 1. EMBRACEa framework predicted individual Mini-Z burnout survey questionnaire–specific answers and overall burnout assessment performance
(R2 coefficient), regression precision, recall, and F1-score stated in the Accuracy Evaluation Criteria section. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR2Questions

80.6 (0.9)78.9 (0.8)79.5 (0.9)78.5 (0.9)Q1

76.4 (0.9)75.3 (0.9)77.4 (0.8)75.8 (0.7)Q2

71.6 (1.0)70.5 (1.2)70.6 (1.1)69.5 (1.9)Q3

86.5 (0.9)84.6 (0.9)87.8 (0.7)84.6 (0.9)Q4

98.3 (0.01)97.5 (0.01)98.2 (0.01)97.5 (0.01)Q5

97.1 (0.02)96.3 (0.01)95.9 (0.02)96.3 (0.01)Q6

93.6 (0.01)93.6 (0.02)94.8 (0.03)93.6 (0.02)Q7

91.3 (0.8)90.4 (0.2)88.5 (1.1)90.5 (0.3)Q8

88.8 (0.9)85.9 (0.5)87.1 (1.2)86.5 (0.9)Q9

91.5 (0.8)90.2 (1.0)89.4 (1.1)90.2 (1.0)Q10

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

To evaluate individual task-level regression performance (ie,

the prediction explanatory power), we used R2 coefficient as

the primary evaluation metric. R2 is a goodness-of-fit measure
for regression models. This statistic indicates the percentage of
the variance in the dependent variable that the independent

variables explain collectively. R2 measures the strength of the
relationship between your model and the dependent variable on

a convenient 0%-100% scale. The percentage of R2 has been
presented in Multimedia Appendix 1. For perfect prediction,

R2=100, while R2=0 indicates no explanatory power. To estimate
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precision, recall, and F1-score for regression tasks, we
discretized the regression into predictions by considering
proximity between predicted and true values using a threshold
value of δ=0.5.

Workplace Activity Recognition Performance
The SWELL-KW (D2) dataset contains detailed annotations of
several workplace activities for 25 participants, including
activities such as making presentations, paper writing, paper
planning, writing emails, reading emails, programming, creating
overviews, searching for information, and being away from the
keyboard. However, due to significant overlaps between some
of these activities, it was challenging to accurately distinguish
them using wearable accelerometers and EDA sensors alone.
Therefore, we consolidated these activities into five distinct
categories: (1) writing (paper writing and paper planning), (2)
presenting (making presentations, programming, and creating

overviews), (3) email (writing emails and reading emails), (4)
searching (searching for information), and (5) others (time away
from keyboard, etc).

Table 2 presents the overall accuracy, precision, recall, and
F1-score for workplace activity recognition, with values of
91.6%, 93.1%, 91.6%, and 93.9%, respectively. These results
are accompanied by reasonably low standard deviations,
indicating no signs of overfitting. Notably, the classification of
writing activities achieves a significantly higher accuracy of
97% compared to other tasks. To compare the performance of
our activity recognition task, we implemented the Bi-LSTM
(bidirectional long short-term memory) [61], perceptron [62],
BayesNet [62], decision tree [62], and K-Star [62] algorithms.
Table 2 presents a comparison of various performance metrics
between our model and the baseline algorithms. The results
demonstrate that our model outperforms all the baseline
algorithms implemented in this study.

Table 2. Comparison of workplace activity recognition performance across different algorithms with the EMBRACEa framework. Data are presented
as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

77.2 (1.7)76.4 (1.5)75.8 (1.6)76.4 (1.5)K-Star

81.9 (1.5)80.2 (1.2)81.5 (1.3)80.2 (1.2)Decision tree

84.0 (1.2)82.9 (1.1)83.1 (1.0)82.9 (1.1)BayesNet

87.4 (1.0)86.5 (1.0)86.9 (1.1)86.5 (1.0)Perceptron

93.7 (0.4)91.4 (1.0)93.0 (0.6)91.4 (1.0)Bi-LSTMb

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
bBi-LSTM: bidirectional long short-term memory.

Stress Classification Performance

Linking Stress to Burnout and Use of Existing Datasets
Stress and burnout are closely linked, with chronic stress being
a significant predictor of burnout in many occupations.
Prolonged exposure to stress without sufficient recovery leads
to emotional exhaustion, one of the key components of burnout
[9]. Research has shown that stress affects not only physical
health but also cognitive and emotional functioning, contributing
to higher rates of burnout in high-demand environments [63].
Additionally, the accumulation of stress over time without
effective coping mechanisms has been associated with an
increase in depersonalization and reduced personal
accomplishment, further solidifying the connection between
stress and burnout [64]. Since wearable sensor-based burnout
prediction datasets are not available, we apply our proposed
framework to existing wearable stress datasets, such as the
WESAD (D1) [48] and SWELL-KW (D2) [50-52] datasets.

WESAD Data
The WESAD (D1) dataset includes 5 emotional states: baseline,
amusement, stress, meditation, and recovery. However, the

WESAD researchers noted that meditation and recovery are not
typical everyday emotional states and focused on the 3 primary
states: baseline, amusement, and stress [48]. Following their
approach, we excluded all data related to the meditation and
recovery states, reducing the dataset to a 3-class problem. Table
3 reports the overall accuracy, precision, recall, and F1-score
for stress level recognition on the WESAD (D1) dataset, with
values of 94.1%, 94.2%, 94.1%, and 94.6%, respectively.
Similar to the activity recognition results, the standard deviations
remain reasonably low, indicating no signs of overfitting.
Notably, the classification of the baseline stress level achieves
an impressive accuracy of 98.9%. To compare with existing
algorithms, we implemented SELF-CARE [65], the Gaussian
mixture model, and CNN algorithms (Table 4). The
SELF-CARE method uses selective sensor fusion and
context-aware techniques to enhance stress detection accuracy,
achieving an accuracy of 86.34%, a precision of 87.2%, a recall
of 85.9%, and an F1-score of 86% for 3-class stress classification
[65].
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Table 3. Proposed algorithm-based 3-class stress level (baseline, stress, and amusement) classification performance details on the publicly available
WESADa (D1) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

98.6 (0.02)98.9 (0.01)97.8 (0.02)98.9 (0.01)Baseline

95.5 (0.07)93.7 (0.08)94.8 (0.02)93.7 (0.08)Stress

92.0 (0.09)90.8 (0.10)91.9 (0.10)90.8 (0.10)Amusement

94.6 (0.02)94.1 (0.03)94.2 (0.03)94.1 (0.03)Overall

aWESAD: Wearable Stress and Affect Detection.

Table 4. Comparison of the proposed algorithm with state-of-the-art algorithms on the WESADa (D1) dataset to predict 3-class stress levels (baseline,
stress, and amusement). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

84.0 (1.3)82.5 (1.2)83.2 (1.1)82.5 (1.2)Gaussian mixture model [48]

90.7 (0.8)89.8 (0.9)90.5 (1.0)89.8 (0.9)Convolutional neural networks [48]

87.4 (0.7)86.2 (1.0)87.0 (0.8)86.2 (1.0)Random forest [48]

86.0 (0.6)85.9 (0.7)87.2 (0.6)86.34 (0.8)SELF-CARE [65]

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aWESAD: Wearable Stress and Affect Detection.

SWELL-KW Data
The SWELL-KW (D2) dataset contains stress data collected
from participants under 3 work conditions: neutral, interruptions,
and time pressure. Table 5 reports the overall accuracy,
precision, recall, and F1-score performance metrics of our

proposed algorithm for 3-class stress level classification on the
SWELL-KW (D2) dataset, with values of 94.7%, 94.7%, 94.7%,
and 95.1%, respectively. Similar to the results from the WESAD
dataset, the standard deviations remain low, indicating no signs
of overfitting. Notably, the classification of the neutral stress
level achieves an impressive accuracy of 99.5%.

Table 5. Proposed algorithm-based 3-class stress level (neutral, interruptions, and time-pressure) classification performance details on the publicly
available SWELL-KWa (D2) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

99.1 (0.01)99.5 (0.0)98.2 (0.01)99.5 (0.0)Neutral

96.3 (0.06)94.1 (0.07)95.4 (0.01)94.1 (0.07)Interrupt

92.8 (0.08)91.2 (0.09)92.7 (0.09)91.2 (0.09)Time

95.1 (0.01)94.7 (0.02)94.7 (0.02)94.7 (0.02)Overall

aSWELL-KW: SWELL Knowledge Work.

To compare with existing algorithms, we implemented the
following models stated in Table 6. Koldijk et al [66] used the
SWELL-KW dataset and compared several ML algorithms.
Support vector machine with an radial basis function kernel
achieved an accuracy of 90.03%, while other models like Naive
Bayes, K-Star, and BayesNet achieved lower accuracies of
64.77%, 65.81%, and 69.08%, respectively. More advanced

models like random forest (87.09%) and MLP (88.54%)
outperformed simpler methods [66]. Similarly, de Vries et al
[67] used a learning vector quantization approach, achieving
88% accuracy for stress classification. Based on these results,
we can conclude that our framework demonstrates competitive
performance against other existing methods.
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Table 6. Comparison of the proposed algorithm with state-of-the-art algorithms on the SWELL-KWa (D2) dataset to predict 3-class stress levels
(neutral, interruptions, and time-pressure). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

67.45 (3.5)66.89 (2.5)69.56 (3.9)64.77 (4.3)Naive Bayes

66.72 (4.1)67.53 (4.1)63.8 (3.7)65.81 (3.8)K-Star

69.08 (2.1)70.1 (1.9)70.0 (3.1)69.08 (2.5)BayesNet

91.0 (0.9)90.03 (0.8)90.1 (0.7)90.03 (0.8)Support vector machine (RBFb kernel) [66]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

89.1 (1.3)88.54 (1.2)89.3 (1.1)88.54 (1.2)Multilayer perceptron [66]

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aSWELL-KW: SWELL Knowledge Work.
bRBF: radial basis function.

EMBRACE Dataset
The EMBRACE dataset contains data for predicting burnout
levels based on several measures, including the joyful measure,
satisfaction scale, and stress scale. In addition to burnout

measures prediction, we also use Mini-Z survey questions to
predict specific responses for questionnaire completion. Tables
7 and 8 present the regression and classification performance
for survey question completion and burnout prediction using
our adaptive MTL framework.

Table 7. EMBRACEa framework–based burnout prediction performance details on our collected dataset. Note that the Mini-Z burnout survey has 3
burnout measures (joyful measure, satisfaction scale, and stress scale) with 2 classes each to classify. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyBurnout measures

81.3 (0.14)82.5 (0.15)83.5 (0.2)82.7 (0.1)Joyful measure

79.5 (0.2)78.4 (0.15)80.5 (0.2)79.2 (0.1)Satisfaction scale

90.3 (0.1)89.5 (0.1)87.6 (0.11)89.3 (0.05)Stress scale

86 (0.1)84.8 (0.2)86.4 (0.1)85.1 (0.1)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

Table 8. Comparison of Mini-Z survey questionnaire–specific answer score (regression problem) prediction performance of our proposed algorithm
with state-of-the-art algorithms, where individual answer ranges from 1 to 5. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR 2Algorithms

83.2 (1.0)82.3 (1.1)82.8 (0.9)82.6 (1.0)Random forest [66]

81.0 (0.8)79.8 (1.2)80.6 (0.9)80.3 (1.1)Decision tree [68]

86.5 (0.8)85.4 (0.9)86.1 (0.7)85.7 (0.8)Bi-LSTMa [61]

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Ours

aBi-LSTM: bidirectional long short-term memory.

Table 1 shows that our framework performs well in predicting

survey question responses, with overall percentage R2

coefficient, precision, recall, and F1-score of 87.7%, 88.3%,
87.6%, and 88.8%, respectively (refer to the Accuracy
Evaluation Criteria section). Although a few questions (such as
Q1, Q2, and Q3) show relatively lower performance, the
adaptive MTL framework efficiently compensates, yielding
robust overall results.

Table 8 shows that our EMBRACE framework outperforms
several baseline algorithms, including random forest, decision
tree, and Bi-LSTM, in predicting Mini-Z survey questionnaire

responses. With an overall percentage R2 coefficient, precision,

recall, and F1-score of 87.7%, 88.3%, 87.6%, and 88.8%,
respectively, the framework demonstrates robust performance.
Notably, while some questions (eg, Q1, Q2, and Q3) exhibit
lower individual performance, the adaptive MTL approach
effectively compensates for these discrepancies, ensuring
reliable overall results. Compared to other models, EMBRACE
achieves higher precision and recall across all metrics,
highlighting its superior ability to capture the nuances of
physician burnout through clinically validated survey responses.

Table 9 reports the performance for burnout prediction,
achieving an overall balanced accuracy, precision, recall, and
F1-score of 94.7%, 94.7%, 94.7%, and 95.1%, respectively
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(refer to the Accuracy Evaluation Criteria section). The standard
deviations across both tasks remain low, indicating no signs of
overfitting.

To compare with existing algorithms, we implemented learning
vector quantization, random forest, and Bi-LSTM [61], all of
which have been shown to perform well in burnout and stress

prediction tasks. Table 9 compares these algorithms’
performance on the EMBRACE dataset. The Bi-LSTM
algorithm performs closest to our model but is still slightly
lower in every metric. The learning vector quantization and
random forest models perform moderately well but do not match
the high performance of our EMBRACE framework.

Table 9. Comparisons of our proposed algorithm based on overall burnout prediction accuracy with state-of-the-art algorithm performance on our

collected EMBRACEa dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

94.0 (0.7)93.5 (0.9)93.9 (0.6)93.6 (0.8)Bi-LSTMb [61]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
aBi-LSTM: bidirectional long short-term memory.

Explainability Study
The primary focus of the explainability study in the EMBRACE
framework is to enhance the clinical trustworthiness and
usability of the burnout prediction system through an easily
interpretable, explainable ML model. This study aims to make
complex model predictions comprehensible to the end users
(resident physicians and clinicians) by providing insights into
how the predictions are derived, thus increasing their clinical
utility.

Setup
We implemented the explainability module as a supplementary
step in the EMBRACE system, focusing on two primary outputs:
(1) the completion of a clinically validated burnout survey
(Mini-Z) and (2) a summary of workplace activity, stress
measures, and burnout indicators. The Mini-Z survey responses,
which serve as a clinically explainable output, are automatically
filled based on the model’s burnout prediction. These survey
responses reflect the participants’ stress, workload, and overall
satisfaction levels.

In this study, we adopted SHAP as our primary explainability
tool for wearable sensor-based burnout and stress prediction.
SHAP values assign importance scores to each feature used in
the model, offering a detailed breakdown of how each feature
contributes to the final prediction. These explanations are then
converted into an intuitive format that can be easily interpreted
by clinicians. For visualization, we generated 2 main outputs:
SHAP value-based feature importance plots and a time-series
summary of activities and stress indicators throughout the day.

Use of ML in Explainability
Our adaptive multitask deep learning model leverages
time-series data from wearable sensors such as heart rate, EDA,
and accelerometer readings to predict burnout. Once the
predictions are made, we use SHAP to interpret the contributions
of each sensor reading toward the burnout prediction. For
example, SHAP values illustrate whether elevated heart rate or
prolonged sedentary periods are significant contributors to
burnout risk.

In addition to the burnout predictions, we also predict the
responses to Mini-Z survey questions, which include satisfaction
with work, perceived stress, and control over workload. SHAP
analysis allows the model to break down these predictions,
showing how different stressors (eg, EMR workload or
workplace interruptions) influence the outcomes. This
transparency ensures that clinicians can trust the model’s
predictions and understand the underlying factors driving these
outcomes.

Visualization
Visualization plays a crucial role in translating the explainable
ML outcomes into actionable insights for clinicians. Our model
outputs two primary visual aids:

1. Feature Importance Plot:
The SHAP-based feature importance plot ranks the top
features contributing to burnout, such as heart rate
variability, sedentary activity duration, or frequent
interruptions. Clinicians can use this ranking to quickly
identify key stressors associated with burnout risk and focus
on interventions for the most significant factors.

2. Activity and Stress Summary:
This time-series summary visualizes the participant’s daily
activity breakdown, including tasks such as writing notes,
responding to emails, and attending meetings. These
activities are mapped to stress levels measured by the
wearable sensors. The summary offers clinicians an
at-a-glance overview of how workday activities contribute
to stress and burnout risks.

Below are sample tables that represent these visualizations for
one participant (sample no. 1).

These tables provide clinicians with a clear understanding of
key features influencing burnout (Table 10), a summary of daily
activities (Table 11), and a summary of stress levels (Table 12).
This visualization enables clinicians to take targeted actions
based on the specific stressors and activities contributing to
burnout.
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Table 10. Feature importance table for person (sample no. 1).

Importance rankSHAPa valueFeature

10.45Heart rate variability

20.38Sedentary activity duration

30.35Time spent writing notes

40.30EMRb time

50.25Interruptions frequency

60.20Sleep quality (night before)

aSHAP: Shapley Additive Explanations.
bEMR: electronic medical record.

Table 11. Activity summary table for person (sample no. 1).

Percentage of the dayTime spent (hours)Activity

454.5Writing notes

202.0Responding to emails

151.5Attending meetings or presenting

101.0Searching for information

101.0Breaks (away from keyboard)

Table 12. Stress summary table for person (sample no. 1).

Percentage of the dayDuration (hours)Stress level

353.5High stress

252.5Medium stress

303.0Low stress

101.0Neutral or relaxed

End-of-Day Email Alerts and Feedback Collection
To ensure proactive interventions, the EMBRACE framework
sends an end-of-day email to the resident physician with a
summary of the day’s activities, stress levels, and a filled-out
Mini-Z survey. The email includes a visual breakdown of the
day’s workload and corresponding burnout predictions, along
with recommendations to mitigate future burnout risks.
Clinicians and residents can review the survey and workplace
summary to identify stressors and consider adjustments in daily
routines.

Furthermore, the system integrates a feedback loop, where
physicians can provide input on the model’s predictions and
explanations. The feedback is collected through a web-based
form linked in the email, where clinicians can indicate whether
the burnout prediction and activity summary matched their
actual experience. This feedback is invaluable for further
refining the EMBRACE model, ensuring it adapts to the unique
experiences of individual residents and physicians over time.

By integrating SHAP values, visualization tools, and real-time
feedback collection, the EMBRACE framework effectively
bridges the gap between complex ML models and clinically

actionable insights. The explainability study showcases how
these tools enhance both the interpretability and usability of the
burnout prediction system, enabling physicians to make
informed decisions regarding their well-being.

Evaluation of the Satisfaction of Explainable
Visualization
Additionally, we conducted an end-of-study survey to evaluate
the impact of our visualizations on participants’ understanding
of burnout. The survey, completed by 23 out of 28 participants,
assessed the clarity of the 3 explanations: feature importance
summary, activity summary, and stress summary. Among the
23 participants, 20 (87%) reported that the feature importance
summary was the most impactful. Furthermore, 21 (91%)
participants expressed high satisfaction with the explainability
of the feature importance summary, 18 (78%) participants were
highly satisfied with the activity summary, and 21 (91%)
participants were highly satisfied with the stress summary
explanation. These findings underscore the importance of
explainability in promoting user trust and comprehension of
predictive models in clinical settings. Table 13 provides the
details of our end-of-study survey results.
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Table 13. Poststudy survey responses: satisfaction with feature importance, activity summary, and stress summary explanations.

Stress summary (n=23), n (%)Activity summary (n=23), n (%)Feature importance (n=23), n (%)Satisfaction level

21 (91)18 (78)20 (91)Highly satisfied

2 (9)3 (13)1 (4)Somehow satisfied

0 (0)1 (4)0 (0)Neutral

0 (0)1 (4)1 (4)Somehow dissatisfied

0 (0)0 (0)0 (0)Totally unsatisfied

Discussion

Validation of EMBRACE With Wearable Sensors,
MAML, and Correlation Analysis
Our proposed EMBRACE framework demonstrated that
adaptive multitask deep learning, integrated with wearable
sensor data and SHAP-based explanations, effectively predicts
future burnout among resident physicians, significantly
improving clinical interpretability, trust, and actionable insights.

We have chosen the Empatica E4 wearable sensor for its robust
and validated capability to capture key physiological indicators
associated with burnout, stress, and exhaustion, including heart
rate, EDA, skin temperature, and accelerometry data. The
device’s accuracy and widespread use in clinical research ensure
reliable data collection, aligning with our objective to quantify
predictors and confounders of burnout. Established studies have
demonstrated strong correlations between heart rate and EDA
with stress, anxiety, and exhaustion, making these metrics
critical for identifying burnout-related patterns. Furthermore,
the inclusion of skin temperature and accelerometry enriches
the dataset by providing insights into thermoregulation and
activity levels, which are important confounders for
differentiating physical and psychological stressors.

We have used the MAML algorithm in this study because it is
particularly suited for scenarios with limited labeled data and
the need to generalize across diverse tasks, such as detecting
burnout indicators across individuals with varying physiological
baselines. Unlike traditional ML algorithms, MAML efficiently
adapts to new tasks with minimal fine-tuning, enabling
personalized predictions in dynamic and heterogeneous
environments. Additionally, its meta-learning approach ensures
robust model performance even when faced with variability in
wearable sensor data, making it ideal for addressing the
challenges of burnout prediction in real-world settings.

The findings of this study provide valuable insights into the
relationship between workplace activities, stress levels, and
burnout among resident physicians. By applying the multitask
workplace activity and stress detection algorithm to our collected
dataset (D3), we effectively analyzed and predicted burnout
levels with high accuracy. The correlation analysis using the
Pearson correlation coefficient technique between predicted

workplace activities, stress levels, Mini-Z questionnaire
responses, and burnout measures offers a comprehensive view
of the stress-burnout relationship. These correlations are
visualized in Figure 3.

Our results reveal several key relationships. Foremost, highly
interruptive and time-pressured workplace activities were
strongly associated with elevated stress levels and negative
responses to the Mini-Z questionnaire. These findings align
with previous studies, which demonstrate that frequent
interruptions and increased workload pressures contribute to
burnout. For instance, residents who experience continuous
interruptions may struggle to focus on critical tasks, leading to
higher stress and dissatisfaction. This is evident in survey items
such as Q5 (“I feel a great deal of stress because of my job”)
and Q6 (“The amount of time I spend on the EMR at home”),
both of which exhibited strong correlations with time-pressured
activities.

Moreover, the correlation between note-writing activities,
especially related to EMR documentation, and higher stress
levels further underscores the role of administrative tasks as a
significant contributor to burnout. Stress related to EMR use
has been widely reported in health care literature, and our
analysis corroborates these findings, confirming that
documentation burdens are a key stressor for residents. As
shown in the correlation heatmap, these tasks are closely aligned
with burnout predictors.

Interestingly, a positive correlation between presentation
activities and job satisfaction was observed. Activities that
involve presenting or participating in discussions were linked
to a more joyful work environment, suggesting that these tasks
may foster a sense of professional accomplishment or
engagement, serving as protective factors against burnout.

From an explainability perspective, the SHAP values were
crucial in providing insights into how specific workplace
activities and physiological measures influenced burnout
predictions. Visualizing the contribution of individual features,
such as heart rate variability and sedentary activity duration,
enhanced clinical trust in the model’s predictions. The real-time
interpretability facilitated by email alerts and feedback loops
played a key role in engaging residents with their data, providing
a feedback mechanism for continuous model improvement.
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Figure 3. Pearson correlation coefficient (R) heatmap among detected workplace activities, stress levels, Mini-Z survey responses, and burnout measures.

Conclusion and Future Work
This paper introduces the EMBRACE framework, a novel
multitask adaptive deep learning approach designed for
predicting and explaining burnout in resident physicians. By
integrating wearable sensor data with the clinically validated
Mini-Z burnout survey, EMBRACE provides a unique approach
to clinically explainable burnout prediction. The combination
of workplace activity recognition, stress level detection, and
explainable burnout prediction offers clinicians actionable
insights into the burnout risks faced by resident physicians.

Our results demonstrate high prediction accuracy across all
tasks, with the framework outperforming several baseline
models, including Bi-LSTM, learning vector quantization, and
random forest. The SHAP-based explainability mechanisms
also significantly enhanced the interpretability of model outputs,
building clinician trust and enabling real-time interventions
based on predicted burnout risks.

Despite these promising findings, the study has limitations. The
relatively small sample size of 28 participants limits the
generalizability of the results. Further studies with larger, more
diverse populations are needed to validate the findings.
Additionally, while EMBRACE offers detailed insights into
stress and burnout, further research is required to assess the
long-term effectiveness of the suggested intervention strategies.
A longitudinal satisfaction study would also be valuable in
evaluating the impact of explainable AI in reducing burnout in
clinical settings.

Future work will focus on expanding the framework by
incorporating additional physiological and behavioral metrics,
such as sleep quality and social interactions, to provide a more
comprehensive assessment of burnout risks. We also aim to
develop personalized interventions based on real-time
predictions, allowing for tailored strategies to mitigate burnout
before it escalates. Scaling the framework to different clinical
environments and assessing its adaptability in various health
care settings will also be key areas of exploration.
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EMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning
EMR: electronic medical record
HIPAA: Health Insurance Portability and Accountability Act
LIME: local interpretable model-agnostic explanations
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LSTM: long short-term memory
MAML: Model-Agnostic Meta-Learning
ML: machine learning
MLP: multilayer perceptron
MTL: multitask learning
NASA-TLX: National Aeronautics and Space Administration Task Load Index
PGY: postgraduate year
PSS: Perceived Stress Scale
RBF: radial basis function
RSME: Rating Scale Mental Effort
SAM: Self-Assessment Manikin
SHAP: Shapley Additive Explanations
SWELL-KW: SWELL Knowledge Work
WESAD: Wearable Stress and Affect Detection
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Abstract

Background: Patient experience is a critical consideration for any health care institution. Leveraging artificial intelligence (AI)
to improve health care delivery has rapidly become an institutional priority across the United States. Ambient AI documentation
systems such as Dragon Ambient eXperience (DAX) may influence patient perception of health care provider communication
and overall experience.

Objective: The objective of this study was to assess the impact of the implementation of an ambient AI documentation system
(DAX) on Press Ganey (PG) patient experience scores.

Methods: A retrospective study was conducted to evaluate the relationship between provider use of DAX (N=49) and PG patient
satisfaction scores from January 2023 to December 2024. Three domains were analyzed: (1) overall assessment of the experience,
(2) concern the care provider showed for patients’ questions or worries, and (3) likelihood of recommending the care provider
to others. Mean pretest-posttest score differences and P values were calculated.

Results: A total of 49 health care providers across 9 departments participated in the DAX pilot. Aggregate scores for individual
items increased between 0.9 and 1.9 points. Care provider concern for a patient’s questions or worries increased the most (1.9
points; P=.01), followed by overall assessment of the experience (1.3 points; P=.09) and likelihood of recommending the provider
(0.9 points; P=.33). Subgroup analysis showed a larger increase in concern scores among providers using DAX <50% of the time
(3.2-point increase; P=.03).

Conclusions: This pilot study aimed to investigate the relationship between provider use of DAX and PG patient experience
scores in the outpatient setting at a large academic medical center. Increases in PG scores after implementing DAX were observed
across all PG items assessed. As technology and AI continue to improve and become more widespread, these results are encouraging.
Health care providers may consider leveraging AI note-taking software as a way to enhance their communication and interactions
with patients.

(JMIR AI 2026;5:e78830)   doi:10.2196/78830

KEYWORDS

ambient AI documentation; Dragon Ambient Experience; DAX; patient experience scores; provider-patient communication;
Press Ganey outcomes; artificial intelligence; AI

Introduction

Background
Patient experience is a critical consideration for any health care
institution. Understanding the patient experience helps health
care institutions continually learn and improve, which supports
the delivery of high-quality, patient-centered care [1].
Leveraging artificial intelligence (AI) to improve patient

experience and health care delivery has rapidly become an
institutional priority across the United States.

AI Documentation Tools in Clinical Practice
Advances in technology, specifically in AI and natural language
processing, have made a tremendous impact on the delivery of
health care. There are a number of tools in use that are proven
to improve the efficacy of medical providers, decrease
administrative burden, and improve work-life balance [2,3].
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Recently, there have been considerable advancements in
speech-to-text recognition programs that leverage natural
language processing and generative AI technology to assist with
provider documentation [2,4,5]. Examples include Knowtex,
Abridge, and Dragon Ambient eXperience (DAX) [6]. These
software products use ambient listening to record the interaction
between the health care provider and patient. Through generative
AI, they use medically focused large language models to
generate a note for provider review and are trained to only
include key information succinctly and accurately [2].

It is important to note that medical providers are not the only
party impacted by the use of AI in the provision of care. Patients
are also vital to consider when deciding to use these tools. For
example, facilities using AI tools such as virtual health assistants
showed increased satisfaction scores between 2019 and 2021
[3]. Additionally, preliminary research has shown that nearly
20% of adults in the United States expect AI to improve their
relationship with their physician and over 30% expect AI to
improve their access to care [7].

Using established, validated patient experience metrics can help
more comprehensively understand the impacts of AI on the
patient experience. One of the largest platforms for measurement
of patient experience is the Press Ganey (PG) survey, which is
used by over 40,000 hospitals and clinics, leading to over 1
billion patient voices heard [8]. The PG platform allows for
measurement and comparison across similar institutions and is
relied upon to measure patient experience across the health care
industry.

Study Objectives
Despite the established importance of patient experience in
health care, there is a paucity of literature on the impacts of AI
use on the patient experience. This study aimed to address this
gap by assessing the relationship between provider use of DAX

(Nuance) and the patient experience using PG data. Specifically,
this study analyzed patient experience scores for providers
before and after the implementation of DAX. Our primary
hypothesis was that there would be a statistically significant
increase in patient experience scores after the implementation
of DAX.

Methods

Ethical Considerations
This study was determined to be non–human subject research
by the institutional review board at the University of Rochester
(study 00009626). This retrospective study posed minimal risk
and involved no direct participant contact. All data were
deidentified before analysis; any potentially identifiable
elements (including names or National Physician Identifier
numbers) were removed immediately upon access, and health
care provider identifiers were removed following data linkage
using a temporary crosswalk. Data were stored on secure,
password-protected institutional servers, with access restricted
to study personnel. Because this study involved retrospective
data only and no participants were enrolled or contacted, no
compensation was provided.

Study Design and Setting
We conducted a retrospective study to evaluate the relationship
between health care provider use of DAX and patient satisfaction
scores as measured using the PG patient experience survey from
January 2023 to December 2024.

A total of 49 outpatient care providers participated in the DAX
software pilot. The group comprised physicians and nurse
practitioners from 9 departments, including internal medicine,
family medicine, and orthopedic surgery. Table 1 provides a
summary.

Table . Provider demographics (N=49).

Participants, n (%)

Health care provider type

46 (93.9)Physician

3 (6.1)Nurse practitioner

Department

21 (42.9)Internal medicine

16 (32.7)Family medicine

5 (10.2)Orthopedic surgery

4 (8.2)Neurology

1 (2)Pediatric medicine

1 (2)Otolaryngology

1 (2)Colorectal surgery

DAX Implementation and Workflow
Patient encounters were recorded using the DAX tool. DAX is
an AI documentation tool that allows for automatic
documentation of patient encounters through the use of ambient

listening and generative AI. Specifically, at the start of a visit,
after obtaining consent, the provider accesses the AI
documentation tool through their mobile device. Ambient
listening is used to record the provider-patient encounter. When
the visit is complete, the recording is stopped, and generative
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AI that uses medicine-specific large language models generates
a subjective, objective, assessment, and plan note that is
available within seconds. The provider is then able to review,
edit, and sign the note into the patient’s record.

Data Sources
Two primary data sources were used in this study: (1) the
number of provider encounters conducted using DAX, which
was available in the Epic Signal database; and (2) the patient
experience survey from PG. All data were collected from
January 2023 to December 2024.

PG Measures
The PG patient experience survey is voluntary and emailed to
all patients following an outpatient visit with a member of the
medical faculty group. Patients are administered 1-item
measures regarding their experience with the health care
provider and facility. Each item is measured on a Likert-type
scale from 1 to 5 (1=“very poor”; 5=“very good”). Responses
to the following three items were analyzed in this study: (1)
overall assessment of the experience, (2) concern the care
provider showed for patients’ questions or worries, and (3)
likelihood of recommending the care provider to others.

The above items were chosen because of their focus on provider
communication and interpersonal quality, which are the domains
most likely to be influenced by DAX. For each of the 3 domains,
responses were weighted, and a mean score was calculated using
the average of all responses. Specifically, the scale from 1 to 5
was converted to a 100-point scale in which “very poor” (1)=0,
“poor” (2)=25, “fair” (3)=50, “good” (4)=75, and “very good”
(5)=100. Following weighting, the scores were added up and
divided by the total number of responses for that domain to
assign a score to the provider.

DAX Use Categories
To evaluate the impact of DAX use on patient experience scores,
a pre- vs postuse analysis was conducted. Specifically, patient
experience domain scores were calculated before and after the

date when a health care provider began using DAX for their
encounters. For all providers, the first use of DAX was between
March and July 2024. The “before” period was defined from
January 2023 until the first date of use, whereas the “after”
period was defined from the first date of use until December
2024. In addition to an aggregate pretest-posttest analysis, we
categorized by DAX use according to reported percentage of
use. Two thresholds were established: <0% to 50% and >50%
to 100%.

Statistical Analysis
To compare group differences, we conducted 2-sample t tests
(2-tailed) and extracted P values using the Satterthwaite
approximation for unequal variances. All analyses were
considered statistically significant at P<.05. Data were analyzed
using Stata (version 17; StataCorp) and SAS (version 9.4; SAS
Institute).

Results

Health Care Provider Characteristics
Of the 49 health care providers included, 46 (94%) were
physicians and 3 (6%) were nurse practitioners. The average
monthly DAX use in the postuse period was 52.1% and ranged
from <1% to 100% in a given month for a provider.

Pretest-Posttest PG Score Changes
Interestingly, all items exhibited increases in mean scores
following the implementation of DAX. The mean score for
patients’ overall assessment of the experience increased from
93.7 (SD 8.8) to 95.0 (SD 7.4; P=.09). The mean score for the
concern that the care provider showed for a patient’s questions
or worries increased nearly 2 full points from 94.3 (SD 9.3) to
96.2 (SD 6.2; P=.01). Finally, the mean score for the patient’s
likelihood of recommending the provider to another individual
increased from 94.0 (SD 10.1) to 94.9 (SD 8.9; P=.33). These
results are summarized in Table 2.

Table . Press Ganey mean score comparison (January 2023-December 2024).

P valueAfterBefore

Score, mean (SD)Survey responses, nScore, mean (SD)Survey responses, n

.0995.0 (7.4)303493.7 (8.8)1640Overall assessment

.0196.2 (6.2)302794.3 (9.3)1643Care provider concern
for patients’ questions
or worries

.3394.9 (8.9)302194.0 (10.1)1623Likelihood of recom-
mending the care
provider

Subgroup Analysis by DAX Use
Analyzing the data further, based on DAX percentage of use of
<0% to 50% and >50% to 100%, all scores increased in the
postuse period regardless of DAX percentage of use. However,

the only statistically significant increase was found for care
provider concern for the patients’ questions or worries in the
0% to 50% group, exhibiting a 3.2-point increase (P=.03). The
results of this analysis are summarized in Table 3.
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Table . Pretest-posttest Press Ganey score summary by Dragon Ambient eXperience use (January 2023-December 2024).

P valueScore after use, mean (SD)Score before use, mean (SD)Percentage of use

Overall assessment

.2694.1 (7.9)92.6 (8.6)0% to 50%

.2795.6 (7.1)94.2 (9.4)>50% to 100%

Care provider concern for patients’ questions or worries

.0395.1 (6.4)91.9 (10.2)0% to 50%

.1696.8 (6.0)95.0 (10.4)>50% to 100%

Likelihood of recommending the care provider

.3293.8 (9.2)92.2 (10.3)0% to 50%

.7895.5 (8.7)95.1 (10.0)>50% to 100%

Discussion

Principal Findings
Examining our aggregate results suggests that implementation
of DAX has the potential to positively influence PG patient
experience scores regardless of the extent of use. Overall, each
patient experience domain showed improvement following
DAX adoption, with the greatest gains observed in measures
related to provider communication and attentiveness. These
findings indicate that DAX may support more patient-centered
interactions.

Interpretation in Context of Patient Experience
Literature
Patient experience scores are an important quality indicator in
health care and an essential consideration for patient-centered
care. As discussed, PG offers widely used, validated measures
of the patient experience across the health care industry.
However, these scores may be difficult to improve on for a
variety of reasons. For example, there are potential outside
influences on patient satisfaction outcomes that may result in
difficulty influencing these scores as they may be outside of the
health care providers’ or the organization’s control. These may
include patient demographics such as age and sex; the
environment in which care is delivered (eg, location of
appointment); and factors related to the survey itself, such as
the time between when care is received and when the patient
completes the survey [9]. Therefore, consideration of influences
that are within the health care team’s control becomes even
more important.

Although the use of AI in health care is in its early stages, it
has shown considerable promise to improve the delivery of
health care across numerous specialties [10-12]. AI has been
used to interpret imaging studies [13], predict clinically
significant outcomes [14], decrease time spent in documentation,
and lower burnout scores [15]. However, to our knowledge,
there has been no study that comprehensively assesses the
patient experience PG scores following the implementation of
AI documentation tools in the health care setting. As such, we
sought to assess how using this AI tool could allow for a more
patient-focused experience as measured using PG scores.

Patient-centered care is focused on giving patients agency in
their health care, requiring that providers and all members of
the health care team work alongside the patient for effective
and safe care [16]. Our results indicated that, in the aggregate
analysis, there were statistically significant increases in PG
scores after the implementation of DAX. In particular, the scores
that increased significantly were those for the concern that the
care provider showed for patients’ questions or worries. This
suggests that, after implementing the DAX tool, patients
perceived an increase in their providers’ communication skills
and patient-centered care.

Impacts of DAX Use Patterns
As noted in the Results section, provider use of DAX varied
widely (<1% to 100% of encounters). Interestingly, when health
care providers were divided into subgroups, the only statistically
significant result was for the 0% to 50% group for 1 item (care
provider concern). This finding may indicate that DAX use
interacts with patient-provider communication or other related
outcomes such as provider burnout. However, given that only
49 providers were included in this analysis, the sample size was
likely too small to allow for meaningful subgroup analysis.
Future research should aim to assess how AI tool use thresholds
could impact patient satisfaction. One possibility is that
providers using DAX less frequently may reserve the tool for
encounters requiring more detailed communication or emotional
engagement, which could amplify the perceived benefit
compared with providers who use DAX uniformly across all
visits. Intermittent use may also create a clearer contrast between
DAX-supported and nonsupported encounters, potentially
contributing to the larger observed change in the <50% group.

Additionally, the wide range in monthly DAX use, which
averaged 52.1% but varied substantially across providers, may
have attenuated the overall effect observed in the aggregate
analysis. Variation in how quickly providers adopted the tool
and incorporated it into their workflow could contribute to the
smaller or nonsignificant changes in outcomes such as likelihood
to recommend. This pattern reinforces the importance of
evaluating whether more consistent or widespread use leads to
greater improvements in patient experience.
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Limitations
There are limitations that should be considered when interpreting
these results. First, this was a small-sample pilot study using
data from only 49 health care providers. Future research should
gather larger samples to allow for more robust statistical
significance testing as well as further breakdowns of the data
(eg, more stratified subgroups). Furthermore, the cohort included
providers from a broad range of specialties, which introduces
heterogeneity in clinical workflows and patient populations.
This variability limits the ability to draw specialty-specific or
subgroup conclusions and should be examined more rigorously
in future research. Second, this was a retrospective study, and
data availability limited our ability to measure equal pre- and
postintervention periods. Future research should systematically
measure real-time tool use and these constructs across equal
periods to validate these findings. Third, this study did not
compare PG scores for providers who were not part of this pilot
study, which may be an area for future investigation.
Additionally, PG scores were only available at the provider
level and could not be linked to individual encounters,

preventing an assessment of patient experience specifically for
visits in which DAX was used. Future research should examine
encounter-level PG outcomes to better isolate the direct impact
of DAX exposure. Finally, our sample represents providers
from 1 health care system, and generalizability should be
investigated in other settings.

Conclusions
In summary, this pilot study aimed to investigate the relationship
between health care provider use of an AI documentation tool,
DAX, and PG patient experience scores in the outpatient setting
at a large academic medical center. Increases in PG scores after
implementing DAX were observed across all PG items assessed,
with 1 of the 3 items exhibiting statistical significance. As
technology and AI continue to improve and become more
widespread, these results are encouraging. While we were not
able to determine whether provider communication itself
changed, providers may consider leveraging AI note-taking
software to support patient experience as it may help facilitate
more effective communication and interactions with patients.
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Abstract

Background: Clinical deterioration in general ward patients is associated with increased morbidity and mortality. Early and
appropriate treatments can improve outcomes for such patients. While machine learning (ML) tools have proven successful in
the early identification of clinical deterioration risk, little work has explored their effectiveness in providing data-driven treatment
recommendations to clinicians for high-risk patients.

Objective: This study established ML performance benchmarks for predicting the need for 10 common clinical deterioration
interventions. This study also compared the performance of various ML models to inform which types of approaches are well-suited
to these prediction tasks.

Methods: We relied on a chart-reviewed, multicenter dataset of general ward patients experiencing clinical deterioration (n=2480
encounters), who were identified as high risk using a Food and Drug Administration–cleared early warning score (electronic
Cardiac Arrest Risk Triage score). Manual chart review labeled each encounter with gold-standard lifesaving treatment labels.
We trained elastic net logistic regression, gradient boosted machines, long short-term memory, and stacking ensemble models to
predict the need for 10 common deterioration interventions at the time of the deterioration elevated risk score. Models were
trained on encounters from 3 health systems and externally validated on encounters from a fourth health system. Discriminative
performance, assessed by the area under the receiver operating characteristic curve (AUROC), was the primary evaluation metric.

Results: Discriminative performance varied widely by model and prediction task, with AUROCs typically ranging from 0.7 to
0.9. Across all models, antiarrhythmics were the easiest treatment to predict (mean AUROC 0.866, SD 0.012) while anticoagulants
were the hardest to predict (mean AUROC 0.660, SD 0.065). While no individual modeling approach outperformed the others
across all tasks, the gradient boosted machines tended to show the best individual performance. Additionally, the stacking ensemble,
which combined predictions from all models, typically matched or outperformed the best-performing individual model for each
task. We also demonstrated that a sizable fraction of patients in our evaluation cohort were untreated at the time of the deterioration
elevated risk score, highlighting an opportunity to leverage ML tools to decrease treatment latency.

Conclusions: We found variability in the discrimination of ML models across tasks and model approaches for predicting
lifesaving treatments in patients with clinical deterioration. Overall performance was high, and these models could be paired with
early warning scores to provide clinicians with timely and actionable treatment recommendations to improve patient care.

(JMIR AI 2026;5:e81642)   doi:10.2196/81642
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Introduction

Background
Previous studies have demonstrated that clinical deterioration
on the hospital wards is associated with increased morbidity
and mortality [1-5]. Deteriorating ward patients who require
intensive care unit (ICU) transfer account for a disproportionate
fraction of ICU deaths, with their mortality rates exceeding
those of patients admitted directly to the ICU [3,6]. Early and
appropriate interventions are associated with improved outcomes
for patients experiencing acute physiological deterioration
[7-11]. Despite this knowledge, delays in care are common and
associated with increased mortality [12-16], motivating the
development of new approaches to improve care for this
high-risk population.

Efforts to improve interventions for patients with clinical
deterioration can be divided into 2 domains: identification (ie,
earlier detection of high-risk patients) and response (ie, the
actions taken to address deterioration), also called the afferent
and efferent limbs of a rapid response system [17]. Much
existing work has focused on identification, as earlier detection
of high-risk patients naturally supports earlier interventions; we
refer to the study by Mann et al [18] for a recent survey of
approaches related to early warning scores for early
identification. Broadly, these approaches identify physiological
changes, such as changes in vital signs, that tend to precede
deterioration [5,19,20]. Methodologies vary widely, although
much recent work has focused on integrating advanced machine
learning (ML) approaches with electronic health records (EHRs)
to process risk scores automatically [19,21,22]. Single- and
multicenter studies implementing these types of early warning
systems have demonstrated promising improvements to patient
outcomes [21,23-25].

Despite the progress in the identification arm of the system,
there is far less work analyzing how automated ML approaches
can be applied to similarly improve the response arm.
Identification is a necessary condition for initiating treatment,
but it is not sufficient to ensure that a patient receives the most
appropriate treatment (or treatments) in a timely fashion. This
is particularly important because early warning systems often
focus on nonspecific deterioration risk instead of monitoring
for a specific syndrome like sepsis [26]. Ideally, early warning
systems that flag high-risk patients would additionally supply
data-driven treatment recommendations. A recommendation
could serve as a clinical decision support tool, either to reinforce
clinician intuition or to prompt treatments that the clinician
might not have initially considered. Clinicians using similar

artificial intelligence (AI) clinical decision support tools in
related fields have been shown to outperform both the supporting
AI model and clinician judgment individually (eg, in pathology
[27] and radiology [28]).

However, treatment recommendation ML models that are tied
to clinical deterioration early warning scores have not yet been
developed, in large part, because such models cannot be properly
trained on EHR data without significant additional clinician
input. Although EHR data can provide information regarding
what treatments a patient received, expert manual chart review
is required to assess which treatments they received (or did not
receive) were appropriate and directed at the underlying cause
of deterioration. Without chart review, models can only learn
to mimic the status quo, rather than provide gold-standard
treatment recommendations. Chart-reviewed datasets of this
kind are rare and typically limited in size or to single centers
[29]. As a result, it is currently unclear what level of
performance clinicians can expect from treatment
recommendation algorithms for general ward clinical
deterioration. Furthermore, it is unknown which types of ML
modeling approaches will perform best in this context.

Contribution
In this study, we train a collection of ML models to predict
lifesaving treatments for general ward patients with clinical
deterioration. These models are designed to supplement a
generalized early warning system by providing treatment
suggestions for clinician decision support. We rely on a large,
multicenter dataset with gold-standard treatment
recommendations established by manual chart review [30].
These models set benchmark performance standards for different
types of treatment recommendations, and we discuss the
advantages and disadvantages of the various ML model types
under study.

Methods

Study Cohort
We used a study cohort built from 4000 chart-reviewed patient
encounters, originally introduced by Churpek et al [30]; we
reiterate key aspects of the cohort’s construction here.

Encounters were sampled from 4 health systems: University of
Chicago Medicine, the University of Wisconsin-Madison
Hospital, the Loyola University Medical Center, and 4 hospitals
within Endeavor Health. These samples were drawn from the
population of each health system’s encounters that met the
inclusion criteria established in Textbox 1. Collectively, the
encounters occurred between 2007 and 2020.

Textbox 1. All encounters satisfying the following criteria at the 4 noted health systems were eligible to be sampled as part of the study cohort.

• The patient was at least 18 years of age;

• Clinician provider notes (eg, admission history and physical discharge summary) were available for the encounter;

• During their encounter, the patient was admitted to the hospital and spent time on a medical-surgical (non–intensive care unit) ward.

JMIR AI 2026 | vol. 5 | e81642 | p.159https://ai.jmir.org/2026/1/e81642
(page number not for citation purposes)

Pulick et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Across the 4 health systems, 919,319 encounters met the
inclusion criteria. EHR data associated with these eligible
encounters were evaluated using the electronic Cardiac Arrest
Risk Triage score (eCART), an early warning score that uses
demographics, vital signs, and laboratory results to predict
clinical deterioration (ie, cardiac arrest, ICU transfer, or death)
[19]. Among these eligible encounters, 91,131 included 1 or
more instances where the eCART model met the threshold for
elevated risk of clinical deterioration (top 5% risk score) while
on the medical-surgical (non-ICU) ward. For brevity, we refer
to this event as an elevated risk score. From each health system,
1000 encounters with at least 1 elevated risk score were
randomly sampled for manual chart review (4000 total) by
expert acute care physicians. In this work, 5 of the encounters
from the University of Wisconsin-Madison Hospital were
ultimately excluded due to a lack of EHR data availability,
leaving 995 encounters for that health system and 3995 overall.
These 3995 encounters were further filtered by chart review to
the final cohort size of 2480 based on the presence of a true
deterioration event (ie, an occurrence of clinical deterioration
rather than a false alarm) during or following the elevated risk
score. A complete flow diagram is provided in Multimedia
Appendix 1.

Ethical Considerations
The study was approved by the institutional review board (IRB)
at each health system with a waiver of informed consent. IRB
approval was given under University of Chicago Biological
Sciences Division IRB #18‐0447, University of
Wisconsin-Madison IRB #2019‐1258, Loyola University
Medical Center IRB #215437, and Endeavor Health IRB
#11‐0539. All direct identifiers were deidentified before
analysis to ensure privacy and confidentiality. Participants did
not receive compensation for this data analysis, as this was a
retrospective analysis and no direct contact with participants
occurred.

Measures

Patient Measurements
A complete list of patient measurements included in our
modeling is provided in Multimedia Appendix 2. Approximately
50 measurement types were included in our modeling. These
measurements included demographic information (eg, age and
sex), vital signs (eg, heart rate and temperature), and laboratory
measurements (eg, electrolytes and blood cell counts). These
measurement types were selected by expert consensus as
ubiquitous measures available in the EHR. The measurements
were used to construct features for the different algorithms used
in our modeling. Refer to the “Feature Engineering” section for
further description of the features used in our tested models.

The EHR also included information about the treatments each
patient received. However, this treatment information was not
included as an input to our models and was only used for
evaluation purposes (ie, to assess when or whether a patient

received a treatment deemed lifesaving by manual chart review).
We chose to exclude treatments from the model features to
prevent label leakage into the dataset. Not only could leakage
artificially inflate assessed model performance, but inclusion
would have also allowed current treatment practices to influence
model predictions.

Chart Review
The 1000 encounters sampled from each health system were
manually chart-reviewed by trained reviewers in each health
system. The complete chart review procedures are described in
the study by Churpek et al [30]; we reiterate relevant procedures
and outcomes in this study.

First, the reviewers assessed whether the elevated risk score
corresponded to a true deterioration event or to a false alarm
(eg, due to a spike in heart rate associated with the patient
getting out of bed). Of the 3995 encounters in the cohort, 2480
included 1 or more true deterioration events. For these cases,
the reviewers recorded 1 or more treatments that would
ultimately be considered lifesaving for the patient’s deterioration
event. For encounters that contained more than 1 deterioration
event, the chart review assessed the first such event. The
reviewers used information from both before and after the
elevated risk score (eg, clinician notes following treatment
initiation that describe diagnostic test results and the response
to therapy). Lifesaving treatments included both drug
interventions, such as antiarrhythmics or steroids, and nondrug
interventions, such as transfusions or ventilation. Additionally,
while nearly all patients received the treatment (or treatments)
indicated to be lifesaving by the reviewers at some point in their
encounter, the chart-reviewed treatment was not limited to the
treatments the patient received. For instance, if a patient died
before the treatment could be administered, it was still included
as a lifesaving treatment during chart review. The chart review
process did not assign an optimal time for initiating each labeled
intervention. As our goal was to evaluate the performance of
ML treatment recommendation algorithms at the time of an
elevated risk score, all chart-reviewed labels were chosen such
that they would have been appropriate to administer at the time
of the elevated risk score.

Labels and Prediction Tasks
For each encounter, the chart review process established 1 or
more treatments to be lifesaving for the patient. These treatments
served as the labels for our predictive modeling. We considered
the 10 most common treatments indicated by chart review, given
in Textbox 2. Thus, the prediction problem was to predict a
patient’s need for each of the 10 treatment categories using the
patient’s EHR measurements (processed appropriately into
model features) at the time of the patient’s elevated risk score.
This approach poses the problem as multilabel prediction (ie,
prediction for each treatment type occurs in parallel) as opposed
to multiclass prediction (ie, treating combinations of treatments
as possible labels with only 1 label assigned to each encounter).
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Textbox 2. Treatment labels in descending order of prevalence across encounters at the Loyola University Medical Center (n=622 encounters).
Encounters at this health system were used as our test set, while encounters from the remaining 3 health systems were used for model training and
validation. For each treatment, we parenthetically note the number of positive-labeled cases. A single encounter may be labeled with multiple lifesaving
treatments, so positive labels do not sum to the total number of encounters.

• Antimicrobial (including antibiotics, antifungals, and antivirals; n=300)

• Fluid bolus (n=231)

• Antiarrhythmic (including beta-blockers and AV nodal blocking agents, n=111)

• Diuretic (n=93)

• Inhaled bronchodilator (including nebulizer treatments and asthma medications, n=79)

• Transfusion (n=60)

• Invasive ventilator (n=53)

• Vasoactive (including inotropes, n=49)

• Anticoagulant (n=36)

• Steroid (n=29)

Tested Models

Model Types
A primary goal of our modeling was to assess whether certain
model types showed better or worse discriminative performance
on different treatment prediction tasks. As such, we trained
traditional, non–deep learning prediction models, namely elastic
net logistic regression (LR) and gradient boosted machines, as
well as deep learning time-series models, specifically a type of
recurrent neural network called a long short-term memory
(LSTM) model [31]. LR was implemented using Scikit-learn
[32], gradient boosted machines were implemented using
tree-based Extreme Gradient Boosting, referred to as XGB [33],
and LSTMs were implemented using PyTorch [34]. Both single-
and multilabel LSTMs were evaluated for the various prediction
tasks. In the single-label case, we trained unique LSTMs
(including hyperparameter tuning) for each prediction task; this
mirrors the process for LR and XGB, which also natively
consider only a single label per model. In the multilabel case,
we trained 1 LSTM model (ie, with 1 set of hyperparameters)
that simultaneously made predictions for all 10 treatment
prediction tasks.

Given the success of ensemble learning approaches in numerous
health care prediction tasks [35,36], we also evaluated the
performance of a stacking ensemble learner in this treatment
recommendation context. Stacking, sometimes also called late
fusion, involves training a meta-learner from the outputs of
individual models, effectively learning appropriate weighting
values to assign to predictions made by each model [37,38]. In
this study, we used an elastic net LR meta-learner, trained using
the prediction probabilities from the individual model as
features.

Feature Engineering
While features for each model type relied on the same set of
EHR measurements, structural differences in the models
necessitated different approaches in feature engineering. We
provide an overview of these differences here and refer readers

to a complete list of features and construction procedures for
each model in Multimedia Appendix 2.

The largest difference in features between LR or XGB and the
LSTM models was their handling of temporal information. LR
and XGB do not directly process time-series data and thus
required the creation of a single set of features to describe each
encounter. The first portion of these LR and XGB features was
the last available value for each EHR measurement type at the
time of the elevated risk score. XGB can handle missing feature
values (eg, for an individual with no available measurements
of a certain value before the elevated risk score), so XGB models
were trained with a featurization of the dataset that preserved
missingness. LR cannot accommodate missing measurements,
so we created a separate version of the features for LR that
imputed missing values with medians from the training set;
these LR and XGB feature sets were otherwise identical. In
addition to the last-available measurement values, we also
included a set of temporal summary statistics for certain
measurement types over the 24 hours preceding the elevated
risk score (eg, minimum or maximum values, means and SDs,
and rates of change over given time intervals). These quantities
allowed for the encoding of near-term temporal information
about the patient and have been shown to improve the
performance of these models in previous work on early warning
scores [20].

In contrast, LSTM models are designed to handle sequences of
temporal measurements for each encounter. For the LSTMs,
we resampled the raw time-series data to uniform intervals. The
interval length (2, 4, or 6 h) was a tunable hyperparameter for
each of the prediction tasks (ie, treatment types). Regardless of
the interval length, a last-value-pulled-forward approach was
used for resampling the value at each time step. If no value was
available during the resampling interval, it was pulled forward
from the previous resampled value. If no previous resampled
value was available, it was imputed using the median value
from the training set. Resampling was performed relative to the
time of the elevated risk score, meaning the elevated risk score
time was used as the anchor point and the EHR data were
processed backward from that time using the specified interval
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length. In addition to the resampled measurement values, a
tunable hyperparameter in our LSTM models was the use of
imputation Booleans (ie, features that take the value 1 when a
given measurement is imputed and 0 when there is a true
measurement) [39]. This allowed the LSTM to also learn
patterns associated with missing versus true measurement
values.

For all models except XGB, we used the minimum and
maximum observed values in the training set to rescale features
to the interval [0,1]. The minimum and maximum values used
for rescaling were specific to the features constructed for each
model (ie, values in the resampled time-series features for the
LSTM were only used for rescaling the LSTM features, not the
LR features, and vice versa). XGB is scale-independent, so
variable scaling was not performed for these models.

Model Training
Data from encounters containing deterioration events at 3 of
the health systems (University of Chicago Medicine, 483
encounters; University of Wisconsin-Madison Hospital, 656
encounters; and Endeavor Health, 719 encounters) were
combined to form a training set (1858 encounters). The 622
encounters in the fourth health system, Loyola University
Medical Center, were used as a held-out test set. Structural
differences between LR and XGB, the LSTMs, and the stacking
ensemble required slightly different tuning and training
procedures and are described further in this study.

LR and XGB followed a common fitting procedure aside from
LR’s use of features with imputation and XGB’s use of features
with missingness. Both LR and XGB models had tunable
hyperparameters (eg, regularization method for LR and number
of boosting rounds for XGB) that were evaluated with
cross-validation. Specifically, the best-performing
hyperparameters were established by grid search during 4
repeats of 3-fold stratified cross-validation of the training set.
The area under the receiver operating characteristic curve
(AUROC) was used as the cross-validation scoring metric [40].
A complete set of hyperparameter ranges and chosen
hyperparameters for LR and XGB is provided in Multimedia
Appendix 2 and Multimedia Appendix 3. After identifying the
best-performing hyperparameters via grid search, the LR and
XGB models were retrained on the complete training set and
evaluated on the test set.

Training differed slightly for the LSTMs as we used early
stopping as a form of model regularization; this meant that the
number of passes through the training set was included in
hyperparameter tuning. Specifically, in each iteration of the
same repeated 3-fold stratified cross-validation process, 2 folds
of the training set were used for model training, and 1 was used
for validation. After each pass through the training data, we
evaluated the trained model’s AUROC on the validation
encounters. We repeated this process until 10 epochs passed
without the current epoch’s validation AUROC exceeding the
best-observed validation AUROC across past epochs. The
best-observed AUROC was used as the scoring value for that
iteration of cross-validation. We recorded the epoch count
associated with the best-observed validation AUROC and took
the mean of this value across the 12 total iterations of repeated

cross-validation to obtain the tuned epoch value for that set of
hyperparameters.

In addition to tuning common hyperparameters, such as the
learning rate or number of hidden units, we explored the effect
of various other LSTM structures from the literature. For
instance, we included a target replication parameter that allowed
for intermediate predictions (ie, those that would be made at
time steps before the elevated risk score) to also factor into the
model’s loss function [36,41]. We also included the option to
use channel-wise inputs as a binary hyperparameter [42]; when
this option was used, each measurement channel was passed
through an additional LSTM with its own tunable
hyperparameters. This allowed models to capture specific trends
in individual measurement streams before these quantities were
combined in the primary LSTM model. As with LR and XGB,
a complete set of hyperparameter ranges and chosen values is
available in Multimedia Appendix 2 and Multimedia Appendix
3. As LSTM training was more time-consuming than that of
LR and XGB, we used Optuna (Preferred Networks) [43], a
package that uses Bayesian optimization to efficiently sample
candidate hyperparameters, to coordinate LSTM hyperparameter
tuning rather than performing a grid search. As with LR and
XGB, after identifying the best-performing hyperparameters,
we retrained a model on the complete training set and evaluated
its performance on the test set.

As our stacking ensemble model was an elastic net LR model,
it followed the same hyperparameter tuning process as our
individual LR models. However, special care was needed to
construct the training dataset for this stacking model. Recall
that a stacking model uses weighted predictions from each
submodel (eg, XGB) to make its predictions. To learn an
appropriate weighting, a stacking model must be trained with
out-of-sample predictions from each submodel. For each of the
submodels, we iteratively reconstructed a complete set of the
training encounters with out-of-sample predictions; the training
set was divided into 5 folds, and each submodel type was trained
on 4 of the folds (using the best performing hyperparameters
identified previously) to produce out-of-sample predictions for
the remaining fold. Iterating across all 5 folds allowed for
complete reconstruction of the training set with out-of-sample
predictions. We repeated this process 5 times to produce a
dataset suitable for repeated cross-validation (5 repeats of 5-fold
cross-validation). We used these out-of-sample predictions to
perform hyperparameter tuning and identify the best-performing
hyperparameters for the stacking models. We then trained the
final stacking model using the best-performing hyperparameters
on the complete set of out-of-sample predictions and evaluated
the stacking model’s performance on the test set.

Evaluation Criteria
Our primary evaluation criterion for the different models was
discriminatory ability, assessed using the AUROC. We express
uncertainty in calculated AUROC values using nonparametric
bootstrapped 95% CIs [44]. As a secondary metric, we assessed
model calibration using calibration curves and Brier scores,
with uncertainties also expressed using bootstrapped 95% CIs.
Finally, Shapley Additive Explanations (SHAP) values were
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used to provide model explainability results, as described in the
study by Lundberg and Lee [45].

Results

Demographic Information
Table 1 provides a summary of the demographic characteristics
of the study cohort, including separation by encounters at the

train and test sites. The test site encounters came from a separate
health system but show similar demographic characteristics to
the encounters from the 3 health systems used to form the
training set.

Table . Demographic information for patient populations at the studied health systems.

Test siteTrain sitesAll sitesMeasure

622 (25.1)1858 (74.9)2480 (100)Encounter count, n (%)

67 (57-79)71 (59-86)70 (50-84)Age (y), median (IQR)

300 (48.2)944 (50.8)1244 (50.1)Female, n (%)

133 (21.3)359 (19.3)492 (19.8)Black, n (%)

49 (40-69)51 (40-78)50 (40-76)Elevated risk score value (eCARTa

score), median (IQR)

28.2 (8.1-88.8)18.4 (5.7-60.5)20.3 (6.4-67.2)Length of stay before elevated risk
score (hr), median (IQR)

133.7 (72.0-260.7)124.4 (67.0-234.8)126.9 (68.1-241.0)Length of stay after elevated risk
score (hr), median (IQR)

126 (20.2)327 (17.5)453 (18.2)In ICUb before elevated risk score,
n (%)

116 (18.6)285 (15.3)401 (16.1)In operating room before elevated
risk score, n (%)

220 (35.3)501 (26.9)721 (29)ICU transfer after elevated risk
score, n (%)

104 (16.7)253 (13.6)357 (14.3)In-hospital mortality, n (%)

aeCART: electronic Cardiac Arrest Risk Triage.
bICU: intensive care unit.

Timing of Treatment Initiation
To give insight into the treatment initiation practices observed
in the test site encounters, Table 2 summarizes the fraction of
patients who received each treatment during particular time
periods in their encounter. Additional information regarding
treatment initiation timing can be found in Multimedia Appendix

2. While most patients received the lifesaving treatments
assessed by chart review at some point in their encounter, a
sizable fraction of patients were untreated at the time of the
elevated risk score. This untreated patient fraction varied by
treatment, ranging from roughly 20% in the case of
antiarrhythmics to nearly 90% in the case of vasoactives.
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Table . Timing of lifesaving treatments for the 622 test set encounters from the Loyola University Medical Center. Each row describes summaries of
treatment initiation timing for the encounters labeled as requiring that treatment during chart review.

aPatient received treatment during specified time window, n (%)Encounters, n (%)Treatment

<24 h before ERS<48 h before ERSAny time before
ERS

±48 h of ERSbAny time during
encounter

129 (43)202 (67.3)217 (72.3)291 (97)295 (98.3)300 (48.2)Antimicrobial

73 (31.6)89 (38.5)107 (46.3)171 (74)185 (80.1)231 (37.1)Fluid bolus

39 (35.1)85 (76.6)87 (78.4)108 (97.3)110 (99.1)111 (17.8)Antiarrhythmic

30 (32.2)53 (57)56 (60.2)85 (91.4)92 (98.9)93 (14.9)Diuretic

26 (32.9)58 (73.4)58 (73.4)75 (94.9)76 (96.2)79 (12.7)Inhaled bron-
chodilator

15 (25)18 (30)23 (38.3)47 (78.3)50 (83.3)60 (9.6)Transfusion

1 (2)4 (8.2)6 (12.2)35 (71.4)46 (93.9)49 (7.9)Vasoactive

12 (33.3)23 (63.9)25 (69.4)33 (91.7)34 (94.4)36 (5.8)Anticoagulant

5 (17.2)14 (48.3)14 (48.3)25 (86.2)28 (96.6)29 (4.7)Steroid

aSubcolumns indicate if a patient was treated during the noted period of their encounter (ie, each subcolumn gives a particular summary of treatment
practices for the encounters labeled as needing the treatment described in each row). For instance, chart review labeled 300 of the 622 encounters with
antimicrobials as a lifesaving treatment. Among these 300 patient encounters, 295 (98.3%) received antimicrobial treatment at some point during their
encounter, 291 (97%) received antimicrobial treatment specifically within ±48 hours of their elevated risk score, and so on. Patients may have received
treatment multiple times during their encounter. Note that the chart review process considered patients on invasive, mechanical ventilation to be intensive
care unit patients, thus making them ineligible for chart review sampling and implying that no patients in this cohort were receiving invasive ventilation
at the time of the elevated risk score. The electronic health record did not have a reliable signal indicating when invasive ventilation began, so we do
not report treatment summaries for this treatment.
bERS: elevated risk score.

Model Performance
Figure 1 summarizes the discriminative performance of the
tested models across the 10 prediction tasks, assessed by
AUROC; this summary includes a separation of performance

on the complete test cohort from performance on the subset of
patients not actively receiving treatment at the time of the
elevated risk score. Model performance varied widely by model
type and prediction task, with AUROCs typically ranging from
0.7 to 0.9.
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Figure 1. Area under the receiver operating characteristic curve (AUROC) performance for each model type on the 10 treatment prediction tasks (given
as bar plots). The top panel summarizes model performance when evaluated on all patients in the test cohort. The middle panel summarizes model
performance when evaluated only on subjects in the test cohort who were not receiving the designated treatment at the time of the elevated risk score
(determined based on whether the patient received the treatment within the 48 h before the elevated risk score). Below each label in the top and middle
panels is the ratio of positive cases to total cases. The bottom panel summarizes the difference in AUROC values between the first and second panels
(AUROC on the untreated subset minus AUROC on all subjects). Negative values denote a decrease in performance on the untreated subset compared
with the full test cohort. In all panels, models are grouped together for each treatment. Inh. Bronch.: inhaled bronchodilator; LSTM: long short-term
memory; Vent.: ventilator; XGBoost: Extreme Gradient Boosting.

Table 3 summarizes the discriminative performance of the
models for each prediction task, specifically by averaging the
AUROC performance across model types for each treatment.
Mean AUROC values are presented for both the complete test
site cohort and the subset of test site patients not actively
receiving treatment at the time of the elevated risk score. The

rank-ordering of mean AUROCs varied slightly between these
cohorts. Broadly, the models tended to perform best on
prediction for antiarrhythmics, transfusions, and inhaled
bronchodilators and performed worst on anticoagulants,
vasoactive agents, and invasive ventilation.
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Table . Summary of model performance for the different treatment types. Performance is assessed by the mean area under the receiver operating
characteristic curve performance of all model types (including the stacking ensemble) for each treatment. Mean values are calculated for both the full
test cohort and the untreated patient subset.

Untreated subset (AUROC), mean (SD)Full test set (AUROCa), mean (SD)Treatment

0.822 (0.022)0.866 (0.013)Antiarrhythmic

0.818 (0.018)0.823 (0.014)Transfusion

0.778 (0.065)0.805 (0.037)Inhaled bronchodilator

0.761 (0.018)0.788 (0.015)Antimicrobial

0.770 (0.026)0.733 (0.031)Steroid

0.700 (0.012)0.722 (0.011)Fluid Bolus

0.669 (0.040)0.701 (0.024)Diuretic

0.671 (0.042)0.671 (0.042)Invasive ventilator

0.666 (0.032)0.669 (0.031)Vasoactive

0.585 (0.080)0.660 (0.065)Anticoagulant

aAUROC: area under the receiver operating characteristic curve.

Table 4 summarizes the relative performance of the different
model types. Specifically, model performance was assessed by
weighted AUROC performance across tasks and the mean
AUROC rank ordering of the models. Results are presented for
both the complete test site cohort and the subset of test site
encounters not actively receiving treatment at the time of the

elevated risk score. While no individual model universally
outperformed the others, XGB showed the best weighted
AUROC across tasks. The stacking ensemble offered improved
performance over the individual models, typically matching or
exceeding the AUROC of the best performing individual model
and showing the best overall weighted AUROC performance.

Table . Summary of tested model performance. Weighted model AUROCsa, mean AUROC model rank across all algorithms, and mean AUROC model
rank among individual models are provided for both patient populations (ie, the complete test site cohort and the untreated patient subset). Weighted
AUROCs were calculated using the number of positive cases for each prediction task as a weighting factor. Mean AUROC ranking calculations weighted
each prediction task equally. SD values are noted in parentheses.

Performance on untreated subsetPerformance on full test setModel

Mean AUROC
Rank (individual
only)

Mean AUROC
Rank

Weighted AUROCMean AUROC
Rank (individual
only)

Mean AUROC
Rank

Weighted AUROC

—1.8 (0.60)0.743—b1.7 (0.64)0.781Ensemble

1.8 (1.08)2.4 (1.43)0.7371.8 (0.87)2.5 (1.20)0.769XGBc

2.2 (0.87)3.0 (1.10)0.7202.3 (0.90)3.1 (1.14)0.755LRd

3.0 (1.00)3.9 (1.22)0.7123.0 (1.00)3.9 (1.22)0.749Multilabel LSTMe

3.0 (1.00)3.9 (1.22)0.6992.9 (1.22)3.8 (1.40)0.744Single-label LSTM

aAUROC: area under the receiver operating characteristic curve.
bNot applicable.
cXGB: Extreme Gradient Boosting.
dLR: logistic regression.
eLSTM: long short-term memory.

Figure 2 shows calibration curves for each modeling approach
when pooling predictions across all tasks. To further assess
calibration performance, we provide Brier scores and
task-specific calibration curves in Multimedia Appendix 2. We
note that we did not apply calibration postprocessing techniques
and instead evaluated the intrinsic calibration of the methods.
The classical ML approaches tended to be well-calibrated, while

the LSTMs showed poor calibration. Global feature importance
plots, assessed using SHAP values, for the 3 most common
treatments (antimicrobials, fluid boluses, and antiarrhythmics)
as well as case evaluations of steroid and anticoagulant
prediction can be found in the “Feature Importance” section in
Multimedia Appendix 2.
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Figure 2. Calibration curves for the tested algorithms using a pooled set of predictions (ie, all prediction tasks are combined). Pooling was performed
as many individual tasks had too few positive cases to create meaningful calibration curves. LSTM: long short-term memory; XGBoost: Extreme
Gradient Boosting.

Discussion

Principal Findings
In this multicenter study developing and comparing treatment
recommendation algorithms for high-risk hospitalized patients,
we found that predictive performance varied significantly by
model type and prediction task, typically with AUROC values
of 0.7‐0.9. When assessed by the mean AUROC of all models,
including the ensemble, we observed the highest discriminative
performance on antiarrhythmic, transfusion, and bronchodilator
prediction (mean AUROCs 0.866 [SD 0.012], 0.823 [SD 0.014],
and 0.805 [SD 0.037], respectively) and observed the lowest
discriminative performance on invasive ventilation, vasoactive
agents, and anticoagulant prediction (mean AUROCs 0.671 [SD
0.042], 0.669 [SD 0.031], and 0.660 [SD 0.065], respectively).

Overall, the XGB algorithm was the best-performing individual
model type, and an ensemble of all model types further improved
performance. However, each individual model had the best
discriminative performance in at least 1 prediction task. The
timing of treatment initiation in the test site cohort varied by
therapy, and the models generally performed similarly for
patients receiving and not receiving therapy at the time of the
elevated risk score (except for anticoagulants). To the best of
our knowledge, these are the first models in the published
literature that use gold-standard chart-reviewed training data to
make treatment predictions at the time of a clinical deterioration
elevated risk score. These models could be incorporated
alongside early warning scores to enhance clinical
decision-making and prompt earlier, lifesaving treatments.
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Predictive Performance by Treatment Type
We first examine the differences in performance across the
various treatment types, which ranged in AUROC values from
approximately 0.7 to 0.9. Antiarrhythmic prediction had the
highest AUROC, while anticoagulant prediction had the lowest
AUROC, although several additional treatment types showed
similar performance to anticoagulant prediction (diuretics,
invasive ventilation, and vasoactives all had mean AUROCs
close to 0.7). A potential contributor to differences in
performance is likely the presence (or absence) of useful
predictive signals in the structured EHR data used in this study.
For instance, changes in heart rate, which is a structured data
element included in our models, often signal a patient’s need
for antiarrhythmics, while treatments like diuretics rely on
additional measurement modalities that we did not include (eg,
chest X-ray images or physical observations showing signs of
fluid overload). To validate this intuition, we performed SHAP
analysis for the 3 most common treatment types (antimicrobials,
fluid boluses, and antiarrhythmics; Multimedia Appendix 2).
We found that the most important features for each treatment
type agreed well with clinical intuition. For instance, the most
important features for antimicrobial prediction related to
temperature, white blood cell counts, heart rate, and lactate
levels. The most important features for fluid bolus prediction
related to blood pressure, electrolytes, and heart rate. For
antiarrhythmic prediction, features related to heart rate were the
most important.

As a result, we would expect our models to perform best when
the most relevant patient attributes for a given treatment type
are contained within structured EHR data, such as vital signs
and laboratory values. This naturally motivates the fusion of
additional data sources for such models in the future to enhance
their discriminative performance. Fusion methods, particularly
intermediate and late fusion approaches, have been shown to
improve predictive performance by integrating additional
modalities, such as imaging and clinical notes [46,47]. In
particular, mixture-of-experts frameworks show promise for
effectively handling multimodal data even when certain
modalities are missing [48]. More broadly, however, it may be
the case that certain conditions are easier to predict than others,
for instance, due to lower variability in patient presentation.
Even without additional input modalities, the models presented
here can be helpful sources of recommendations, especially if
clinicians are informed about which treatment recommendations
are most accurate.

Predictive Performance by Model Type
We found that no single algorithm uniformly outperformed the
others on all prediction tasks, and the rank-ordering of algorithm
performance varied across tasks. The absence of a universally
superior algorithm is consistent with recent literature comparing
baseline models (eg, LR) with gradient boosted trees (eg, XGB)
and deep learning approaches [49]. Broadly, however, XGB
showed the best individual model performance, with the highest
weighted AUROC across tasks and the best mean AUROC
ranking among individual algorithms. This also agrees with
recent literature demonstrating that boosted decision trees tend
to outperform other modeling approaches in prediction tasks

for moderately sized tabular datasets [49-51]. Importantly,
however, all tested models were the best-performing individual
model in at least 1 prediction type; XGB performed best on 5
tasks, LR performed best on 2 tasks, the single-label LSTMs
performed best on 2 tasks, and the multilabel LSTM performed
best on 1 task. Additionally, while discrimination was our
primary evaluation metric, model calibration is also an important
consideration for use in a medical recommendation setting, as
it measures whether predicted probabilities reflect observed
outcome frequencies [52]. This work evaluated the calibration
performance of the tested methods without applying any
corrective postprocessing techniques. XGB and LR both showed
good calibration, while the LSTM approaches were poorly
calibrated. We suspect that this is partially due to the use of
class weighting for the LSTMs on all tasks to reduce the
computational burden of hyperparameter tuning. Furthermore,
modern neural networks are known to exhibit poor calibration
[53]. Numerous methods are available to improve model
calibration via postprocessing, such as Platt scaling or isotonic
regression [53-55]. However, best practices for these techniques
rely on the use of additional held-out data, so model types with
better intrinsic calibration may be especially valuable in this
data-scarce setting.

Given the varied performance of the individual models, it was
not surprising to see that the stacking ensemble, which
incorporated weighted contributions from each individual model,
tended to outperform the individual models. Specifically, the
ensemble had the best overall performance on 4 individual
prediction tasks, had the highest weighted AUROC across tasks,
and had a higher mean AUROC ranking across prediction tasks
when ranked alongside individual models. The ensemble also
tended to show the best calibration across the tested methods.
This performance is consistent with existing literature, which
has shown the benefits of ensemble approaches in medical
diagnostics [35]. However, we note that the AUROC
improvement of the ensemble over that of the individual models
was typically modest. Therefore, clinician stakeholders will
need to assess whether the improved performance merits
additional implementation or explainability costs compared
with implementing a single model like XGB. Hyperparameter
tuning for the LSTM approaches, for instance, carried
significantly more computational burden compared with LR
and XGB. Furthermore, while we focused on establishing the
discriminative performance of the different methods, future
work will need to consider the misclassification costs associated
with each of the treatment types to guide such modeling
decisions.

Timing of Treatment Initiation
The timing of treatment initiation for chart-reviewed lifesaving
treatments varied by treatment type. We focused on the fraction
of individuals receiving lifesaving treatment within 48 hours
before their elevated risk score, as these treatments are more
likely to be clinician responses to the deterioration event of
interest. For some interventions (eg, antimicrobials,
antiarrhythmics, bronchodilators, and anticoagulants),
approximately 75% of patients received the corresponding
treatment before the elevated risk score. However, for other
interventions (eg, steroids, fluid boluses, transfusions, and
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vasoactive medications), fewer than half of the encounters had
their treatment initiated before the elevated risk score. As a
result, we expect that our models will offer different benefits
to some patients and conditions compared with others. For
instance, in some cases, the models reinforce clinician intuition
(ie, where treatment has already been initiated), whereas in
others, they would prompt treatment initiation. Furthermore,
nearly all patients received the lifesaving treatment at some
point during their encounter, with slight variations by treatment
type. As noted previously, the early initiation of appropriate
treatments is associated with improved patient outcomes [7-11],
reinforcing the potential benefit of AI decision support tools in
recommending lifesaving treatments.

Predictive Performance for Untreated Patients
We further assessed predictive performance for the subset of
test site patients who were not receiving each treatment type at
the time of the elevated risk score. A patient was included in
this untreated subset if they did not receive the noted treatment
within the 48 hours before the elevated risk score for the
deterioration event under study. We noted a small but
near-universal drop in AUROC across algorithms and treatment
types, typically less than 0.05. The effect is more pronounced
for some treatment types than others. There are several possible
explanations for this phenomenon. Cases with near-negligible
differences, such as vasoactive medications, are likely explained
by near-identical study populations (ie, AUROC calculations
are performed on nearly the same population since very few
patients receive such a treatment). Beyond these cases, we
expect that some of the performance drop is explained by the
nature of this patient subset; by excluding patients who already
received treatment from clinicians, we are presumably left with
a cohort that is more difficult to correctly diagnose and treat.
Thus, we would expect the algorithms to perform worse when
evaluated specifically on this more challenging patient subset.
A further contributor to the drop in AUROC is likely the
presence of label leakage through certain EHR measurements.
Because some treatments have clear markers in the EHR, once
initiated, it is possible for the models to use these quantities for
shortcut learning [56]. Anticoagulants showed the largest drop
in performance between the overall and subset cohorts and serve
as a particularly salient example for this effect; heparin treatment
impacts a patient’s partial thromboplastin time, which is one of
the measurements used by the models. If the trained model
learns to rely on the presence of treatment proxies to perform
prediction, the absence of this signal in the untreated cohort is
likely to result in poorer performance. Finally, we note that
steroid prediction showed a counterintuitive increase in
performance across all models when measured on the untreated
patient subset. SHAP analysis of relevant model features
cross-referenced with differences in these patient populations
did not suggest a clear explanation for this increase in
discriminative performance (Multimedia Appendix 2). We
suspect that this is an artifact of steroids having the most severe
class imbalance, making random variation in positive cases
more pronounced than the other prediction tasks.

Case Study of Anticoagulant Prediction
We highlight the prediction of anticoagulants to illustrate 2
important performance trends for the studied algorithms. First,
anticoagulant prediction was a task with noticeably better
performance by the multilabel LSTM compared with XGB.
While XGB tended to outperform the LSTM approaches in
general, here we see the potential value of time-series models
relative to non–time-series approaches for certain prediction
tasks. As LR and XGB are not fundamentally time-series
methods, these approaches required hand-crafted temporal
features to capture such information (eg, SD of a measurement
type over the previous day). SHAP analysis of the XGB model’s
test set predictions (Multimedia Appendix 2) suggested that the
3 most important covariates for anticoagulant prediction were
temporal summary statistics (in descending order): SD of heart
rate over the past 24 hours, slope of temperature measurements
over the past 24 hours, and SD of temperature measurements
over the past 24 hours. Furthermore, for the most important
feature, 24-hour SD of heart rate, higher values were associated
with the positive class, suggesting that these patients experienced
significant variation in heart rate measurements. Thus, it may
be that the better performance observed from the multilabel
LSTM owes to its ability to learn relevant patterns directly from
the time-series data for these measurements rather than relying
on less informative temporal summary statistics.

However, anticoagulants also highlight a possible pitfall of
using data-hungry, deep learning approaches in this relatively
low-data regime [57]; while the multilabel LSTM had the best
performance for this treatment type, the single-label LSTM had
the worst performance. Direct consideration of time-series data
may allow higher capacity models to extract additional
information for prediction, but it may also lead to poorer
performance through overfitting, even with the types of
regularization used in the training of our models. This is
especially relevant for the single-label LSTMs, where we
performed dedicated hyperparameter tuning for each prediction
task. To this end, we observed that single-label LSTMs tended
to outperform multilabel LSTMs for prediction tasks with less
class imbalance, and vice versa.

Deployment Considerations
While our primary focus in this study is to establish predictive
performance benchmarks for various ML approaches, we also
discuss several important points related to the real-world
deployment of these models. Foremost, we envision these
models providing suggestions to clinicians to enhance their
decision-making, rather than having decision-making authority
themselves. However, even in this recommender capacity,
several relevant implementation considerations follow.

The first consideration is the predictive performance of such
models with respect to novel populations and to subpopulations.
While the results presented in this manuscript come from model
validation on an external site, all 4 sites included in this study
are regionally similar, academic health systems in the United
States. Further study will be required to evaluate model
predictive performance in other settings, such as community or
international hospitals, where varying degrees of data shift may
meaningfully impact performance [58]. Even in settings with
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significant data shifts, models like those trained in this
manuscript may provide a valuable foundation for transfer
learning using setting-specific data [59,60]. Furthermore,
additional study is needed to evaluate the performance of such
models on particular patient subpopulations to assess concerns
related to algorithmic fairness [61,62].

Second, the prospective operation of these models relies on a
minimum level of in-hospital data infrastructure, including the
real-time availability of structured EHR data and the ability to
calculate the model scores [63]. While this infrastructure is
readily available in the academic medical centers described in
this manuscript, this may not be true in community or
international hospital settings. Furthermore, we briefly noted
how these recommendation models could be augmented to
include other measurement modalities, such as imaging or
clinical notes; these modalities are expected to improve model
performance but may not be available for real-time prediction
models in some hospitals, leading to wider differences in
performance between high- and low-resource hospital settings.

Third, much additional study is needed to evaluate the most
effective integration of these treatment suggestions into clinical
workflows. While these models are naturally tied to the usage
of clinical deterioration early warning systems, such as eCART,
there is significant flexibility in how treatment recommendations
are actually delivered to clinicians (eg, the use of thresholding
vs probability scores, the integration into other rapid response
system elements, or the temporal and visual manner of delivery).
The field of human factors provides a principled means to design
effective clinical decision support system implementations in
close collaboration with relevant stakeholders [64-66]. These
efforts will be a critical component of future work in order to
address common problems with early-warning–type systems,
such as alarm fatigue and cognitive overload.

Finally, we briefly address broader ethical concerns with clinical
decision support systems in medical decision-making, such as
those related to misclassification and clinician reliance. An
important finding from this study was the difference in
predictive performance across treatment categories and model
types. One aspect of future work will be assessing false positive
and false negative costs associated with each treatment type to
inform tradeoffs when presenting threshold-based model scores.
As incorrect treatment initiation costs may vary significantly
across treatments, the level of clinically meaningful model
performance is expected to differ by treatment type. These types
of considerations may motivate the use of more complex models
for certain treatment types but not others, even if doing so incurs
greater certification costs or effort. With respect to clinician
reliance, we emphasize that such models can never be expected
to be perfectly accurate and that, in this proposed framework,

the clinician has ultimate responsibility for choosing whether
to initiate treatment.

Limitations
We emphasize and reiterate some limitations of our study. First,
our work does not show that a treatment recommendation
algorithm improves outcomes for patients, such as decreasing
treatment latency and time in the hospital. This needs to be
assessed through future prospective implementation studies to
determine if the use of our recommendation algorithms improves
patient care. We expect that prospective implementation efforts
will raise important human factors considerations (eg, trust
between a clinician and the clinical decision support) that we
do not address in this work. Next, while this is a large,
chart-reviewed dataset, it is still relatively small compared with
datasets typically used to train medical ML models. This is an
especially important consideration for the performance of the
deep learning (ie, LSTM) approaches, as the dataset may be too
small to fully leverage the additional signal present in each
encounter’s time series data. Furthermore, while we used a
multicenter dataset, the included sites are all regionally similar
health systems in the Midwest region of the United States;
additional sites would be needed to assess how well these results
generalize to other health systems. Finally, our work focuses
primarily on the discriminative and calibration performance of
the tested models; we do not address concrete tradeoffs for
initiation or incorrect initiation of the different treatment types.
We plan to incorporate these factors into future work, as they
help inform tradeoffs in modeling decisions and enable a more
complete evaluation of algorithm performance.

Conclusion
This work provides benchmark discrimination and calibration
performance for a variety of ML methods on a collection of
common treatment recommendation tasks. The difficulty of the
recommendation tasks was found to vary widely by treatment,
with mean model AUROCs ranging from approximately 0.7
(eg, anticoagulants or vasoactives) to nearly 0.9 (eg,
antiarrhythmics). While no individual model uniformly
outperformed all other models across prediction tasks, XGB
had the best weighted discriminative performance across tasks
and exhibited well-calibrated predictions. An ensemble
combining both classical ML and time-series, deep learning
approaches tended to match or outperform the best-performing
individual model in each prediction task in both discrimination
and calibration. The observed performance suggests that such
ML tools may serve as valuable clinical decision support in
tandem with generalized early warning scores to improve the
timely and appropriate treatment of deteriorating general ward
patients.
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Abstract

Background: Patient education materials (PEMs) found online are often written at a complexity level too high for the average
reader, which can hinder understanding and informed decision-making. Large language models (LLMs) may offer a solution by
simplifying complex medical texts. To date, little is known about how well LLMs can handle simplification tasks for
German-language PEMs.

Objective: The study aims to investigate whether LLMs can increase the readability of German online medical texts to a
recommended level.

Methods: A sample of 60 German texts originating from online medical resources was compiled. To improve the readability
of these texts, four LLMs were selected and used for text simplification: ChatGPT-3.5, ChatGPT-4o, Microsoft Copilot, and Le
Chat. Next, readability scores (Flesch reading ease [FRE] and Wiener Sachtextformel [4th Vienna Formula; WSTF]) of the
original texts were computed and compared to the rephrased LLM versions. A Student t test for paired samples was used to test
the reduction of readability scores, ideally to or lower than the eighth grade level.

Results: Most of the original texts were rated as difficult to quite difficult (average WSTF 11.24, SD 1.29; FRE 35.92, SD 7.64).
On average, the LLMs achieved the following average scores: ChatGPT-3.5 (WSTF 9.96, SD 1.52; FRE 45.04, SD 8.62),
ChatGPT-4o (WSTF 10.6, SD 1.37; FRE 39.23, SD 7.45), Microsoft Copilot (WSTF 8.99, SD 1.10; FRE 49.0, SD 6.51), and
Le Chat (WSTF 11.71, SD 1.47; FRE 33.72, SD 8.58). ChatGPT-3.5, ChatGPT-40, and Microsoft Copilot showed a statistically
significant improvement in readability. However, the t tests yielded no statistically significant results for the reduction of scores
lower than the eighth grade level.

Conclusions: LLMs can improve the readability of PEMs in German. This moderate improvement can support patients reading
PEMs online. LLMs demonstrated their potential to make complex online medical text more accessible to a broader audience by
increasing readability. This is the first study to evaluate this for German online medical texts.

(JMIR AI 2026;5:e77149)   doi:10.2196/77149
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Introduction

Overview
In the digital era, health information is widely available [1] and
exists in many different forms, for example, Wikipedia articles,
health-related websites, leaflets, and brochures [2], categorized
as patient education materials (PEM). Such materials support
medical laypersons in learning about diseases, diagnoses,
therapies, etc [3]. Health information should be easy to
understand for the general population and to promote health
literacy [4]. In this context, the COVID-19 pandemic confirmed

the need to improve the general scientific and health literacy
[5-7].

However, Zowalla et al [3,8], Rooney et al [9], Yeung et al [5],
Gordejeva et al [10], and others have shown that the readability
of health information is often unsatisfactory regardless of its
source (online material, booklets), authors (official bodies and
institutions, individuals), or language. Many of these resources
pose a challenge due to their sentence complexity and use of
expert language, making it difficult for laypersons to effectively
read and understand such material.
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Artificial intelligence (AI) offers potential for substantial
improvements in health care applications and is becoming
omnipresent in recent years [11]. In particular, large language
models (LLMs) represent promising opportunities [12,13]. In
this context, LLMs can be leveraged to improve the readability
of existing PEMs intended for citizens.

Being easily accessible for everyone [14], citizens and patients
alike will use them to seek health information online, answers
to specific questions, or even therapy advice similar to Internet
search engines [15].

For these reasons, citizens will use LLMs to translate complex
medical terminology and to simplify text material, aiming for
an improved comprehensibility [16,17]. Moreover, an increased
integration of AI in the curation of health information offers
several benefits [18] for institutions, primarily time and cost
savings.

Prior Work
There is a decade-long research tradition about how to use and
implement decision support systems, machine learning, and AI
solutions in health care. Since 2023, with the widespread
availability of LLMs [19], those technologies have been
explored for beneficial health care use cases [15] in several
medical domains [20-28].

Researchers investigated how publicly available LLMs interfere
with patients’ information seeking behavior. Eng et al [29]
entered questions about rotator cuff repair surgery in
ChatGPT-3.5 and let 2 orthopedic surgeons analyze the answers.
The questions were derived from frequently asked questions
(FAQs) sites from various patient information websites. The
answers by the LLM were evaluated in terms of readability
(Flesch-Kincaid grade level); the Journal of the American
Medical Association Benchmark criteria and the DISCERN
score [30] were also used to evaluate reliability and the quality
of health information on the internet. The average readability
level of the generated answers was equal to a college freshman
(Flesch-Kincaid grade of 13.4).

Similar work was conducted by Mika et al [31] who fed
ChatGPT with “ten frequently asked questions regarding total
hip arthroplasty.” They found that the generated answers were
fairly accurate and would be easily understood by patients.
Another commonly used readability metric is the Flesch reading
ease (FRE) score, which ranges from 0 to 100; lower values
indicate a low level of readability, that is, it is difficult to read
the text.

Li et al [32] let ChatGPT process 400 English radiology reports
(the mean length of words was 164, SD 117). The FRE improved
from “38.0±11.8” to “83.5±5.6”.

Similar results were reported by Moons et al [33] who used
ChatGPT and Google Bard to reformulate 3 “selected patient
information sections from scientific journals.” Google Bard was
able to reduce the reading level of the texts to that of sixth
graders. However, this was achieved by omission of “significant
information” [33].

In an analysis of PEM for bariatric surgery, ChatGPT (version
3.5 and 4) and Google Bard were able to improve the readability

levels of 66 frequently asked questions pages of US-based
hospitals. The mean FRE scores of the original texts were “48.1
(SD 19.0), which corresponded to ‘difficult to read,’while initial
responses from GPT-3.5, GPT-4.0 and Bard achieved mean
scores of 31.4 (SD 11.4), 42.7 (SD 9.7), and 56.3 (SD 11.6),
which corresponded to ‘difficult to read,’ ‘difficult to read,’ and
‘fairly difficult to read,’ respectively” [34]. The authors also
evaluated the accuracy of the simplified texts. The majority of
the LLM responses were equal in accuracy to the original texts,
but quality varies among LLMs. Srinivasan et al [34] stress the
“importance of evaluating both the readability and quality” of
rephrased texts for patient information.

This is also in line with the conclusion by Pal et al [35], who
recommend training more specialized LLMs for tasks in the
medical domain. They propose that this will add credit and
reliability to the answers produced by LLMs in the clinical
setting.

Focusing on non-English evaluations, some research was
published for expert-centric scenarios: a multilingual benchmark
set for answering medical exam questions was developed by
the “MedExpQA” study [36]. This contains standardized
answers from health experts. To assess the accuracy of medical
questions, the study analyzed LLMs with and without
retrieval-augmented generation methods. It was found that the
models in French, Italian, and Spanish were inferior to those in
English. In addition, difficulties such as the tendency to generate
incorrect answers and the use of outdated information were
identified.

Heilmeyer et al [18] focused on German medical text: they
“assessed the feasibility of using nonproprietary LLMs of the
GPT variety as writing assistance for medical professionals.”
Pretrained LLMs were trained on electronic health records of
more than 82,000 patient encounters in a German outpatient
clinic. AI tools proved to be “helpful writing assistance” for
medical experts and patient reports.

As of today, no readability evaluation has been conducted for
LLM-rephrased German health texts from the citizens’
perspective. By citizens’ perspective, this study refers to
evaluating LLM-rephrased health texts as they would have been
experienced by an average layperson without specialized
knowledge or expertise in prompt engineering. This approach
reflected the realistic scenario of laypersons seeking health
information online, using freely accessible tools without
systematically optimizing prompts or using application
programming interfaces (APIs) to tune LLM model parameters.

Aims of the Study
The aim of the study is to investigate, from a layperson’s
perspective, whether LLMs can simplify and increase the
readability of German online medical texts to a recommended
level of readability, that is, the eighth grade [37,38].

In this context, 3 specific aims were defined as:

1. Rephrase German medical texts with LLMs,
2. Compute their readability, and
3. Evaluate if the AI-rephrased texts showed a higher level of

readability.
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Methods

Medical Text Corpus
Previous research and a prior sample size calculation (see
Statistical Analysis) indicated that the desired reduction in
Wiener Sachtextformel (4th Vienna Formula) (WSTF) score to
meet the recommended grade level could be shown with a rather
small sample (n<10). Therefore, a medical text corpus was
compiled to represent high prevalence diseases, for example,
cancer and diabetes mellitus, and major public health topics,
for example, vaccinations, as well as national bodies and
institutions such as the national health portals of Germany and
Austria or popular online health websites.

For a full list of included content providers and websites, see
Multimedia Appendix 1.

First, all 60 websites were visited with a Chrome web browser.
Next, the corresponding texts were manually extracted without
any HTML-related markup. The 60 plain text of the resulting
corpus files were then used for further processing.

Readability Analysis
The term readability “refers to the properties of written text […]
it reflects the (1) complexity of a text’s structure, (2) sentence
structure, and (3) chosen vocabulary” [10]. For the German
language, 2 well-known readability metrics are established: (1)

an adapted version of the (original English) FRE [39] for the
German language by Amstad [40] and (2) the WSTF by
Bamberger and Vanecek [41]. Both metrics use text parameters
like average sentence length and average number of syllables
per word.

The FRE score ranges from 0 to 100; lower values indicate a
low level of readability, that is, it is difficult to read the text.
The WSTF metric ranges from 4 to 15, which roughly
corresponds to school grades. For instance, if a text scores a
value of 10, at least 10 years in school are necessary for readers
to understand this text.

For the readability computations of all texts and to address
research aim (2), the analysis framework by Wiesner et al [42]
was used. The analysis was conducted on a Windows 10 64-bit
computer with Java Runtime Environment (version 18; Oracle
Corporation).

Selection of Large Language Models
A scoping review of well-known code platforms such as GitHub
[43] or Hugging Face [44] was conducted to search for available
LLMs. In addition, online literature databases such as the
Association of Computing Machinery Digital Library and
Institute of Electrical and Electronics Engineers Explore were
searched to scan publications that already used LLMs (see Table
1).

Table . Overview of various large language models available as of April 2024.

LanguageFree to useOpen sourceAvailabilityDeveloperDomainYearName

ENaYesNoWebOpenAIGeneral2022ChatGPT 3.5
[45]

ENNoNoWebOpenAIGeneral2023GPT4 [45]

ENYesNoWebGoogleGeneral2023Google Gemini
[46]

ENYesYesLocalGoogleGeneral2018BERT [47]

ENYesYesLocalMetaGeneral2023Llama 2 [48]

ENYesNoWeb and LocalAnthropicGeneral2023Claude 2 [49]

ENYesYesLocalGoogleGeneral2019T5 [50]

ENYesYesLocalBig ScienceGeneral2022BLOOM [51]

ENYesNoWebMicrosoftGeneral2021Microsoft Copi-
lot [52]

ENYesYesLocalTechnology Inno-
vation Institute

General2023Falcon LLM
[53]

ENYesNoWebMistral AIGeneral2024Le Chat [54]

GERbYesYesLocalMatthias UhligGeneral2023Phönix [55]

GERYesYesWeb and LocalLAION and
HessianAI

General2023LeoLM 7b/13b
[56]

ENYesYesLocalTianyu Han et alMedical2023MedAlpaca [57]

ENYesYesLocalStanford CRFMBiomedical2024BioMedLM [58]

aEN: English.
bGER: German.
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Some important aspects and criteria influenced the final
selection: The language of the LLM—preferably a
German-trained model should be used—as well as the specific
field or domain of the LLM (general or medical domain).

Some LLMs can only be executed locally, while some can be
used via a web front end. The latter would be preferable because
in our use case, LLMs should be used by laypeople, who do not
have the hardware capabilities at their homes nor the technical
knowledge to host and operate LLMs. Preferably, the use of the
LLM should be free of charge and open to use, that is, not in a
beta test phase or only available for persons with a technical
background (ie, programming skills).

Of 15 candidate LLMs, only 3 met the previously outlined
criteria and were selected: (1) ChatGPT 3.5, (2) Microsoft
Copilot, and (3) Le Chat. In May 2024 (after the LLM scoping
review phase), OpenAI presented and launched their new
release: GPT-4o. The authors decided to include this model as
well. LeoLM (13b) was initially considered but later excluded
due to frequent inaccuracies, very short or context-inadequate
outputs, occasional language mismatches (answer in English
instead of German), and overall unreliability in handling the
text material.

Accuracy of Rephrased Health Information Texts
The answers generated by each LLM were independently
assessed by 3 reviewers (AM, RZ, MP) with a background in
medical informatics. Assessments focused on the medical
accuracy, clarity, and plausibility of the information provided,
ensuring that each response was evaluated not only for linguistic
quality but also for its alignment with established medical
knowledge and standards. Interrater agreement was measured
by calculating Fleiss κ and percent agreement.

Prompt Engineering
Prompt engineering refers to the process of designing and
optimizing the input prompts for any LLM. The structure and
content of a prompt can greatly influence the quality of the
output generated by the LLM. Today, some techniques have
evolved to obtain better results by LLMs:

• Few-shot prompting provides examples within a prompt to
clarify instructions [59]. This approach improves the
model’s ability to interpret and respond accurately to the
task, as the examples provided serve to establish patterns
and context. The term ‘few’ indicates that a limited number
of examples are provided as opposed to zero-shot
prompting, where no examples are given.

• Chain of thought prompting breaks down complex tasks
into steps within a prompt [60]. This approach mimics
human problem solving, guiding the LLM through
structured reasoning to generate more accurate responses,
especially for tasks that require multiple levels of reasoning.

• Clue and reasoning prompting introduces a structured
reasoning approach [61]. Unlike the other methods, clue
and reasoning prompting targets complex linguistic features
(eg, irony, contrast, and intensification) and involves 2
stages: the LLM (1) identifies clues within the input (eg,
keywords, tone, and references) and (2) uses these clues to
perform a reasoning process. This step-by-step approach

aims to fill gaps in the LLM’s reasoning capabilities,
enabling it to deal more effectively with complex linguistic
variations.

For the average person seeking health information online,
advanced prompting techniques may be too complex to apply.
These techniques require understanding how to structure input
for LLMs. Few-shot prompting, for instance, involves providing
examples within a prompt, requiring users to explain their needs
clearly for effective interpretation. Most people would find
designing such prompts difficult and time-consuming, especially
when simply needing help understanding the provided health
information.

For this reason, the authors decided to use a zero-shot prompting
approach. Therefore, an extensive role-prompt approach was
evaluated with a subset of the medical text corpus (6‐12 texts)
and the 3 web-based LLMs. This prompt contained context
information and provided a detailed task description for the
LLM. However, using this prompt, the results’ readability
decreased.

I, a person with no specialist medical knowledge,
would like to understand as simply as possible how
a stroke is treated by medical staff. I have read a text
from gesund.bund.de, which I did not understand
because of the medical terminology. Your task as AI
ChatBot is to rewrite the following text so that I can
understand it completely at the end. Here is the text:
{TEXT}

Iteratively, other approaches were tested, eg, English prompt
versus German prompt, or prompts with specific instructions
to fine-tune a given readability score. Finally, a reduced German
role prompt yielded the best results:

A person with no medical knowledge wants to
understand a text. You, as a large language model,
must simplify the following text for this person using
simple language without reducing the content. Here
is the text: {TEXT}

Every text and every LLM was input with this prompt, combined
with the actual medical text. Due to the limit of 4000 characters
for Microsoft Copilot, the texts were split, and several requests
were made. Eventually, a total of 240 LLM conversations were
conducted between May and July 2024.

Statistical Analysis
Readability scores for the original and rephrased texts are
presented as mean and SD. Student t test for paired samples
was used to test the reduction of readability scores prior to and
after the rephrasing. Prior research of German medical texts
[3,10,42] yielded a mean readability of 12.46 (SD 1.84) for the
WSTF. This means a reduction of 4.5 grade levels would result
in the recommended reading level of 8, that is, a score ≤8.0.
Given these parameters, a sample size of 4 would be needed to
show such an improvement with an alpha error of 0.05
(adjustment for multiple testing according to the
Holm-Bonferroni method [62]) and a power of 95%. Sample
size was calculated with G*Power 3.1 [63].
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After the analysis of the text corpus’ readability scores, the
average readability was calculated as WSTF 11.24 (SD 1.29);
FRE 35.92 (SD 7.64). Thus, only a reduction of 3.5 grade levels
(for WSTF) would be needed. For the FRE metric, an increase
of 25 score points is needed for an eighth grade readability level,
that is, a FRE score between 60 and 70.

The hypotheses were formulated as follows:

HWSTF|0:μorig−μLLM≤3.5

HWSTF|1:μorig−μLLM>3.5

The tests for the FRE metrics were constructed in a similar
manner:

HFRE|0: μLLM−μorig≤25

HFRE|1:μLLM−μorig>25

In addition, to show if LLMs improved the readability at all,
paired t tests were conducted. The tests were constructed as
follows:

HWSTF|0: μorig≤μLLM

HWSTF|1: μorig>μLLM

For the FRE metrics, the hypotheses were:

HFRE|0: μLLM≤μorig

HFRE|1: μLLM>μorig

Results

Readability of the Original Health Information Texts
Most of the original texts were rated as difficult to quite difficult
(average WSTF score 11.24 (SD 1.29), FRE 35.92 (SD 7.64));
this corresponds to 12 years of schooling. The W39 website
had the most difficult text (WSTF 13.97, FRE 16.74) to read;
the W7 website had the text with the best readability (WSTF
8.70, FRE 51.02). Only 2 websites achieved a grade level of 8
(W7, W9). Table 2 presents the calculated WSTF and FRE
scores for the original health information texts with their means
and SD.
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Table . Computed readability scores and number of words for 60 medical information texts.

Number of wordseFREc,dWSTFa,bWebsite

95043.939.36W1

102141.9210.63W2

100744.2610.70W3

78441.469.83W4

190936.4010.80W5

113141.2311.01W6

90751.028.70W7

101734.3010.84W8

127947.808.90W9

143438.8210.65W10

89843.0610.01W11

121428.6512.00W12

78031.9111.68W13

59743.1810.77W14

120533.3612.28W15

66146.219.35W16

78041.8310.32W17

83244.7510.30W18

132139.1410.85W19

83929.3211.96W20

422534.4311.36W21

299934.6211.11W22

11429.0211.93W23

219234.4811.43W24

105838.6911.55W25

66045.509.65W26

42538.6010.93W27

70629.4511.35W28

64827.7011.27W29

56227.6711.85W30

126646.629.27W31

265746.239.17W32

130643.0910.33W33

76035.6511.50W34

267246.049.20W35

147236.2010.82W36

137044.369.57W37

117332.8611.60W38

134316.7413.97W39

194830.3911.90W40

167836.1311.13W41

396037.8411.08W42
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Number of wordseFREc,dWSTFa,bWebsite

79440.0111.35W43

223237.8410.97W44

123630.1811.87W45

152721.9713.36W46

207227.9912.49W47

206324.6513.66W48

111732.9312.01W49

183822.1813.86W50

76237.1411.62W51

164231.8012.58W52

51640.7010.22W53

119919.4514.28W54

119722.9213.88W55

338330.6612.69W56

254132.4412.02W57

74639.0211.41W58

153036.2910.90W59

241131.8612.03W60

aWSTF: Wiener Sachtextformel (4th Vienna Formula).
bWSTF mean 11.24 (SD 1.29).
cFRE: Flesch reading ease.
dFRE mean 35.92 (SD 7.64).
eNumber of words, mean 1409 (SD 840).

Readability of the Rephrased Health Information Texts
Overall, the texts rephrased by the LLMs show an improved
readability compared to the original texts. However, the degree
of the readability improvements varies greatly.

ChatGPT-3.5 had, on average, a score of 9.96 (SD 1.52) for
WSTF, ChatGPT-4o had a mean score of 10.6 (SD 1.37),
Microsoft Copilot had a mean score of 8.99 (SD 1.10), and Le
Chat had a mean score of 11.7 (SD 1.47). Microsoft Copilot
achieved the best readability values compared to the other LLMs
(see Table 3).
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Table . Computed readability scores and number of words with mean readability score and SDs, and average differences of original and large language
model texts.

Le ChatMicrosoft CopilotChatGPT-4oChatGPT-3.5

WordsFREWSTFWordsFREWSTFWordsFREWSTFWordsFREbWSTFaWebsite

44639.3510.1384551.728.3549639.8710.2524246.179.81W1

79840.7611.2771055.388.7228143.599.7228656.148.38W2

47134.8812.5681753.718.6050134.3511.3630541.5810.85W3

45636.2311.1561054.297.69c37035.2211.7836441.809.52W4

91431.1611.84154149.528.4527323.1613.1718943.009.59W5

51836.9212.0684152.579.2736829.0212.5118245.5810.63W6

54051.028.6074660.426.7856531.2211.9731047.118.60W7

89833.1910.7583939.059.5154835.6510.9424731.8911.50W8

88446.919.0990554.587.5036831.8911.4539255.547.01W9

50226.4612.59127254.068.1040436.7011.1037545.689.46W10

35925.7513.6271157.707.8028932.7912.4124638.8710.97W11

38536.8011.0886136.7510.5037144.559.8927844.8210.01W12

58827.5112.8552960.947.4931642.859.9328139.6311.04W13

43333.6413.1351955.948.4242542.1111.0419542.3011.58W14

47626.8213.55110742.2211.1633530.8011.5142238.4511.98W15

30447.359.7451854.607.5840343.8610.2424056.367.90W16

42541.2010.4346253.507.4841428.2113.1824440.3210.79W17

69440.2711.4267052.248.9342529.8212.9832860.566.86W18

38139.9910.9998745.1510.1835734.6311.3240246.169.74W19

48326.9511.9365841.269.9937141.8410.2317934.1710.15W20

63533.5311.67517036.2211.1050134.6311.1056950.268.64W21

35830.0611.67214044.029.4748545.819.9020743.1210.36W22

14036.4810.3117144.309.3152241.8810.2911343.239.64W23

60319.9313.51161940.5710.2752740.5010.2861421.9113.17W24

40841.3711.0763351.338.9748843.509.8730450.3310.07W25

44345.0410.2646057.587.6829850.007.8622556.197.98W26

37045.039.6638858.117.0434241.828.8433649.908.76W27

35025.0212.6951543.319.5856231.7611.3226831.9011.32W28

35622.1712.5545644.209.3546236.5311.2821127.9912.08W29

32827.0511.2439234.2811.0446756.108.0927827.4711.43W30

40636.7211.11106753.778.2944646.068.7930539.3110.45W31

154343.859.70148652.458.1369440.509.1924855.037.94W32

34435.3812.7977553.667.9336644.5310.7130750.998.64W33

19936.3413.1774349.539.4545546.7910.0620248.869.20W34

181237.7311.12217551.358.2047239.929.9919149.278.45W35

35143.789.7789950.828.4138859.176.6926658.257.45W36

62139.3211.28100254.918.0450141.159.9122246.7510.27W37

34327.2612.5479742.7210.0258436.2811.5920735.7711.02W38

33119.9013.9580545.859.8455054.247.8626938.7911.44W39

22111.2514.88110440.909.7140942.179.5833235.4310.62W40
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Le ChatMicrosoft CopilotChatGPT-4oChatGPT-3.5

102234.8511.1095448.029.3235654.267.6226644.0510.51W41

279237.1611.35229153.379.0415545.189.3545844.5311.07W42

37834.6512.4062553.938.7833555.857.7435343.4910.61W43

36516.2914.43140553.088.0933939.969.6222255.987.92W44

67746.479.1974947.509.0239136.5810.3125948.018.71W45

61020.5213.62126037.4811.5235035.6410.7221429.0510.94W46

42834.9512.09145452.978.4643633.5111.4431447.689.82W47

48519.2413.98145450.159.3438542.4210.1524042.089.44W48

66235.2211.1674445.549.2845051.029.5421061.816.34W49

47436.1311.28129439.4110.5460442.409.9418036.9511.44W50

54037.3411.2856445.899.8244246.809.7323939.5710.76W51

38724.0114.4811040.9810.6841839.8311.0725352.058.66W52

28743.029.6833455.607.6938042.2010.0916657.136.58W53

49429.6612.66238046.259.6533351.238.6722447.549.87W54

58218.1914.3786745.229.8438236.979.8826152.577.92W55

79738.4811.45177046.089.4641444.5310.3626143.5511.05W56

29131.6510.9589951.638.7440239.1010.4730450.948.32W57

34840.0410.8356658.118.0149141.6310.7034056.287.89W58

73333.2010.81108548.908.2953936.8811.7527747.498.08W59

74231.5711.69165944.559.7638849.629.2229444.9210.33W60

570
(406)

33.72
(8.58)

11.71
(1.47)

1040
(743)

49.00
(6.51)

8.99
(1.10)

749 (94)39.23
(7.45)

10.60
(1.37)

278 (88)45.04
(8.62)

9.96
(1.52)

Mean
(SD)

—−2.20
(7.15)

−0.47
(1.33)

—13.09
(5.88)

2.24
(0.98)

—4.94
(11.78)

0.93
(2.06)

—f9.13
(8.90)

1.54
(1.68)

DIFFd

(DIFF_SDe)

aWSTF: Wiener Sachtextformel (4th Vienna Formula).
bFRE: Flesch reading ease.
cItalic font denotes that the target readability (WSTF≤8, FRE≥60) was reached.
dDIFF: difference.
eDIFF_SD: SD difference.
fNot applicable.

Microsoft Copilot achieved the highest average score of 49.0
(SD 6.51) on the readability metric FRE, while Le Chat came
last with 33.72 (SD 8.58). ChatGPT-3.5 generated texts with,
on average, the fewest words (278, SD 278 words), while
Microsoft Copilot generated texts with the most words (1040,
SD 743 words) but still less than the original texts.

The ChatGPT-based models (ChatGPT-3.5, ChatGPT-4o, and
Microsoft Copilot) achieved an average improvement of 1.54

(SD 1.68), 0.93 (SD 2.06), and 2.24 (SD 0.98) grade levels,
respectively, for the WSTF.

ChatGPT-3.5 reached the desired class level of eighth grade for
20 texts; Microsoft Copilot reached this level for half of the
texts (see Table 3 and Figure 1). Notably, the newer
ChatGPT-4o achieved this for only 5 texts.

JMIR AI 2026 | vol. 5 | e77149 | p.184https://ai.jmir.org/2026/1/e77149
(page number not for citation purposes)

Miftaroski et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Distribution of calculated WSTF scores for GPT-3.5, GPT-4o, Microsoft Copilot, and Le Chat. The fifth column shows the distribution of
the readability scores of the original texts. The dashed line indicates the recommended readability score of 8. WSTF: Wiener Sachtextformel (4th Vienna
Formula).

Le Chat did not reach the eighth grade (or lower) for any text.
By contrast, the average difference of −0.47 indicates that this
LLM tends to decrease the readability. This was also reflected
in the statistical tests. For both the WSTF and FRE metrics, the
hypotheses that the mean readability improved (HWSTF|1 and
HFRE|1) could not be accepted.

The FRE scores of the rephrased texts improved for GPT-3.5,
GPT-4o, and Microsoft Copilot by 9.13, 4.94, and 13.09,
respectively (see Table 3 and Figure 2). However, the readability
of most of the texts was still low, that is, scores below 60.

Figure 2. Distribution of calculated FRE scores for GPT-3.5, GPT-4o, Microsoft Copilot, and Le Chat. The fifth column shows the distribution of the
readability scores of the original texts. The dashed line indicates the recommended readability score of 60. FRE: Flesch reading ease.

On average, Le Chat’s texts were 2.2 scores inferior to the
original texts, in line with the evaluation of the WSTF metric.

The findings described above are also reflected in the results of
the statistical tests: None of the tests for an improvement to the
eighth grade level yielded a significant result, that is, alternative

hypotheses could not be accepted. However, except for the Le
Chat model, it could be shown that the mean readability was
improved significantly, that is, the alternative hypotheses could
be accepted. In a nutshell, three out of four LLMs achieved a

JMIR AI 2026 | vol. 5 | e77149 | p.185https://ai.jmir.org/2026/1/e77149
(page number not for citation purposes)

Miftaroski et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


statistically significant readability improvement, yet it was not
high enough to have reached the eighth grade level.

Accuracy of the Rephrased Health Information Texts
All LLM answers were screened independently by 3 reviewers.
Fleiss κ was 0.264, and the percent agreement was 54.6%. This
relatively low agreement reflects the difficulty of evaluating
medical content without deep domain-level expertise; ideally,
assessments would involve medical doctors, and the reliability
of the evaluation is further complicated by uncertainty regarding
the correctness of the original websites.

Although not a systematic assessment, several obvious mistakes
and LLM hallucinations were discovered: Microsoft Copilot
shortened the information about endometrial cancer (W29) into
“endometrial cancer is the most common cancer among women
in Germany” (all the following examples are translated versions
of the original German health information texts and rephrased
LLM answers). From an epidemiological perspective, this claim
is incorrect, with breast cancer being the most prevalent type
of cancer among women, constituting a nonnegligible change
of meaning in the rephrased text.

The original text about myocarditis (W49) included the sentence:
“Myocarditis is also considered to be an important cause of
sudden cardiac death in athletes,” which is difficult to
understand for readers and may lead to misinterpretations. This
kind of sudden cardiac death occurs during exercise, training,
or during a match. This information that is not given in the
sentence may just be indicated by using the word “athlete.” The
rephrased sentence also bears this ambiguity and does even
increase it: “When athletes suddenly die, it is often due to
inflammation of the heart muscle.” The ‘context’ of sudden
death is omitted.

Missing context is also noticed if verbatim speech and
statements by medical experts were included in the original
texts. The selected LLMs reduced these statements into plain
text, thereby omitting the source of the information. For
example, the article about myocarditis (W49) included an expert
statement as follows: “You should always go to the doctor if
you notice symptoms that you are not aware of, says Dr. Milan
Dinic, a cardiologist in private practice from Munich.”
“Particularly in women, any new complaint between the tip of
the nose and the navel is usually heart related. You should
therefore definitely think about your heart.”

ChatGPT-3.5 rephrased this to “You should always see a doctor
if you notice any new symptoms. In women in particular, many
symptoms can indicate heart disease.”

Discussion

Principal Results
The original medical texts extracted from health information
websites are, on average, difficult (for the FRE metric) or fairly
difficult (for the WSTF) to read. This means that the original
texts use complicated sentence structures and/or complex
specialist terminology. Our study showed that LLMs can help
improve the readability, especially for the models ChatGPT-3.5
and Microsoft Copilot.

ChatGPT-3.5 and Microsoft Copilot were able to reduce text.
However, the accuracy of the content must be checked by
medical experts to make sure that no ambiguous or false
statements were introduced. It is well known that LLMs tend
to hallucinate [36,64] or “escalate the minor biases that could
occur in the data bank with which it gets trained” [35].
Nevertheless, the authors postulate that the process of
“fact-checking” an automatically generated text is more time
efficient than manually rewriting medical texts for laypersons.
Specialized LLMs or LLMs fine-tuned for medical texts could
also be a possible solution to increase the correctness and
reliability of generated outputs [35] and thus make this text
generation process even more time- and cost-efficient.

The authors found that LLMs moderately increased readability.
This is in line with the research by Li [32]. For radiology reports,
ChatGPT 3 produces texts that improved the FRE by 45.5 points.

In our analyses, the FRE improvements were 9.13
(ChatGPT-3.5), 4.94 (ChatGPT-4o), and 13.09 (Microsoft
Copilot). This might indicate that the rephrasing of texts works
better for texts originally written in English. In addition,
Srinivasan et al [34] report FRE improvements in a similar range
for GPT-3.5 (16.07) and for GPT-4o (5.4).

Limitations
As the aims of the study were to reflect the experience of an
average layperson seeking health information online, no
advanced prompt optimization techniques were investigated.
While more robust prompts might yield different results, the
authors consider it unlikely that nonexpert users would engage
in systematic prompt tuning. In addition, reproducibility is
hindered by the fact that laypersons won’t experiment with
LLM model parameters such as temperature. Moreover, tuning
model parameters over the chat interfaces isn’t possible in all
cases and requires API access. In this context, the authors
assume that a high fraction of laypersons do not have the
necessary technical background to experiment with LLM APIs
and related programming languages.

Additionally, the exact model version of the LLMs used in this
study are no longer publicly available. Hence, as in most
LLM-based studies, both the selected LLMs and the examined
website texts are snapshots in time. The LLM field is evolving
rapidly, and reproducibility of the results is difficult.

Another aspect is that the texts taken from the websites may
also change over time. The appearance and formatting of the
individual web pages were deliberately not considered in this
work: Only raw text material was extracted. However, aesthetic
and design features or educational multimedia can influence
the understandability of information material.

No dedicated German LLM was used in this study. It would be
interesting to replicate this study with a fine-tuned German
LLM. In 2024, the LLM community has a strong focus on
English training data and models, and the performance is lower
for other languages [36]. Heilmeyer et al [18] noted that specific,
on-premise trained German models performed better. However,
typical patients or citizens seeking health information will
neither have the technical skills or knowledge nor the specialized
hardware available to do this on their own.
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The systematic evaluation of the (medical) accuracy of rephrased
PEMs was beyond the study’s scope, but future interdisciplinary
research involving medical experts could address this. Moreover,
a follow-up study could more deeply investigate the readability
and correctness from a technical point of view by using APIs
instead of relying on publicly available chat interfaces. In this
context, more recent LLMs could be benchmarked with the
same quality-controlled set of text material in an end-to-end
evaluation pipeline.

Comparison With Prior Work
If LLMs were used to answer patient-centric questions about
hip arthroplasty, Mika et al [31] report that patients would be
able to understand them. However, they do not calculate a
readability metric for the given answers and instead rely on a
“Response Rating System.” In contrast, Eng et al [29] results
confirm the low readability of answers for patient-centric
questions.

Compared to the works by [29,31,32,34,65], this study covered
a broader spectrum of medical domains: Cancer, cardiovascular
conditions, public health topics, etc.

Similar improvements in terms of readability were found by
Ovelman et al [66]: They used Claude 2 LLM to create plain
language summaries of 10 evidence reviews. The covered topics
range from vaccines, prehospital airway management, and
malnutrition in hospitalized adults to breast irradiation for breast
cancer. For half of their texts, the recommended sixth to eighth
grade reading level was met by the generated summaries.

Lyu et al [65] did not measure the quality of the rephrased
reports with readability scores but let them be evaluated by
experts. In addition, they found that the effect of prompt
engineering was not considered high: “All of the five
further-modified prompts were found to produce results similar
to those of the original prompt and far worse than those of the
optimized prompt”.

This study differs from the previously presented evaluations.
Here, only German health information texts were rephrased by
LLMs and their readability evaluated.

Innovation
Citizens and patients have been using the Internet for health
information seeking for almost two decades. Today, they
increasingly consult LLMs in everyday situations: for answers
to specific medical questions or for explanations of complex
medical texts. This study investigates whether and how LLMs
improve the readability of German online medical texts. To the
authors’ knowledge, this is the first evaluation of readability
metrics for German LLM-rephrased text and original medical
text.

Shifting from the perspective of citizens and patients to health
professionals or institutions: The use of an LLM could be a
time-saving and cost-effective tool to fine-tune their information
leaflets, online texts, etc to meet different information needs.
The study showed that LLMs are already able to moderately
improve readability.

Conclusions
The use of LLMs can improve the readability of PEMs in the
German language but requires careful expert review to ensure
accuracy and completeness of medical information. The
improvement is rather moderate, averaging 2‐3 school grades
(for the WSTF). Still, this improvement can support patients
reading PEMs online.

The selection of the LLM seemed critical to achieve good
results, whereas a prompt seemed to be less of an influencing
factor.

Some rephrased texts conveyed incorrect messages or took
statements out of context. This is a serious risk, especially for
medical texts. Therefore, a manual check is still needed and
advised when using LLMs in similar scenarios.
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Abstract

Background: Axial spondyloarthritis (axSpA) is a chronic autoinflammatory disease with heterogeneous clinical features,
presenting considerable complexity for sustained patient self-management. Although the use of large language models (LLMs)
in health care is rapidly expanding, there has been no rigorous assessment of their capacity to provide axSpA-specific health
guidance.

Objective: This study aimed to develop a patient-centered needs assessment tool and conduct a systematic evaluation of the
quality of LLM-generated health advice for patients with axSpA.

Methods: A 2-round Delphi consensus process guided the design of the questionnaire, which was subsequently administered
to 84 patients with axSpA and 26 rheumatologists. Patient-identified key concerns were formulated and input into 5 LLM platforms
(GPT-4.0, DeepSeek R1, Hunyuan T1, Kimi k1.5, and Wenxin X1), with all prompts and model outputs in Chinese. Responses
were evaluated using 2 techniques: an accuracy assessment based on guideline concordance, with independent double blinding
by 2 raters (interrater reliability analyzed via Cohen κ), and the AlphaReadabilityChinese analytic tool to assess readability.

Results: Analysis of the validated questionnaire revealed age-related differences. Patients younger than 40 years prioritized
symptom management and medication side effects more than those older than 40 years. Distinct priorities between clinicians and
patients were identified for diagnostic mimics and drug mechanisms. LLM accuracy was highest in the diagnosis and examination
category (mean score 20.4, SD 0.9) but lower in treatment and medication domains (mean score 19.3, SD 1.7). GPT-4.0 and Kimi
k1.5 demonstrated superior overall readability; safety remained generally high (disclaimer rates: GPT-4.0 and DeepSeek-R1
100%; Kimi k1.5 88%).

Conclusions: Needs assessment across age groups and observed divergences between clinicians and patients underline the
necessity for customized patient education. LLMs performed robustly on most evaluation metrics, and GPT-4.0 achieved 94%
overall agreement with clinical guidelines. These tools hold promise as scalable adjuncts for ongoing axSpA support, provided
complex clinical decision-making remains under human oversight. Nevertheless, the prevalence of artificial intelligence
hallucinations remains a critical barrier. Only through comprehensive mitigation of such risks can LLM-based medical support
be safely accelerated.

(JMIR AI 2026;5:e79153)   doi:10.2196/79153
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Introduction

Axial spondyloarthritis (axSpA) is a chronic inflammatory
disorder that predominantly affects the sacroiliac and axial spinal
joints. Early symptoms often include chronic atypical low back
pain and morning stiffness, with associated manifestations such
as tendinitis and arthritis and extra-articular features such as
uveitis, inflammatory bowel disease, and psoriasis frequently
observed [1]. Despite substantial research progress on axSpA,
most studies have been disease centered, with limited focus on
patient-oriented assessment. The insidious onset and nonspecific
symptoms frequently contribute to delays in recognition and
care. Accurate diagnosis requires the integration of clinical
signs; laboratory results; and imaging, such as pelvic X-ray or
sacroiliac joint magnetic resonance imaging [2]. Many patients
lack a clear understanding of the necessity or implications of
these examinations. Therapeutic approaches for axSpA
encompass both pharmacological and nonpharmacological
strategies [3,4], posing additional challenges regarding patient
decision-making and informed participation in care. These
factors collectively impact axSpA self-management and
highlight the urgent need for enhanced patient education.
Furthermore, the rapid advancement of large language models
(LLMs) has unlocked considerable health care potential [5,6].
As more patients seek advice from artificial intelligence
(AI)–based systems, it remains essential to rigorously evaluate
the accuracy and quality of medical guidance they provide
within axSpA-related contexts.

This study aimed to systematically identify genuine concerns
of patients with axSpA via a questionnaire survey and a parallel
analysis of the perspectives from clinicians. Patient-derived
questions were presented to LLMs, with resulting health advice
assessed across 3 dimensions: readability, accuracy, and health
disclaimer. These findings offer data-driven insight for
clinicians, enabling them to tailor education to the needs and
cognitive patterns of diverse patient populations. The results
further inform evaluation of LLMs in health counseling, support
more nuanced clinical decision-making in diagnosis and
treatment, and guide the development of sustainable
patient-centered management strategies.

Methods

Construction of the Questionnaire
The questionnaire development comprised 3 stages [7,8].
Initially, a comprehensive list of knowledge items was extracted
from published questionnaires and the 2022 Assessment of
Spondyloarthritis International Society–European Alliance of
Associations for Rheumatology recommendations for axSpA
management. A Delphi process included rheumatologists,
rheumatology graduate students, and patients. They first
enriched the list by adding items considered potentially useful,
and then the list was reduced to obtain the most important items.
Participants in the Delphi rounds were enrolled from the
department of rheumatology and immunology of the Chinese
PLA General Hospital First Medical Center. The
rheumatologists and the rheumatology graduate students invited
patients to participate.

In the second stage, the initial version of the questionnaire was
created based on the first Delphi round results, formulated by
XJ, JB, and JY. Each question was mapped to the extracted item
list to ensure comprehensive coverage of clinical features,
diagnosis, examination methods, medication options, and
prognosis related to axSpA. The instrument was designed for
all patients with axSpA features regardless of concomitant
peripheral SpA, psoriasis, or inflammatory bowel disease
manifestations.

In the third stage, the final Delphi round facilitated consensus
among all rheumatology experts and rheumatology graduate
students to refine the instrument, with questions selected as
essential if chosen by more than two-thirds and useful if chosen
by more than half but less than two-thirds of participants. Items
deemed redundant and overly complex or those lacking clinical
relevance were eliminated, resulting in the finalized version.
The questionnaire structure and corresponding item numbers
are provided in Multimedia Appendix 1.

Data Collection and Analysis
For data collection, the finalized questionnaire was digitized
and formatted into an online survey. An additional section at
its conclusion collected basic demographic and health-related
information to support baseline analysis. Participation was
anonymous, with clear disclosure that responses would be used
solely for research purposes. Recruitment used a Wenjuanxing
(an online survey platform) link, and this link was distributed
through hospital outpatient clinics [9]. The collected data were
categorized and contrasted according to the baseline
characteristics of the respondents, including patient age, sex,
and occupational category.

To compare differences in attitudes between health care
professionals and patients, a separate online survey was
administered to medical staff within the rheumatology and
immunology department.

Choice of LLM Chatbots
In selecting LLMs, we included DeepSeek R1 (DeepSeek),
Hunyuan T1 (Tencent), Kimi k1.5 (Moonshot AI), Wenxin X1
(Baidu), and GPT-4.0 (OpenAI) [10-13], each possessing
strengths in different domains. The comprehensive comparison
of these models was intended to more accurately reflect
real-world choices and user experiences among patients with
axSpA.

Outcomes and Data Synthesis
The LLM-generated answers were systematically collected by
a researcher and organized into bullet points. Each question was
submitted independently to the models in a 1-time format to
prevent AI memory effects and ensure unbiased responses. Both
the patient queries and all LLM outputs were generated in
Chinese. Full datasets are provided in Multimedia Appendix 2.
Response assessment targeted 3 metrics: accuracy, readability,
and health advice disclaimers. Accuracy was defined as the
degree of correctness in each LLM’s response to individual
items [6-14] benchmarked against the 2022 Assessment of
Spondyloarthritis International Society–European Alliance of
Associations for Rheumatology guidelines and the Lancet series
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recommendations [4,15-19]. Two independent raters assessed
each suggestion based on a published scoring criterion
(Multimedia Appendix 3), with arbitration by a third researcher
in case of discrepancies. For example, for scoring, if rater A
assigned indicator scores of 4, 3, 3, and 1 and rater B assigned
scores of 4, 4, 3, and 1, the raters would discuss any
discrepancies (here for the second indicator, 3 vs 4).
Irreconcilable differences were resolved by an expert’s decision.
The independent raters acknowledged potential subjective bias
favoring AI, possibly leading to higher average ratings than
seen in previous literature. Interrater reliability was quantified
via the Cohen κ statistic.

Readability was defined as the ease or difficulty of reading each
text and quantitatively measured using the
AlphaReadabilityChinese tool (Shanghai International Studies
University) [20]. This analytic framework assesses 9 dimensions
of language complexity. Higher scores in some dimensions

signal increased reading difficulty, whereas, for the 5 “precision
and clarity” dimensions, higher scores equate to better
comprehension (Textbox 1).

The key takeaway was that easier-to-understand texts scored
low on dimensions of complexity, such as intricate vocabulary
and sentence structure, but high on dimensions of precision and
clarity, including the use of specific words and unambiguous
phrasing.

“Health disclaimers” were defined as warnings within the
response that cautioned about specific risks or promoted
appropriate and safe patient behaviors, such as recommending
medical attention if symptoms persist. Each LLM response was
categorized on the basis of the presence or absence of a health
disclaimer [21]. The scope of disclaimers encompassed
recommendations to seek professional assistance, urgent care,
careful medication use, and general consultative language.

Textbox 1. Dimensions of readability.

Dimensions where higher scores mean the text is harder to read

• Lexical richness indicates the use of diverse and complex vocabulary.

• Syntactic richness refers to longer and structurally intricate sentences.

• Semantic richness reflects a high density of content and information.

• Semantic noise represents the presence of redundant or off-topic information that may obscure the main message.

Dimensions where higher scores mean the text is easier to read

• Noun or verb precision captures the use of specific nouns and action verbs (eg, “MRI scan” instead of “a type of examination” and “reduce pain”
instead of “implement analgesic measures”).

• Semantic clarity measures how directly and unambiguously information is conveyed.

Statistical Analysis
Statistical analyses were conducted using R (version 3.4.0; R
Foundation for Statistical Computing) and RStudio (version
1.0.136; Posit PBC). Assumptions of normality and variance
homogeneity informed the use of either ANOVA or
Kruskal-Wallis tests for multiple group comparisons of
language-difficulty metrics [22,23]; Greenhouse-Geisser or
Satterthwaite corrections were applied as needed [24,25].
Categorical data from questionnaire responses were evaluated
using chi-square tests or Fisher exact test, where applicable
[26,27]. Significance was defined at P<.05. Figures were plotted
using the ggplot2 R package.

Ethical Considerations
Before the first Delphi round, this study was approved by the
medical ethics committee of Chinese People’s Liberation Army
General Hospital (S2022-255-03). For patients completing the
paper-based questionnaire, a dedicated informed consent form
was signed to obtain their consent. For those completing the
electronic questionnaire, informed consent was obtained through
the “check + click button” method—patients were required to
check the box and click the confirmation button to verify that
they had read and agreed to all terms. During the data collection
process, we ensured patient privacy and maintained strict

confidentiality of patient data. No compensation was provided
to patients for their participation.

Results

Construction of the Questionnaire
At the first stage, 31 items were extracted from existing survey
instruments. Delphi rounds incorporated 1 senior rheumatology
expert with more than 30 years of experience, 3 rheumatologists
with extensive clinical expertise, 5 rheumatology graduate
students, and 8 patients. The first Delphi round expanded the
preliminary list to 50 potentially informative items. In the next
stage, a graduate student reformulated these into specific
questions and compiled them into a draft questionnaire. The
final Delphi round selected 42 questions judged “essential” by
more than half (9/17, 53%) of the participants. Figure S1 in
Multimedia Appendix 4 provides a detailed flowchart of these
procedures.

Survey Results
Through the online questionnaire, responses were collected
from 84 patients with axSpA. Demographic details and response
distributions are presented in Figure 1A and Table 1. The cohort
comprised 62 (74%) men and 22 (26%) women, with an average
age of 38.01 (SD 10.45) years. Education levels were
predominantly bachelor’s degree (n=34, 40%), followed by
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senior high school (n=24, 29%) and master’s or higher degrees
(n=13, 15%). Most (n=47, 56%) held sedentary occupations.
Parental health status was most often reported as “good” (n=57,
68%), while self-assessed health was frequently rated as “fair”
(n=42, 50%). Family history of ankylosing spondylitis was
identified in 27 (32%) participants. In total, 57 (68%)
participants used the internet for less than 6 hours a day, and
27 (32%) participants exceeded this threshold. Figure 1A shows
that question 11 (“My doctor recommended testing for
HLA-B27. What does a positive result mean?”) was the area of
greatest concern. To expand the scope of assessment, 26
responses from health care professionals were gathered (Figure
1B), with question 11 also ranking highly in this group. Health
care professionals unanimously identified question 1, question
3, question 14, and question 24 as highly important, with no

respondents rating them as “neutral,” “unimportant,” or “very
unimportant.”

To explore factors influencing patient prioritization, we
compared responses across patient subgroups based on baseline
characteristics. The results indicated age was the most significant
variable (P values ranging from .001 to .05), with 12 questions
showing statistically significant age-based differences (question
4, question 13, question 17, question 24, question 27, question
28, question 30, question 31, question 36, question 37, question
38, and question 40; refer to Figures 2A and B. Multimedia
Appendix 5 for P values). Cross-group analysis of patient versus
health care worker priorities revealed statistically significant
disparities on 3 questions (question 18, question 26, and question
31; refer to Figures 3A and B. Multimedia Appendix 6 for P
values).

Figure 1. Questionnaire responses from patients and rheumatologists. (A) Patient questionnaire responses. The lengths of the differently colored bars
represent the proportion of respondents who selected each option within the total surveyed population. (B) Rheumatologists’ questionnaire responses.
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Table 1. Baseline characteristics of the study population (N=84).

ValuesCharacteristic

Sex, n (%)

62 (74)Male

22 (26)Female

38.01 (10.45)Age (y), mean (SD)

Education level, n (%)

3 (4)Primary school or below

10 (12)Junior high school

24 (29)Senior high school

34 (40)Bachelor’s degree

13 (15)Master’s degree or above

Sedentary occupation, n (%)

47 (56)Yes

37 (44)No

Parental health status, n (%)

57 (68)Good

23 (27)Fair

4 (5)Poor

Personal health status, n (%)

33 (39)Good

42 (50)Fair

9 (11)Poor

Family history of axial spondyloarthritis, n (%)

27 (32)Yes

57 (68)No

Family history of hereditary diseases, n (%)

19 (23)Yes

65 (77)No

Daily internet use duration (h), n (%)

57 (68)<6

27 (32)>6
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Figure 2. Age-stratified response discrepancy distribution. (A) Scatter points below the red dashed line indicate P<.05, suggesting statistically significant
differences in answer choices among different age groups for the specific question. (B) Each color block represents the proportion of respondents who
selected that option relative to the total. Group 1 was composed of patients older than 40 years, and group 2 was composed of patients younger than 40
years.
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Figure 3. Distribution of response differences between rheumatologists and patients. (A) Scatter points below the red dashed line indicate P<.05,
suggesting statistically significant differences in answer selection between medical staff and patients for the specific question. (B) Each color block
represents the proportion of respondents who selected that option relative to the total. Group 1 was composed of health care professionals, and group
2 was composed of patients.

AI Consultation Opinion Quality Assessment

Overview
The 42 patient-derived questions were submitted to all 5 selected
LLMs, each generating independent responses to avoid memory
bias. Outputs were collected and systematically aggregated into

bullet point summaries reflecting health consultation content.
Three core attributes—readability, accuracy, and incorporation
of health disclaimers—were then assessed for each model’s
output.
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Accuracy
The 5 LLMs generated 1052 recommendations for the 42 items,
including repeated suggestions for the same question across
models. Interrater reliability was excellent (Cohen κ=0.947;
Figure S2 Multimedia Appendix 4). The diagnosis and
examination category yielded the highest average accuracy
across models (mean score 20.4, SD 0.9), while the treatment
and medication domain scored lowest (mean score 19.3, SD
1.7). Model-specific performance data across domains and
question items are provided in Figure 4A; additional breakdowns
are detailed in Figures 4B-E; Multimedia Appendix 7 presents
complete values. Comparative analysis highlighted that the

LLMs’ lowest scores consistently occurred in the “inaccurate
or inappropriate content” category, indicating vulnerability to
these errors. In contrast, the highest average scores were in the
“bias,” suggesting a strong model’s ability to avoid bias in health
consultation outputs. Overall, model performance was
satisfactory, with total accuracy scores ranging from 16.8 to
22.5. The highest scoring questions spanned all domains
(question 3: 23.4 points, question 11: 23.2 points, question 38:
18.2 points, and question 40: 22.4 points), while the lowest
scores were concentrated in questions involving nuanced or
controversial information (question 6: 17.6 points, question 20:
16.4 points, question 34: 16.6 points, and question 38: 18.2
points).

Figure 4. Overall and module-specific score charts. (A) Overall score. (B-E) Scores by module. DS: DeepSeek R1; GPT: GPT-4.0; HY: Hunyuan T1;
KM: Kimi k1.5; WX: Wenxin X1.
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Readability
The readability of LLM-generated health consultation responses
was measured using the AlphaReadabilityChinese tool.
Comparative analysis of the 5 LLMs’ outputs, as visualized via
a heat map in Figure S3 in Multimedia Appendix 4 and detailed
in Multimedia Appendix 8, revealed no significant model
differences in noun-verb or content-word semantic precision.
Kimi k1.5 excelled in lexical richness, verb accuracy, and
semantic noise, while GPT-4.0 demonstrated superior syntactic
richness, noun accuracy, semantic richness, and semantic clarity.
DeepSeek R1, Hunyuan T1, and Wenxin X1 exhibited similar
readability performance overall.

Disclaimers About Health Advice
Figure S4 in Multimedia Appendix 4 demonstrates that most
LLM outputs contained health advice disclaimers, with GPT
4.0 and DeepSeek R1 including such disclaimers in responses
to all 42 questions. Kimi k1.5 provided the fewest responses
but still included disclaimers in 37 (88%) of the 42 cases.

Discussion

This study directly addressed real-world concerns of patients
with axSpA by fostering collaboration between rheumatologists
and patients to develop a comprehensive questionnaire
encompassing symptoms, diagnosis, treatment, and prognosis.
Subsequent validation with an 84-patient sample demonstrated
that the tool reliably reflects patient-identified uncertainties and
supports health care professionals in identifying prioritized and
neglected issues. This facilitates the creation of targeted
educational programs to enhance long-term chronic disease
management.

However, marked discrepancies emerged between professionals
and patients in the perceived importance of certain topics. For
instance, question 18 (“What diseases is this condition likely
to be misdiagnosed as?”) was rated more highly by patients
than by clinicians [28,29]. Question 31 (“Do biologic agents
carry addiction potential?”) and question 26 (“What are the
mechanistic differences between NSAIDs, corticosteroids, and
analgesics in pain management?”) also showed such divergence
[30]. These differences may reflect gaps in professional
knowledge transfer, whereby clinicians, familiar with drug
mechanisms and risk profiles, may underestimate the
informational value these issues hold for patients. This
knowledge gap highlights potential inadequacies in current
educational practices and underscores the need for efforts to
bridge understanding between clinicians and patients in future
interventions.

Age is a significant driver of patient perception [31]. Analysis
of patients grouped by age (older or younger than 40 years)
revealed 12 questions with statistically significant differences,
particularly related to symptom management, medication side
effects, and prognosis. Younger patients showed increased
concern, whereas no significant differences in baseline
demographic characteristics were detected (Multimedia
Appendix 9). Two main explanations were identified: first,
younger patients showed greater interest in novel biological
agents and their related mechanisms or risks; second, life stage

difference shaped priorities, with patients younger than 40 years
demonstrating greater family-planning awareness and early
diagnoses mitigating confusion over questions such as question
17. Furthermore, considering axSpA often manifests in early
adulthood, older patients, who have lived with the disease for
longer, may be more accustomed to standard interventions and
less reliant on new information [32]. Collectively, these findings
highlight the necessity for age-specific patient education to
reflect diverse literacy and life stage requirements, with future
health promotion strategies tailored accordingly [33].

A persistent problem observed was AI hallucination, in which
LLMs produced confidently stated yet unsourced or inaccurate
statistics. For example, in question 41, Hunyuan T1 claimed,
“Spinal mobility: 30 minutes of daily yoga can increase the
maintenance rate of spinal range of motion by 55% [5-year
follow-up data].” While evidence does support mobility benefits
of yoga in axSpA through mechanistic pathways, such as muscle
strengthening or inflammation reduction, no research
corroborates a 55% improvement rate or the alleged 5-year
dataset [34]. Although LLMs demonstrated generally strong
performance, the safety risk posed by confidently delivered but
unfounded claims remains substantial, a threat that cannot be
ignored if patients act on these unsubstantiated data. Teaching
patients to appraise such claims critically is vital for maximizing
LLMs’ potential to support chronic disease management while
safeguarding patient health [35].

Despite intermodel variability in accuracy for medical advice
[36], the LLMs overall performed robustly in this study.
Accuracy ratings in this study were higher compared to previous
research, which may be attributable to our open-ended,
patient-focused question format and relatively accommodating
scoring criteria [37,38]. Ongoing advances in AI technology
may also explain this improvement. Notably, the “bias”
consistently produced high scores, reflecting a strong capacity
to provide wide-ranging yet balanced recommendations.
However, the inclination for models to sometimes produce
superficially authoritative yet insufficiently substantiated advice,
especially regarding clinical management, introduces significant
risk. For example, in response to glucocorticoid-related queries
(question 35), Wenxin X1 recommended glucocorticoids for
pain management without thorough context, potentially exposing
patients to avoidable complications, including osteoporosis and
serious infections [39,40]. These instances typically resulted in
lower “inaccurate or inappropriate content” scores.

Our findings showed that high-scoring LLM responses generally
addressed well-established topics with strong supporting
evidence. As seen in responses to question 40 (“Can Traditional
Chinese Medicine [TCM] treatments replace Western
pharmacological therapies?”), all models consistently advised
against substituting traditional Chinese medicine (TCM) for
Western medicine. GPT-4.0’s response indicated that TCM
currently lacks conclusive evidence comparable to that of
Western medicine in key efficacy outcomes such as bone
protection and symptom control [41,42]. It further clarified that
while TCM can serve as an effective adjunctive therapy,
Western medicine should remain the foundational treatment
approach. Although TCM or acupuncture may serve as useful
adjuncts in the management of ankylosing spondylitis, they
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cannot yet replace the central role of Western medications. We
recommend that one works with a specialist to build an
integrated, individualized treatment plan that is grounded in
Western medicine and supplemented by TCM modalities.

Conversely, lower-scoring questions were primarily those related
to medication recommendations. Medication management is
highly individualized, requiring customized clinical judgment
based on expertise and a comprehensive understanding of the
patient’s profile [36,43,44]. Authoritative but uncontextualized
LLM guidance may mislead if presented without real-time
clinical oversight, posing a substantial safety risk. Patients must
be cautioned that any specific medication recommendations
from LLMs must always be reviewed and validated by licensed
health care professionals before being acted upon.

Readability was an essential metric; both Kimi k1.5 and GPT-4.0
excelled in generating patient-facing content with concise, clear
language and minimal jargon, greatly enhancing accessibility
and user comprehension [45,46]. These findings underscore a
path for further model refinements to improve the
communication of medical information to lay audiences.

Most LLMs systematically incorporated health disclaimers,
such as “This information cannot replace professional medical
advice.” [47,48], which is integral to patient safety. However,
inconsistent disclaimer inclusion for less critical questions was
observed, calling for the standardization of safety messages
across all LLM-generated medical content. Despite generally
appropriate use of disclaimers, occasional omissions were noted,
representing a residual safety concern, as their absence may
increase the risk of patients misinterpreting or misapplying
AI-generated advice. To address this, future iterations of medical
LLMs should enforce uniform attachment of health advice

disclaimers to every health-oriented output, regardless of
perceived question severity.

Our study also has some limitations. External generalizability
is restricted by the sample size (84 patients and 26
rheumatologists) and single-center, urban tertiary hospital
setting, which may limit the applicability of results to broader
populations with axSpA with different demographics, health
literacy, or health care access. For instance, patients in this
top-tier hospital may have distinct expectations, backgrounds,
or experiences compared to those in regional or rural centers.
In addition, the generalizability of LLM performance and user
acceptance may vary by familiarity with digital health tools and
local medicolegal contexts. Further multicenter studies spanning
diverse socioeconomic and health care environments are
necessary to validate these findings and extend the
questionnaire’s utility. In addition, reliance on 2 raters for
accuracy assessments introduces some subjective bias, although
this was minimized via strict guideline adherence and a
structured arbitration protocol involving a third researcher.
Finally, the exclusive use of Chinese-language responses may
not fully extrapolate to other linguistic settings.

This research emphasizes the urgency of patient-centered
communication tools in axSpA management and illuminates
critical shortcomings in current educational practices. The
continual evolution of LLMs offers significant promise and
unique challenges for supporting chronic disease care with
personalized, accessible, and evidence-grounded information.
Addressing AI hallucination through improved model
development, integrated fact-checking, and explicit cautionary
guidance is imperative to ensure responsible and safe adoption
of LLMs in patient health care.
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Abstract

Background: Overcrowding in the emergency department (ED) is a growing challenge, associated with increased medical
errors, longer patient stays, higher morbidity, and increased mortality rates. Artificial intelligence (AI) decision support tools
have shown potential in addressing this problem by assisting with faster decision-making regarding patient admissions; yet many
studies neglect to focus on the clinical relevance and practical applications of these AI solutions.

Objective: This study aimed to evaluate the clinical relevance of an AI model in predicting patient admission from the ED to
hospital wards and its potential impact on reducing the time needed to make an admission decision.

Methods: A retrospective study was conducted using anonymized patient data from St. Antonius Hospital, the Netherlands,
from January 2018 to September 2023. An Extreme Gradient Boosting AI model was developed and tested on these data of
154,347 visits to predict admission decisions. The model was evaluated using data segmented into 10-minute intervals, which
reflected real-world applicability. The primary outcome measured was the reduction in the decision-making time between the AI
model and the admission decision made by the clinician. Secondary outcomes analyzed the performance of the model across
various subgroups, including the age of the patient, medical specialty, classification category, and time of day.

Results: The AI model demonstrated a precision of 0.78 and a recall of 0.73, with a median time saving of 111 (IQR 59-169)
minutes for true positive predicted patients. Subgroup analysis revealed that older patients and certain specialties such as
pulmonology benefited the most from the AI model, with time savings of up to 90 minutes per patient.

Conclusions: The AI model shows significant potential to reduce the time to admission decisions, alleviate ED overcrowding,
and improve patient care. The model offers the advantage of always providing weighted advice on admission, even when the ED
is under pressure. Future prospective studies are needed to assess the impact in the real world and further enhance the performance
of the model in diverse hospital settings.

(JMIR AI 2026;5:e80448)   doi:10.2196/80448
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Introduction

Background
Emergency department (ED) crowding is a growing problem
that can lead to the deterioration of the quality of health care.
This concern is associated with a rise in medical errors made
by clinicians [1,2], prolonged patient stay [3], morbidity [4,5],
and increased mortality rates [6-8]. In some cases in the
Netherlands, standards of health care were not met, resulting in
the temporary closure of EDs [9]. The issue of overcrowding
is expected to become even more evident in the coming years
due to increased life expectancy and increased demand for
complex care [10,11].

In recent years, studies have been extensively exploring the
issue of ED crowding [12-14]. In a conceptual model, ED
crowding is divided into three interdependent components: (1)
the input component, (2) the throughput component, and (3)
the output component [15]. Changes in one of these components
can contribute to the ED length of stay and therefore ED
crowding [16]. Each component comprises multiple factors that
can influence the overcrowding problem both independently
and through interaction with factors within or outside the
component [13]. Focusing specifically on the throughput
component, key factors have been identified, namely the
experience level of staff [17], shortages of staff within the ED
[18,19], availability of beds in the ED [20], delays in test results,
and disposition decisions [21].

To address the problem of overcrowding, solutions can be
pursued both within the ED and through broader changes at the
hospital. Within the ED, particularly concerning the throughput
component, studies have investigated, for example, the
implementation of fast-track systems [22,23], adjustments in
triage models [24], and the rising application of artificial
intelligence (AI) solutions [25].

Currently, several studies are investigating the potential of AI
solutions to mitigate the overcrowding problem in the ED. Some
promising results have been reported in areas of patient
admission to inpatient units and intensive care units or discharge
from the ED, thereby impacting the duration of stay in the ED
[21]. However, these AI models can vary significantly in their
functioning, often using diverse parameters at various time
points during ED admission [26-32]. While these studies tend
to focus on the technical performance of the models, they often
neglect to consider their practical relevance and applicability
within health care settings [33-35].

In this study, an AI model was developed for decision support
in the ED. Moreover, the retrospective model predictions were
evaluated with updates occurring every 10 minutes based on
the most current patient data. This AI model showed the health
care professionals and residents the probability of admission to
a hospital ward from the ED.

Aim
The clinical relevance of the AI decision support system was
evaluated by analyzing the decision-making time. This
evaluation involves retrospectively examining whether the
model can reduce the time required for an admission decision,

thereby potentially decreasing ED length of stay and alleviating
the overcrowding problem.

Methods

Study Design
In this retrospective study, anonymized patient records from
the Dutch St. Antonius Hospital were collected from January
2018 to September 2023. The St. Antonius Hospital in the
Netherlands has 2 different locations where emergency care is
provided, and it is a level 2 trauma center in an urban setting.
A total of 41,000 patients present to the EDs each year at the
St. Antonius Hospital. The data up until May 2022 were
earmarked for the development and assessment of our AI model.

As the emphasis of this study was on the clinical impact rather
than the complexities of model development and evaluation,
detailed information regarding the development of the model
is provided in Multimedia Appendix 1, which includes a
comprehensive overview of the preprocessing steps, feature
selection, and models considered during the development phase.
The development of the model was based on the study by De
Hond et al [32]. Admissions in this study comprised patients
treated in the EDs of St. Antonius Hospital. Patients who
explicitly declined to provide consent for the use of their data
in any research context were excluded. Additional exclusion
criteria encompassed patients younger than 18 years.

The AI model predicts the admission probability as a percentage.
If this percentage exceeds 50%, the model classifies the case
as “admission.” Once the threshold is reached, the decision is
final and cannot be reversed. This design choice was made to
mimic clinical commitment, thereby reflecting a realistic clinical
decision-making context in which a patient admission decision
is typically irreversible once made.

Data Collection
Features were extracted from the dataset by performing several
steps during the data cleaning and transforming phase. A
detailed list of these features, along with a comprehensive
explanation of the data-cleaning process, is provided in Table
S1 in Multimedia Appendix 1. For model development, the
dataset collected between January 1, 2018, and May 15, 2022,
was split in an 80:20 ratio randomly; 80% (105,000/131,250)
of the data was used for training the AI model, and 20%
(26,250/131,250) was used for testing.

To evaluate the AI model’s performance in predicting ED
admissions, a dataset including all ED visits from May 16, 2022,
to September 1, 2023, was created. This dataset was designed
to mimic real-world scenarios, allowing us to assess the model’s
clinical performance in a controlled retrospective setting. This
dataset was referred to as the evaluation dataset. Admission
data were divided into 10-minute intervals, starting from the
initial 0 minutes up to 3 hours. This segmentation reflected
clinical decision-making by providing the model with the most
recent information available at each time point. By checking
new predictions every 10 minutes, we could analyze how
changes in these predictions supported clinical decision of
admission to the ward. This method tested the model’s ability

JMIR AI 2026 | vol. 5 | e80448 | p.207https://ai.jmir.org/2026/1/e80448
(page number not for citation purposes)

Van Der Haas et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to make accurate predictions with limited and progressively
updated information, reflecting typical emergency settings.

Thus, 3 datasets were used: 1 for training the model, 1 for testing
during the development phase, and 1 evaluation dataset to
calculate the time saved by the AI model compared to admission
decisions made by ED health care professionals.

Model Evaluation

General Performance
Different analyses were conducted using the test and the
evaluation datasets. General performance metrics such as
accuracy, precision, and recall, were calculated using the test
dataset.

Primary Outcome
The primary outcome measure was the difference in
decision-making time between the AI model and the admission
decision made by the clinician. The decision of the clinician
was defined as the duration from a patient’s arrival at the ED
to the time an admission order was placed or when the patient
was informed by a health care professional that admission was
not required, and discharge was appropriate. This outcome was
evaluated against the AI model’s prediction when the predicted
admission probability exceeded 50%. When the probability of
admission exceeded the threshold, the model predicted an
admission and could not revert to “discharge from ED”
prediction. This influenced the metrics over time. The health
care professional’s admission order served as the benchmark
for this comparison. This analysis was performed using the
evaluation dataset.

Secondary Outcome
The secondary outcome focused on the full patient group and
true positive patients predicted by the AI model across various
subcategories and baseline calculations. The patients correctly
assessed by the model as admitted were classified as the true
positive category. These baseline calculations represented the
majority class assumption. These subcategories included age
groups, medical specialties, triage categories, and different parts
of the day. These results were obtained using the evaluation
dataset, including the constraint that once the model predicts
admission, it cannot be revised to discharge. Each subcategory
was analyzed to determine its impact on admission decision
time. These categories were also cross analyzed to assess
coherence. These categories were chosen based on the
assessment of importance by an ED clinician.

The ages of patients upon their arrival at the ED were analyzed.
Patient ages were recorded and categorized into 10-year intervals
such as 18 to 27, 28 to 37, and other age groups.

The medical specialty assigned at the time of ED arrival was
examined, as different specialties could lead to varied outcomes.
In this study, specialties included the top 10 presented specialties
in the ED.

Upon arrival, patients were assigned a triage category indicating
the urgency of their condition. The triage categories in the
Netherlands range from U0 to U5, with U0 being the highest
critical state of health.

The data were analyzed based on the arrival time of day, which
may influence outcomes due to varying compositions of staff
present in the ED. The data were segmented into 4 periods:
night (midnight to 6 AM), morning (6 AM to noon), afternoon
(noon to 6 PM), and evening (6 PM to midnight).

Baseline calculations were also performed for each subcategory
to provide a reference point. This baseline represented the
scenario in which all cases were assumed to result in admission
(ie, if most patients are admitted, then a “yes, admit this patient”
prediction for all patients is made). For each subcategory, the
percentage of correct predictions under this baseline assumption
was calculated and compared against the AI model’s
performance. This showed us how the current situation could
potentially be adapted and improved.

In addition, the feature importance of the model was examined
to assess the impact of individual features on the model’s
inclusion decision. A higher value indicated a greater
contribution to the final decision of the model. These findings
can inform the selection of features for future models and
support clinical decision-making.

Ethical Considerations
This study was reviewed and approved by the St. Antonius
Hospital’s local review committee (approval R&D/Z24.050).
No informed consent from patients was required for this study,
as it did not involve any additional risks or burdens for patients.
Patients whose anonymized data were used for this study
received no compensation. All patient data were processed
anonymously and stored on a secure server with restricted
access, in accordance with data protection laws and regulations.

Results

General Performance
The AI support model for decision prediction in the ED was an
Extreme Gradient Boosting with an accuracy of 0.81, precision
of 0.78, recall of 0.73, F1-score of 0.75, and a receiver operating
characteristic area under the curve of 0.89 on the test dataset.
The final hyperparameters used for this model included a
colsample_bytree of 0.7, γ of 0.0, learning rate of 0.1,
max_depth of 15, and min_child_weight of 7.

Primary Outcome
The median durations of admission order placement by health
care professionals were compared to the time required by the
AI model on retrospective data to make equivalent decisions.
Health care professionals required a median time of 151 (IQR
95-228) minutes to make admission decisions, decreasing to
131 (IQR 75-201) minutes for the admitted patient population.
In contrast, the AI model achieved a median decision time of
20 (IQR 0-40) minutes for the correct prediction. This
represented a time saving of 111 minutes per patient for correct
predictions when using the AI model.

Figure 1 shows the performance metrics of the AI model. It
illustrates that the quality of the admission predictions evolves
over time. Initially, the model failed to capture many cases, but
it eventually achieved a precision of 80% (24,696/30,870).
Nevertheless, it still generated 30% (9261/30,870) to 35%
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(10,805/30,870) false positives, which may lead to excessive
and unnecessary alarms for the medical staff. These metrics are
slightly different from the general performance, since a stricter
admission rule was applied; once the model admits a patient,

this decision cannot be reversed. These results also showed that,
later during the ED stay, the AI model made fewer mistakes
than earlier.

Figure 1. Evolution of the performance metrics during the stay of the patient in the emergency department (ED).

Secondary Outcomes

Age
Figure 2 and Table 1 show that younger patients (aged 18-27
y) had a median current time of 137 minutes in the ED, with a
substantial improvement in time saved per patient (100 min).
The precision of 0.51 and the recall of 0.46 suggested that
younger patients were often misclassified. In contrast, the older
adult population (aged 78-87 y and ≥88 y) presented the greatest

clinical impact. Their admission times (for the true predicted
patients) were reduced by 120 and 110 minutes per patient,
respectively, and the model achieved a strong precision of 0.75
and 0.78 and a recall of 0.90 and 0.91.

For the 18- to 27-year age group, the model’s accuracy (84%)
matched the baseline of assuming no admissions (84%). For all
other age groups, the model consistently outperformed the
baseline.

Figure 2. Time to admission decision for all true positive predicted patients, stratified by age group. The greater the difference, the greater the potential
time saving. AI: artificial intelligence.
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Table 1. Model performance for different age groups, showing clear differences between younger and older patients.

Majority accu-
racy

AccuracyRecallPrecisionFalse negatives,
n (%)

False posi-
tives, n (%)

True negatives,
n (%)

True positives,
n (%)

Age group (y)

0.840.840.460.51413 (8.9)338 (7.3)3561 (76.4)346 (7.4)18-27
(n=4658)

0.780.800.460.54635 (12)452 (8.5)3689 (69.4)536 (10.1)28-37
(n=5312)

0.760.790.590.56466 (9.9)531 (11.2)3058 (64.7)675 (14.3)38-47
(n=4730)

0.670.750.710.61590 (9.7)903 (14.9)3153 (52)1418 (23.4)48-57
(n=6064)

0.580.750.820.66558 (7.6)1297 (17.7)2991 (40.8)2484 (33.9)58-67
(n=7330)

0.520.750.870.71619 (6.6)1713 (18.2)2848 (30.2)4257 (45.1)68-77
(n=9437)

0.570.770.900.75422 (5.7)1265 (17)1951 (26.2)3806 (51.1)78-87
(n=7444)

0.600.800.910.78128 (5.5)349 (15)590 (25.3)1265 (54.2)≥88 (n=2332)

Medical Specialty
Table 2 shows that pulmonology and gastrointestinal and liver
disease cases showed a recall rate of higher than 0.90 and a
precision value of more than 0.7. With this balance between
recall and precision, the model ensured that the clinical risks of
missed admissions (false negatives) were minimized, while the
clinical impact of unnecessary admissions (false positives) on
hospital capacity remained manageable. By contrast, specialties

such as neurology, surgery, otorhinolaryngology, and internal
medicine demonstrated greater challenges. For example,
neurology had a recall of 0.82 but a lower precision of 0.52,
with a significant number of false positives (1438/4659, 30.9%).
This resource burden reflected the difficulty in assessing
neurological symptoms. Figure 3 shows that across all
specialties, the model consistently outperformed the baseline
accuracy. It also shows that in neurology and cardiology, the
admission decision time was 0 minutes for the AI model.

Table 2. Model performance for different medical specialties.

Majority ac-
curacy

AccuracyRecallPrecisionFalse nega-
tives, n (%)

False posi-
tives, n (%)

True nega-
tives, n (%)

True posi-
tives, n (%)

Medical specialty

0.710.770.430.66164 (16.4)65 (6.5)648 (64.6)126 (12.6)Obstetrics and gynecology
(n=1003)

0.540.750.740.73235 (12.2)247 (12.8)791 (41)658 (34.1)Urology (n=1931)

0.820.880.710.6698 (5.2)127 (6.8)1411 (75.1)242 (12.9)Orthopedics (n=1878)

0.600.620.820.52340 (7.3)1438 (30.9)1338 (28.7)1543 (33.1)Neurology (n=4659)

0.700.700.920.70127 (5.1)618 (24.7)321 (12.8)1436 (57.4)Gastrointestinal and liver
diseases (n=2502)

0.770.770.900.75345 (5.7)1034 (17)1519 (25)3170 (52.2)Pulmonology (n=6068)

0.840.860.360.5967 (10.4)26 (4)512 (79.6)38 (5.9)Otorhinolaryngology
(n=643)

0.520.760.880.72471 (6)1399 (17.9)2342 (30)3598 (46.1)Internal medicine (n=7810)

0.740.820.610.691820 (10.3)1290 (7.3)11,758 (66.4)2852 (16.1)Surgery (n=17,720)

0.540.680.950.6426 (2.8)265 (28.9)154 (16.8)471 (51.4)Cardiology (n=916)
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Figure 3. Time to admission decision for all true positive predicted patients, stratified by medical specialty. The greater the difference, the greater the
potential time saving. AI: artificial intelligence.

Triage Categories
Figure 4 and Table 3 show that the model performs particularly
well for the most critical patients (U0 and U1 categories), where
the precision and recall ensure that almost all high-risk
admissions are caught in time, saving crucial minutes. The
system saves 80 minutes for the U0 category and 100 minutes
for the U1 category per true positive predicted patient. However,
challenges emerged in the U3 and U4 categories, where lower

precision and recall indicated a notable number of false positives
and false negatives. In such cases, unnecessary admissions could
burden resources, while missed cases could endanger lives,
indicating that improvements in midtier urgency cases could
significantly impact ED efficiency. The baseline slightly
outperformed the model for the U0 category, whereas the model
excelled in all other triage categories. Figure 4 shows that the
admission decision time was 0 minutes for the U0 and unknown
categories when using the AI model.

Figure 4. Time to admission decision for all true positive predicted patients, stratified by urgency level (triage category). The greater the difference,
the greater the potential time saving. AI: artificial intelligence.
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Table 3. Model performance across triage urgency levels.

Majority accu-
racy

AccuracyRecallPrecisionFalse negatives,
n (%)

False posi-
tives, n (%)

True negatives,
n (%)

True positives,
n (%)

Triage category

0.710.880.810.7875 (5.5)93 (6.9)865 (63.8)322 (23.8)Unknown
(n=1355)

0.970.960.990.972 (1.1)6 (3.4)0 (0)170 (95.5)U0 (n=178)

0.600.700.960.68114 (2.7)1172 (27.5)529 (12.4)2442 (57.4)U1 (n=4257)

0.520.750.850.711403 (7.6)3253 (17.7)5670 (30.8)8077 (43.9)U2 (n=18,403)

0.720.800.660.631632 (9.4)1829 (10.5)10,731 (61.8)3170 (18.3)U3 (n=17,362)

0.790.810.500.55604 (10.5)494 (8.6)4032 (70.3)603 (10.5)U4 (n=5733)

0.790.890.750.751 (5.3)1 (5.3)14 (73.7)3 (15.8)U5 (n=19)

Part of the Day
Table 4 shows that performance varied depending on the time
of day. Between noon and 6 PM, when the ED experienced its
highest patient volume, the model achieved its best overall
performance. A recall of 0.79 indicated that most patients

needing admission were accurately flagged, saving, on average,
100 minutes per (true positive predicted) patient. Conversely,
during quieter night shifts (midnight to 6 AM), the model’s
precision decreased to 0.67. However, it exhibited a higher
recall rate compared to the afternoon shift. Figure 5 shows that
across all time periods, the model outperformed the baseline.

Table 4. Model performance across arrival time periods, showing consistency in performance.

Majority ac-
curacy

AccuracyRecallPrecisionFalse negatives,
n (%)

False posi-
tives, n (%)

True negatives,
n (%)

True positives,
n (%)

Arrival time

0.550.750.870.67199 (6)637 (19.2)1175 (35.5)1300 (39.3)Night (midnight-
6 AM; n=3311)

0.610.760.750.671075 (9.6)1637 (14.5)5280 (46.9)3259 (29)Morning (6 AM-
noon; n=11,251)

0.620.780.790.691754 (7.9)3061 (13.9)10,582 (47.9)6696 (30.3)Afternoon (noon-
6 PM; n=22,093)

0.590.780.810.70803 (7.5)1513 (14.2)4804 (45.1)3532 (33.2)Evening (6 PM-
midnight;
n=10,652)

Figure 5. Time to admission decision for all true positive predicted patients, stratified by the part of the day a patient entered the emergency department.
The greater the difference, the greater the potential time saving. AI: artificial intelligence.
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Feature Importance
The results of the feature importance are shown in Multimedia
Appendix 2. Table S1 in Multimedia Appendix 2 shows the top
20 most influential features, demonstrating that orders for
inflammation, orders for kidney function, orders for blood count,
and orders for blood cultures had the strongest influence.

Subcategory Coherence
Further analysis was conducted to evaluate the coherence of
subcategories within the datasets. This additional layer of
analysis aimed to ensure consistency in the results and provided
a deeper understanding of the underlying patterns (Figures 6-11).
This is presented in Multimedia Appendix 3.

Figure 6. Saved time per patient between the medical specialty and triage category.
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Figure 7. Saved time per patient between medical specialty and age group.
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Figure 8. Saved time per patient between the medical specialty and part of the day.
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Figure 9. Saved time per patient between triage category and age group.
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Figure 10. Saved time per patient between the triage category and the part of the day.
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Figure 11. Saved time per patient between the age groups and part of the day.

Discussion

Principal Findings
Our study addresses the potential for integrating an AI decision
model into clinical practice by not only developing an AI model
using Extreme Gradient Boosting but also evaluating its clinical
relevance through a 10-minute evaluation dataset. Many models
rely on static inputs and technical performance, without
addressing integration into clinical workflows [26-32]. Unlike
previous studies, our model revises its admission decision at
10-minute intervals, enhancing clinical relevance and facilitating
seamless integration into the clinical workflow.

It demonstrated that using AI to support the physicians in the
ED has the potential to reduce time to an admission decision
by 111 (IQR 59-169) minutes per correctly predicted patient,
thereby improving the quality of care and reducing pressure on
hospital resources. The model achieves an accuracy of 0.81, an
F1-score of 0.75, and a receiver operating characteristic area
under the curve of 0.89. Nevertheless, these findings should be
interpreted with caution, as both clinical relevance and
performance are likely to be lower when implemented in an
actual clinical workflow compared to existing literature [28,32].

Unlike previous work, our approach integrates iterative data
updates every 10 minutes and checks the clinical impact of AI
decision-making. This study provides a practically oriented
contribution by demonstrating how AI can support timely
decision-making, especially for less experienced clinicians.

Importantly, the model does not negatively impact patient safety.
In the case of a true positive prediction, the patient is transferred
to the correct department quickly and receives more specific
treatment faster. In the case of a false negative prediction, the
patient is transferred to the department as quickly as they would
have without the AI model. In the case of a false positive
prediction, it only leads to additional work for the employees.
However, in this hospital’s case, this did not lead to clinically
significant consequences.

Limitations
The findings suggest that AI models can be effectively used to
enhance the decision-making processes in the ED, leading to
reduced time to admission decisions and potentially improving
patient outcomes.

One data limitation of this study is that the model does not
include radiological image results, blood gas, and free-text
clinical notes, all of which are critical for a comprehensive
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patient assessment. Incorporating these data types could improve
the model’s metrics and reliability. Additionally, the model
does not account for data from previous appointments, which
could provide valuable context and insights into a patient’s
history and potential risks.

Another notable consideration is the potential consequence of
faster admission decisions from the ED, namely a false
admission prediction. This could lead to an unnecessary order
being sent to the urgency coordinator to arrange a bed that is
ultimately not required, resulting in wasted time for staff and
disrupting operational workflows. In consultation with the
urgency coordinators, it was agreed that this is a consequence
that has minimal impact on the St Antonius Hospital.

Considerations (of Implications) for Implementation
While the AI model shows promise in an ideal scenario,
real-world implementation will still face several challenges.
Even with AI recommendations, delays in placing orders are
likely to occur due to factors such as health care professionals
being occupied or requiring additional time to assess patients.
Additionally, factors such as the department’s workload, patient
flow, and the need for patient transfers within the region can
further affect the time to admission decision. In practice, the
time difference may not be as significant as predicted by the
model alone. A combination of health care professionals and
AI models will need to work together, and this interaction should
be explored in a prospective study, which is planned [35]. This
combination of AI and health care professionals is also what
could improve the false positive rate and thus the model,
compared to just working with the AI model.

Future Directions
A prospective study is recommended to evaluate the actual
impact of the model on ED length of stay in a real-world setting.

To improve predictive accuracy, such a study should assess the
model's performance in the clinical setting. In addition,
incorporating additional data sources such as imaging results
and patient history, could enhance the model’s applicability in
a real-world setting.

Conclusions
ED overcrowding poses a challenge to health care systems,
contributing to delays in treatment, increased medical errors,
and compromised patient outcomes. This study was motivated
by the urgent need to expedite the decision-making process
within the ED to reduce patient ED length of stay.

To address this, we developed and evaluated an AI-based
decision support model capable of predicting hospital admissions
from the ED. Unlike previous studies that primarily focused on
technical model performance, our work emphasizes clinical
relevance through real-time decision-making via 10-minute
interval updates, mimicking the dynamics of actual ED
workflows.

The model achieved a precision of 0.78 and a recall of 0.73. In
a retrospective dataset, the AI model was able to reduce the
median time to admission order by 111 (IQR 59-169) minutes
for correctly predicted admissions, potentially alleviating ED
overcrowding and improving patient care. In addition, it offers
the advantage of consistently providing weighted advice on
admission, even when the ED is under pressure.

These findings demonstrate that integrating AI decision support
into clinical workflows has the potential to speed up decisions,
reduce ED overcrowding, and thus improve patient care. Future
prospective studies are essential to validate these results in
real-world settings.
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Abstract

Background: Artificial intelligence (AI) chatbots have become prominent tools in health care to enhance health knowledge
and promote healthy behaviors across diverse populations. However, factors influencing the perception of AI chatbots and
human-AI interaction are largely unknown.

Objective: This study aimed to identify interaction characteristics associated with the perception of an AI chatbot identity as a
human versus an artificial agent, adjusting for sociodemographic status and previous chatbot use in a diverse sample of women.

Methods: This study was a secondary analysis of data from the HeartBot trial in women aged 25 years or older who were
recruited through social media from October 2023 to January 2024. The original goal of the HeartBot trial was to evaluate the
change in awareness and knowledge of heart attack after interacting with a fully automated AI HeartBot chatbot. All participants
interacted with HeartBot once. At the beginning of the conversation, the chatbot introduced itself as HeartBot. However, it did
not explicitly indicate that participants would be interacting with an AI system. The perceived chatbot identity (human vs artificial
agent), conversation length with HeartBot, message humanness, message effectiveness, and attitude toward AI were measured
at the postchatbot survey. Multivariable logistic regression was conducted to explore factors predicting women’s perception of
a chatbot’s identity as a human, adjusting for age, race or ethnicity, education, previous AI chatbot use, message humanness,
message effectiveness, and attitude toward AI.

Results: Among 92 women (mean age 45.9, SD 11.9; range 26-70 y), the chatbot identity was correctly identified by two-thirds
(n=61, 66%) of the sample, while one-third (n=31, 34%) misidentified the chatbot as a human. Over half (n=53, 58%) had previous
AI chatbot experience. On average, participants interacted with the HeartBot for 13.0 (SD 7.8) minutes and entered 82.5 (SD
61.9) words. In multivariable analysis, only message humanness was significantly associated with the perception of chatbot
identity as a human compared with an artificial agent (adjusted odds ratio 2.37, 95% CI 1.26-4.48; P=.007).

Conclusions: To the best of our knowledge, this is the first study to explicitly ask participants whether they perceive an interaction
as human or from a chatbot (HeartBot) in the health care field. This study’s findings (role and importance of message humanness)
provide new insights into designing chatbots. However, the current evidence remains preliminary. Future research is warranted
to understand the relationship between chatbot identity, message humanness, and health outcomes in a larger-scale study.

(JMIR AI 2026;5:e67717)   doi:10.2196/67717
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Introduction

Artificial intelligence (AI) chatbots are computer programs
using natural language processing, machine learning, and large
language models to simulate human-like conversations [1]. The
advantages of using AI chatbots in health care include 24×7
availability, cost-effectiveness, and scalability. In contrast,
incorrect responses, misleading advice, lack of empathy, or
nuanced communication are often concerns of AI chatbot use.
Given the recent rapid development of large language models,
the application of AI chatbots in health care has been widely
investigated. Recently, several systematic reviews and
meta-analyses have examined the efficacy of AI chatbots in
preventing or managing chronic illnesses. To summarize, AI
chatbot–based programs have shown promising results in
improving mental health [2-4], such as depressive or anxiety
symptoms, diabetes management [5], promoting healthy diets
[6], and increasing cancer screenings [7]. Moreover, our research
team developed the AI chatbot behavior change model [8] and
then initiated an AI chatbot development project (hereafter
called HeartBot) aimed at increasing women’s knowledge and
awareness of heart attacks in the United States. Recently, we
published the promising results of these HeartBot trials [9,10].

Assessing whether participants perceive an interaction as human
or from a chatbot is important because a perceived human
interaction tends to increase trust, engagement, satisfaction, and
expectancy effects [11-13]. Several well-designed, high-quality
randomized controlled trials (RCTs) of chatbot interventions
in health care have been conducted. However, these RCTs of
health chatbots focused on measuring health outcomes [14-18],
and in some studies, related constructs such as engagement and
usability. None of these RCTs used direct perception questions
for the participants, such as “Did you think you were texting to
a human or a chatbot?” (or an equivalent direct perception
question). Thus, strong evidence is still lacking to directly
quantify the impact of health outcomes depending on whether
the participants perceived humans or chatbots for the
intervention.

To address this knowledge gap, we conducted a secondary data
analysis of the HeartBot trial to examine how participants
perceived HeartBot identity as a human versus an AI chatbot
and to explore factors associated with perceptions of chatbot
identity. In the HeartBot trial, the chatbot introduced itself as
HeartBot at the beginning of the conversation, but it did not
explicitly indicate that participants would be interacting with
an AI system. To the best of our knowledge, this is the first
study to explicitly ask participants whether they perceive an
interaction as human or from a chatbot (HeartBot) in the health
care field. Thus, the findings of the proposed secondary analysis
can provide unique, preliminary evidence for future health care
research.

Methods

Design and Sample
We conducted a secondary analysis of the HeartBot trial, a
quasi-experimental study. Study details have been reported in
studies by Fukuoka et al [9] and Kim et al [10]. In brief, the
HeartBot trial aimed to evaluate the usability and potential
efficacy of the fully automated AI HeartBot in increasing
women’s awareness and knowledge of heart attack risk and
symptoms. Eligible participants were invited to interact with
the HeartBot through SMS text messaging. The eligibility
criteria included women aged 25 years or older, residing in the
United States, proficient in English, possessing a cell phone
with texting capabilities, having internet access, without
self-reported cognitive impairment or a history of heart disease
or stroke, and not being a health care provider or student in a
health care–related field. We followed the STROBE
(Strengthening the Reporting of Observational studies
in Epidemiology) reporting guidelines [19] (Multimedia
Appendix 1).

Conceptual Framework for HeartBot
When we began the HeartBot project, our research team could
not identify a suitable conceptual framework for the project.
Thus, we conducted a literature review and developed a new
conceptual framework, the AI chatbot behavior change model,
to guide the design and evaluation of chatbots for health
behavior change. The detailed description of this framework
was published in 2020 [8], and since then, it has been cited in
other published studies. In brief, the AI chatbot behavior change
model consists of four major domains: (1) designing the chatbot
characteristics and understanding user backgrounds, (2) building
relational capacity, (3) building persuasive conversational
capacity, and (4) evaluating mechanisms and outcomes.
Multimedia Appendix 2 provides explanations for each domain,
along with relevant examples. The proposed secondary analysis
is explored in domain 4, “evaluating mechanisms and
outcomes,” including conversational quality (eg, message
humanness) and user experiences (eg, message effectiveness).
We acknowledge that we cannot thoroughly examine all
subdomains listed in domain 4, since this study is a secondary
analysis of the HeartBot trial. However, the preliminary findings
from this study can help further improve the AI chatbot behavior
change model and may ultimately assist in designing and
evaluating AI chatbots in health care more effectively.

HeartBot Intervention
Details of HeartBot were published in studies by Fukuoka et al
[9] and Kim et al [10]. HeartBot was developed by investigators
using the Google Dialogflow CX platform [20], a natural
language understanding platform to create virtual agents.
HeartBot connected with Twilio [21] for inputs from participants
and output from HeartBot to be sent to each other over SMS
text messages. Messages for HeartBot were manually crafted,
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including the potential responses. HeartBot conversed about
topics such as symptoms, risk factors, and treatment of heart
attacks, and the investigators checked the readability of HeartBot
messages. The content of HeartBot was developed and tested
by the cardiovascular experts and investigators based on the
latest guidelines and evidence to ensure full control over the
content presented to participants and to minimize the risk of
having the system dispense false or misleading information. At
the beginning of the conversation, the chatbot introduced itself
as HeartBot; however, it did not explicitly indicate that
participants would be interacting with an AI system. In addition,
personalization and empathic responses were included to
improve participants’ experience and engagement. For
participants’ safety, the introduction message included the
following medical emergency notice: “If you are experiencing
a medical emergency, please call 911 immediately.”

Procedure
Participants were recruited through social media (eg, Meta’s
Facebook and Instagram) advertisements placed from October
2023 to January 2024, using targeting strategies that aim to
reach racially and ethnically diverse demographics (eg, Hispanic
or Latino and Black or African American women). Those
interested in the research were redirected to an online screening
form, which included the study aims, procedures, and benefits
and risks of participation. The research team contacted the
potential participants who met all eligibility criteria and asked
them to sign an electronic consent form. Upon obtaining written
consent, participants were asked to complete an online baseline
survey consisting of sociodemographic status, cardiovascular
risks, medication intake, and previous AI chatbot use. After
confirming the completeness of the online survey, the research
staff provided the study telephone number to start the
conversation with HeartBot, where they could exchange SMS
text messages with HeartBot. The participants were able to
interact with HeartBot 24 hours a day, 7 days a week, from
anywhere in the United States. Research staff monitored the
conversations between HeartBot and participants to ensure
participants’ safety and verify the accuracy of information
provided by HeartBot. After 4 to 6 weeks of the HeartBot
interaction, participants were asked to complete an online
postintervention survey, including AI chatbot interaction
experience and evaluations. All online surveys were
administered by Research Electronic Data Capture (Research
Electronic Data Capture) [22], a secure online tool used to
manage study data.

Measures

Baseline Measures: Sociodemographic Characteristics,
Cardiovascular Risks, Medication, and Past AI Chatbot
Use
Sociodemographic factors, such as age, race or ethnicity,
education, household income, marital status, employment status,
and immigration experience to the United States, were collected
from participants in the baseline survey. Data collected at
baseline included self-reported cardiovascular risks, including

menopause, BMI (kg/m2; calculated with height and weight),
smoking in the past 30 days, physical activity ≥150 mins per

week, family history of heart disease, prescribed blood pressure,
cholesterol, diabetes medication, and daily aspirin intake. The
cardiovascular risk factor variables were selected based on the
latest clinical guidelines [23]. We assessed past AI chatbot use
experience with the following question: “Have you used any
chatbot in the past 30 days?” There were 2 response
options—yes and no.

Postintervention Measures

AI Chatbot Interaction

In the postintervention survey, we measured several metrics
indicating users’ interaction patterns with HeartBot, including
users’ word count, the time spent in conversation in minutes,
and the number of questions asked by users.

Message Humanness

In the AI chatbot behavior change model [8], message
humanness is categorized as the “conversational quality” in
domain 4, “evaluating mechanisms and outcomes,” which
measures the degree of perceived humanness in chatbot
conversations. Participants rated the humanness of the message
using the “anthropomorphism scale” [24] in the postintervention
survey. The scale consists of 5 items (natural vs fake,
human-like vs machine-like, conscious vs unconscious, lifelike
vs artificial, and adaptive vs rigid) using a 7-point Likert scale
based on a horizontal visual analog scale. The scores on the
scale were summed and averaged to create a mean composite
score. A higher score indicates more human-like HeartBot
messages. The scale was developed based on a previous study
[24]. The internal consistency of the scale was strong with
Cronbach α=0.90 in our study sample, indicating a high level
of internal consistency.

Message Effectiveness

In the AI chatbot behavior change model [8], message
effectiveness is classified under “user experiences” in domain
4, evaluating mechanisms and outcomes, assessing the perceived
usefulness and convenience of chatbot interactions. Participants
rated the self-reported effectiveness of chatbot messages using
the “effectiveness scale” in the postintervention survey. The
scale was originally developed based on previous literature
[25,26]. The scale consists of 5 items (effective vs ineffective,
helpful vs unhelpful, beneficial vs not beneficial, adequate vs
not adequate, and supportive vs not supportive) using a 7-point
Likert scale based on a horizontal visual analog scale. The scores
on the scale were summed and averaged to create a mean
composite score. A higher score indicates greater message
effectiveness of HeartBot. The internal consistency of the scale
was strong, as evidenced by Cronbach α=0.93 in our study
sample.

Attitude Toward AI

To investigate the attitude toward AI chatbots, participants were
asked the following question on the postintervention survey:
“How positive or negative do you feel about the use of artificial
intelligence in healthcare?” There are 5 response options—very
positive, positive, neutral, negative, and very negative.
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Perception of Chatbot Identity (Human vs AI Chatbot)

To determine the perception of the identity of HeartBot,
participants were asked the following question at the
postintervention survey: “Do you think you texted a human or
an artificial intelligent chatbot during your conversation?”
There were 2 response options—human or artificial agent.

Statistical Analysis
Descriptive analyses were used to describe participants’
sociodemographic backgrounds, cardiovascular risks,
medication, and AI chatbot interactions and evaluations. The
sample was split based on the perception of chatbot identity as
a human versus an artificial agent. Chi-square test, Fisher exact
test, and Wilcoxon rank-sum test were used to compare the
differences in baseline sample characteristics of the 2
subsamples.

Race or ethnicity and education were recoded into dichotomous
variables: non-White or White and “completed college or
graduate school” or “less than high school or did not complete
college,” respectively, in a logistic regression analysis. Attitude
toward the AI chatbot was divided into 3 categories: positive,
neutral, and negative. Recoding several variables was aimed at
improving statistical power.

Additionally, univariate logistic regression analyses were
performed to estimate the relationships between the dependent
variable (ie, the perception of chatbot identity) and each
independent variable with sociodemographic factors, previous
AI chatbot use, AI chatbot interaction, and AI chatbot
evaluation. The logistic regression analyses calculated the point
estimate and 95% CI of the odds ratio (OR), which is associated
with the perception of the chatbot identity as being a human.
In the logistic regression analyses, if the 95% CI of the OR
includes 1.0, there is no statistically significant relationship
between the independent and dependent variables.

Finally, a multivariable logistic regression analysis was
conducted to determine factors that were associated with
participants’perception of the chatbot identity as being a human.
The final multivariable regression model includes age, race or
ethnicity, education, previous AI chatbot use, conversation
lengths with HeartBot, message humanness, message
effectiveness, and attitude toward AI. The independent variables
ensured face validity (ie, age, race, and education), and the
potential confounders referred to in literature [22] were entered
into a multivariate regression model. The other potential
confounding factors were selected from the AI chatbot behavior

change model [8], including previous AI chatbot use,
conversation lengths with HeartBot, message humanness,
message effectiveness, and attitude toward AI. This model
guided our selection of covariates to better understand how
participants evaluated the interaction and how specific
communication features may have affected their experience.
Multicollinearity was tested to ensure that independent variables
were not highly correlated. The variance inflation factor values
of all independent variables ranged from 1.13 to 2.12 (mean
1.47; SD 0.83), indicating an acceptable range and no
multicollinearity in the variables. Statistical significance was
set at a 2-sided P value <.05. All analyses were performed using
Stata (version.18.0; StataCorp) [27].

Ethical Considerations
This study adhered to the ethical principles outlined in the
Declaration of Helsinki and received approval from the
University of California, San Francisco Institutional Review
Board (approval 23‐39793). Written informed consent was
obtained from all participants before enrollment. Participation
was voluntary, and participants could withdraw at any time
without penalty. All data were deidentified before analysis and
stored on secure, password-protected servers accessible only to
the research team. Participants who completed all study
procedures received a US $20 Amazon electronic-gift card as
compensation.

Results

Sample Characteristics
Multimedia Appendix 3 presents screening, enrollment, and
follow-up of the study participants. A total of 92 participants
completed the baseline, HeartBot interaction, and
postintervention surveys (Table 1). The mean age of participants
was 45.9 (SD 11.9, range 26-70) years. In total, 40% (n=37) of
participants identified their race and ethnicity as White or
Caucasian, 24% (n=22) as Black or African American, and 21%
(n=19) as Hispanic or Latino Americans. Furthermore, 72%
(n=66) reported completing college or graduate school. Of the
total, 45% (n=41) of participants reported experiencing
menopause; 36% (n=33) of participants reported their BMI was
30 or above; and 27% (n=25) reported taking blood pressure
medication. In addition, 58% (n=53) reported experiencing a
previous interaction with an AI chatbot. The most popular types
of chatbots were ChatGPT (OpenAI; n=22, 24%) and Siri (Apple
Inc; n=20, 22%).
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Table 1. Sample characteristics in respondent perception of chatbot identity as a human versus an artificial agent (N=92).

P valueaArtificial agent (n=61)Human (n=31)Overall (N=92)Characteristics

Sociodemographic factors

.8245.6 (11.9; 26-68)46.3 (12.2; 28-70)45.9 (11.9; 26-70)Age (y), mean (SD; range)

.41Race or ethnicity, n (%)

1 (1.6)0 (0)1 (1.1)American Indian or Alaskan Native

2 (3.3)4 (12.9)6 (6.5)Asian

13 (21.3)9 (29)22 (23.9)Black or African American

15 (24.6)4 (12.9)19 (20.7)Hispanic or Latino

2 (3.3)0 (0)2 (2.2)Native Hawaiian or Other Pacific Islander

25 (41)12 (38.7)37 (40.2)White or Caucasian

3 (4.9)2 (6.5)5 (5.4)More than 1 race or ethnicity

.27Education, n (%)

15 (24.6)11 (35.5)26 (28.3)No more than high school or did not complete
college

46 (75.4)20 (64.5)66 (71.7)Completed college or graduate school

.16Household income, n (%)

32 (52.5)21 (67.7)33 (57.6)Less than $75,000, do not know, or decline to
respond

29 (47.5)10 (32.3)39 (42.4)$75,000 or above

.76Marital status, n (%)

13 (21.3)8 (25.8)21 (22.8)Never married

39 (63.9)20 (64.5)59 (64.1)Currently married or cohabitating

9 (14.8)3 (9.7)12 (13)Divorced or widowed

.77Employment status, n (%)

38 (62.3)18 (58.1)56 (60.9)Employed full-time or part-time

10 (16.4)7 (22.6)17 (18.5)Unemployed or looking for a job, student, or
homemaker

13 (21.3)6 (19.4)19 (20.7)Retired, disabled, or other

.377 (11.5)5 (16.1)12 (13)Immigration experience to the United States, n (%)

Cardiovascular risk factors or medication intake

.9427 (44.3)14 (45.2)41 (44.6)Menopause, n (%)

.084BMI (kg/m 2 ), n (%)

42 (70)16 (51.6)58 (63.7)Less than 30

18 (30)15 (48.4)33 (36.3)30 or above

.4610 (16.4)4 (12.9)14 (15.2)Smoking in the past 30 days, n (%)

.6136 (59)20 (64.5)56 (60.9)Physical activity ≥150 min per week, n (%)

.549 (14.8)4 (12.9)13 (14.1)Family history of heart disease, n (%)

.2319 (31.2)6 (19.4)25 (27.2)Blood pressure medication, n (%)

.8211 (18)5 (16.1)16 (17.4)Cholesterol medication, n (%)

.8811 (18)6 (19.4)17 (18.5)Diabetes medication, n (%)

.468 (13.1)5 (16.1)13 (14.1)Taking aspirin daily, n (%)

HeartBot interaction

.7036 (59)17 (54.8)53 (57.6)Previous AIb chatbot use, n (%)
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P valueaArtificial agent (n=61)Human (n=31)Overall (N=92)Characteristics

.1882.8 (59.8; 34-377)81.8 (67.0; 36-360)82.5 (61.9; 34-377)Conversation length (words), mean (SD; range)

.3312.9 (6.8; 5.6-40.3)13.1 (9.6; 5.6-42.2)13.0 (7.8; 5.6-42.2)Conversation length (minutes), mean (SD; range)

.3120 (32.8)7 (22.6)27 (29.4)Number of questions asked to HeartBot (at least
one), n (%)

HeartBot evaluation

.0034.9 (1.2; 2.0-7.0)5.7 (1.1; 3.4-7.0)5.2 (1.2; 2.0-7.0)Message humanness, mean (SD; range)

.625.6 (1.4; 1.0-7.0)5.9 (0.9; 3.4-7.0)5.7 (1.2; 1.0-7.0)Message effectiveness, mean (SD; range)

≥.99Attitude toward AI, n (%)

23 (37.7)12 (38.7)35 (38)Positive

29 (47.5)15 (48.4)44 (47.8)Neutral

9 (14.8)4 (12.9)13 (14.1)Negative

aP value was calculated by chi-square test, Fisher exact test, or Wilcoxon rank-sum test.
bAI: artificial intelligence.

HeartBot Interaction
As illustrated in Table 1, while 34% (n=31) of participants
identified the chatbot as a human, 66% (n=61) of participants
reported they interacted with an artificial agent. The mean (SD,
range) and median (IQR) of conversation length with HeartBot
by word count and minute were 82.5 (SD 61.9, range 34-377),
64.5 (IQR 46.0-49.0) words and 13.0 (SD 7.8, range 5.6-42.2),
10.6 (IQR 8.5-13.9) minutes, respectively. The mean scores of
message humanness and message effectiveness were 5.2 (SD
1.2, range 2.0-7.0) and 5.7 (SD 1.2, range 1.0-7.0), respectively.
Furthermore, 38% (n=35) of participants had a positive feeling
for AI. In the bivariate analysis, the mean score of message
humanness was significantly higher in the group who answered

the chatbot identity as a human compared with the group who
thought they were interacting with an artificial agent (P=.003).

Table 2 presents the unadjusted and adjusted ORs from
multivariable logistic regression analysis results for predicting
the perception of chatbot identity as a human versus an artificial
agent. In the unadjusted model, the score of message humanness
was significantly associated with the perception of chatbot
identity as a human compared with an artificial agent
(unadjusted OR 1.81, 95% CI 1.19-2.77; P=.006). In the adjusted
model, only the score of message humanness was significantly
associated with the perception of chatbot identity as a human
compared with an artificial agent (adjusted OR 2.37, 95% CI
1.26-4.48; P=.007), controlling for age, race or ethnicity,
education, previous AI chatbot use, conversation length with
HeartBot, message effectiveness, and attitude toward AI.
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Table 2. Unadjusted and adjusted odds ratios from multivariable logistic regression analysis for predicting the perception of chatbot identity as being
a human (N=92).

P valueAORb (95% CI)P valueORa (95% CI)Variables

.800.99 (0.95-1.04).791.01 (0.97-1.04)Age

Race and ethnicity

—1 (Reference)—c1 (Reference)Non-Hispanic White

.811.15 (0.37-3.57).831.10 (0.45-2.66)Non-Whited

Education

—1 (Reference)—1 (Reference)Less than high school or did not complete col-
lege

.290.56 (0.19-1.66).280.59 (0.23-1.52)Completed college or graduate school

Previous AIe chatbot use

—1 (Reference)—1 (Reference)No

.900.93 (0.31-2.79).700.84 (0.35-2.02)Yes

.931.00 (0.99-1.01).941.00 (0.99-1.01)Conversation length (words)

.0072.37 (1.26-4.48).0061.81 (1.19-2.77)Message humanness

.280.70 (0.37-1.33).291.23 (0.84-1.81)Message effectiveness

Attitude toward AI

—1 (Reference)—1 (Reference)Negative

.871.16 (0.22-6.07).821.16 (0.31-4.41)Neutral

.991.01 (0.16-6.43).821.17 (0.30-4.62)Positive

aOR: odds ratio.
bAOR: adjusted odds ratio.
cNot applicable.
dNon-White included American Indian, Alaskan Native, Asian, Black or African American, Hispanic or Latino, Native Hawaiian, other Pacific Islander,
and multiracial individuals.
eAI: artificial intelligence.

Discussion

Principal Findings
This study explored whether and why people attribute different
identities to an AI chatbot, specifically examining the extent to
which AI chatbots are perceived as a human versus an artificial
agent among women, and identified key factors influencing
these perceptions. A key finding in this study was that women
who perceived a higher degree of message humanness were
more likely to identify the chatbot (HeartBot) as human. In
contrast, neither the message effectiveness nor general attitudes
toward AI influenced the perception of the chatbot identity.
These results suggest that human-like chatbot communication
is critical in shaping users’ perceptions of chatbot identity.
However, in this secondary data analysis with a limited sample
size (N=92), we were unable to sufficiently adjust for cultural,
demographic, or contextual characteristics. Thus, caution needs
to be exercised when interpreting message humanness in relation
to identifying the chatbot as human.

This study’s findings are consistent with existing research
findings. According to Go and Sundar [28], 3 factors that
influence humanness among AI chatbots are visual cues (eg,
using human figures), conversational cues (eg, interactive or

contingent messages), and identity cues (eg, human-like names
or identities). Conversational cues refer to human-like contingent
conversational markers that increase expectations for human-like
communication with chatbots, such as using empathetic phrases,
polite statements, and acknowledging users’previous responses
[29]. Such conversational cues can enhance the humanness of
conversations delivered by chatbots. Assessing the
characteristics of conversational cues and perceived humanness
in conversations with AI chatbots is important because how
users perceive a chatbot’s identity can have implications on
their expectations and evaluations of the chatbot’s performance
and effectiveness. If users assume the chatbot identity as an
artificial agent, they are more likely to assess the quality of
chatbot performance based on their existing stereotypes of
chatbots [12,28,29]. In contrast, if they assume a chatbot is
human, they are more likely to assess the quality of chatbot
performance based on their expectations of other humans.
Typically, when users perceive a chatbot as more human-like,
they expect better and more natural performance from the
chatbot than when they perceive it as an AI agent [12,28,29].

Subjective expectations of the chatbot’s performance matter,
and if these expectations are not met, user evaluations of the
chatbot will be poorer. This is explained by the “expectancy
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violation effect” [30]. Thus, calibrating users’ expectations of
AI chatbots is an important consideration in designing the
characteristics and conversational features of chatbots. For
instance, past research has shown that message contingency,
defined as human-like continuous dialogues remembering
previous responses, could enhance a chatbot’s social presence,
which further increased users’ perceived intelligence and
friendliness of the chatbot [28]. In our study, even though all
participants were informed that they were interacting with a
chatbot named “HeartBot,” a significant portion of the women
still thought they were interacting with a human. This
“misperception” could be due to the fact that they highly
evaluated the chatbot messages’ naturalness and humanness.

Interestingly, the message effectiveness and attitude toward the
HeartBot conversations were not significantly associated with
the perception of chatbot identity in this study. A previous study
similarly revealed that the actual performance level of a chatbot
did not influence its perception as a human [31]. Our findings
indicate that perceiving an AI chatbot as a human or an artificial
agent is largely dependent on the encoding and decoding of
actual conversational messages, rather than the conversational
context or the impact of the conversation.

While previous research studies have shown the importance of
anthropomorphic cues in chatbot perception [28,29], little is
known about how these perceptions play out in health care
contexts, where the stakes are not just user satisfaction or
technology adoption, but also patient trust in the information,
readiness to change, willingness to follow AI-generated health
advice, and adherence to recommendations. We highlight that
this study offers a novel health care–focused theoretical insight
by showing that even when message effectiveness is held
constant, message humanness (indicating relational or
human-like qualities in chatbot communication) significantly
shapes how participants perceive the chatbot identity, which
can, in turn, influence their openness to engaging with and
trusting digital health tools.

While the chatbot introduced itself as HeartBot at the beginning
of the conversation, approximately 1 in 3 participants incorrectly
perceived that they were interacting with a person. Since the
univariate and multivariate analyses showed the nonsignificant
relationships between sociodemographic factors and the
perception of the chatbot identity, the perceived message
humanness level may influence the perception of the chatbot
identity regardless of differences in sociodemographic factors
among women.

Considering ethical concerns for AI chatbot applications in the
health care field, this study highlights that system designers and
researchers need to recognize that some users may perceive
they are interacting with a person, while others may find it clear
that they are interacting with an AI chatbot. This misperception
can lead users to develop unrealistic expectations of the
chatbot’s capabilities, potentially impacting informed consent
and clinical decision-making. While earlier research showed
that using human identity or strategically hiding AI chatbots’
identity may be advantageous in enhancing the user experience
[32-34], we argue it is no longer ethical and can be
counterproductive in forming the right expectations and useful

interactions with AI chatbots. In this study, the chatbot
introduced itself as HeartBot at the beginning of the
conversation. However, the findings of this study suggest that
this alone may be insufficient to prevent the misperception of
the chatbot identity as a human. Therefore, we recommend that
future research in health chatbot design need to prioritize explicit
and repeated chatbot identity disclosure, with clear
communication of the chatbot’s capabilities, limitations, and
data use policies before user interaction. These practices would
protect user autonomy and clinical decision-making processes.
Given the limited number of health intervention studies that
examine how identity disclosure affects trust with an AI chatbot,
further investigation in this area is warranted.

Other ethical concerns when designing human-like chatbots in
health care contexts include overtrust in an AI chatbot, fairness
and bias, and accountability. First, a highly empathetic or
responsive chatbot might foster overtrust with an AI chatbot,
leading users to rely on it instead of seeking professional health
support. This could compromise patient safety and delay
appropriate care because AI algorithms sometimes make
inaccurate clinical recommendations and provide inaccurate
health information [35]. To avoid these issues, it is necessary
for system developers and researchers to inform users of the
boundaries of what the AI chatbot can and cannot do. Second,
AI systems can be biased, which may perpetuate existing health
disparities, particularly when interacting with marginalized
groups. For example, an AI algorithm based on research from
predominantly White participants may discriminate against
racially and culturally minority communities or lead to
inaccurate provision of information [35,36]. Assessing the
potential bias in the dataset or model design, and incorporating
inclusive designs with diverse user input, are essential to
mitigate bias. Third, when an AI chatbot gives incorrect or
harmful health advice, it is unclear who is responsible for the
chatbot’s outputs. Lack of accountability may undermine trust
in an AI chatbot and user safety. If a recommendation made by
a clinical decision supporting AI chatbot leads to a negative
outcome for users, it is unclear who to assign the responsibility
to or to prevent it from happening again. Clear definitions of
accountability and AI systems for feedback and redress when
misinformation occurs are needed to enhance users’
trustworthiness with an AI chatbot and to prevent poor patient
outcomes. In summary, addressing overtrust, bias, and
accountability is crucial when designing human-like AI chatbots
to ensure user safety and trust.

The findings of this study offer valuable clinical implications
for designing human-like AI chatbots that can support innovative
health interventions, including chronic disease management,
symptom monitoring, counseling, and health education. For
example, an AI chatbot with human-like features that monitors
patient data and provides personalized lifestyle
recommendations may enhance patient trust and motivation,
thereby improving retention and adherence to preventive
interventions for chronic diseases. Given the limited empirical
evidence that directly tested the relationship between human-like
chatbot characteristics and health outcomes, further
investigations are needed to clarify these relationships and
optimize chatbot designs for health interventions.
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Limitations
It is important to acknowledge several limitations when
interpreting the study’s findings. First, the convenience sampling
method may have affected the study findings due to selection
bias. Second, only female adults in the United States were
included in the HeartBot program, which may limit the
generalizability of the findings to male adults and populations
in other countries. Third, we could not conduct the subgroup
analysis due to the limited sample size (N=92). Furthermore,
since the sample size was limited, the findings should be
interpreted with caution and considered hypothesis-generating
rather than confirmatory. Finally, the anthropomorphism scale
and the effectiveness scale are self-report instruments. While
the Cronbach α showed high internal consistency in both scales
(Cronbach α=0.90 and 0.93, respectively), it may not objectively
reflect the conversation quality with HeartBot. These
self-reported measures may lead to overestimating the level of
message humanness or message effectiveness. Future studies

are needed to combine subjective and objective measures to
evaluate the conversation quality of the human-chatbot
interactions.

Conclusion
This study highlights the significant role that perceived message
humanness plays in shaping the user’s perception of chatbot
identity. Conversely, message effectiveness and attitudes toward
AI did not significantly influence the perception of the chatbot
identity as being a human. Findings suggest that the perceived
human-like attributes primarily drive users to attribute a human
identity to the chatbot, specifically in health care settings where
user trust and engagement are crucial. This study provides a
theoretical foundation for understanding human-AI chatbot
interactions and offers practical insights for designing
person-centered AI chatbots in health care. Further research is
needed to explore the relationship between message humanness,
chatbot identity, and health outcomes to optimize the design of
AI chatbots in the health-related fields.
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Abstract

Background: Large language models (LLMs) have been shown to answer patient questions in ophthalmology similar to human
experts. However, concerns remain regarding their use, particularly related to patient privacy and potential inaccuracies that could
compromise patient safety.

Objective: This study aimed to compare the performance of an LLM in answering frequently asked patient questions about
glaucoma with that of a small language model (SLM) trained locally on ophthalmology-specific literature.

Methods: We compiled 35 frequently asked questions on glaucoma, categorized into 6 domains, including pathogenesis, risk
factors, clinical manifestations, diagnosis, treatment and prevention, and prognosis. Each question was posed to both a SLM using
a retrieval-augmented generation framework, trained on ophthalmology-specific literature, and to a LLM (ChatGPT 4.0, OpenAI).
Three glaucoma specialists from a single institution independently assessed the answers using a 3-tier accuracy rating scale: poor
(score=1), borderline (score=2), and good (score=3). Each answer received a quality score ranging from 3 to 9 points based on
the sum of ratings from the 3 graders. Readability grade level was assessed using 4 formulas, such as the Flesch-Kincaid Level,
the Gunning Fog Index, the Coleman-Liau Index, and the Simple Measure of Gobbledygook Index.

Results: The answers from the SLM demonstrated comparable quality with ChatGPT 4.0, scoring mean 7.9 (SD 1.2) and mean
7.4 (SD 1.5), respectively, out of a total of 9 points (P=.13). The accuracy rating was consistent overall and across all 6 glaucoma
care domains. Both models provided answers considered unsuitable for health care–related information, as they were difficult
for the average layperson to read.

Conclusions: Both models generated accurate content, but the answers were considered challenging for the average layperson
to understand, making them unsuitable for health care–related information. Given the specialized SLM’s comparable performance
to the LLM, its high customization potential, lower cost, and ability to operate locally, it presents a viable option for deploying
natural language processing in real-world ophthalmology clinical settings.

(JMIR AI 2026;5:e72101)   doi:10.2196/72101

KEYWORDS

online health information; ChatGPT4.0; glaucoma; large language model; small language model

Introduction

Recent progress in natural language processing (NLP) has been
observed in health care, showcasing innovative approaches to
preventive measures, diagnostics, and patient assistance.
Specifically, large language models (LLMs) such as ChatGPT
(OpenAI) have emerged as prominent tools in the field of
ophthalmology and other medical specialties since their
introduction in November 2022 [1-3]. The conversational
interface of ChatGPT and its unsupervised learning approach,

particularly notable in its fourth generation, ChatGPT 4.0, has
offered a novel and appealing way for patients to access medical
information [4,5]. This trend is underscored by the growing
reliance on the internet for health-related information, a
phenomenon that has become increasingly common among
patients. A survey in the United States revealed that two-thirds
of adults turn to the internet for health information, with
one-third using it for self-diagnosis [6]. However, despite these
advancements and the increasing usage of digital resources for
health information, the inability of ChatGPT to provide source
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citations remains a significant drawback, compromising its
reliability and limiting its utility in clinical settings [5,7].

Recent literature has explored the role of LLMs in different
ophthalmological scenarios. For example, Cai et al [8]
demonstrated strong performance of ChatGPT models in
ophthalmology board-style certification questions, underscoring
their educational potential in training ophthalmologists. Huang
et al [9] showed that ChatGPT’s diagnostic capabilities in
glaucoma could sometimes surpass those of ophthalmology
residents, emphasizing their clinical utility in differential
diagnosis and management. Additionally, Raghu et al [10]
identified the potential use of LLMs for diabetic retinopathy
risk assessment, although they noted several limitations that
restrict clinical deployment.

The substantial number of tasks that LLMs can perform
highlights their potential for innovative research; however, the
substantial computational demands for customizing these
models, which may include over 100 billion parameters, present
a significant challenge, making the technology largely
unattainable due to computational resource limitations [11]. In
this context, small language models (SLMs) have emerged as
a practical alternative [12]. These scaled-down models offer
advantages in terms of computational efficiency, ease of access,
and customizability because they require fewer resources and
facilitate deployment in more specific contexts [12]. Their
adaptability to specific needs and functions allows for the
development of precise and accessible NLP tools by leveraging
targeted, high-quality references, demonstrating a promising
path for specialized applications [12]. SLM can also be used in
a closed local network without an internet connection, which
diminishes the concerns about patient privacy and leakage of
personal health information.

More recently, the use of retrieval-augmented generation (RAG)
frameworks in natural language models has enabled precise
query processing and the generation of highly accurate and
relevant responses. By encoding and vectorizing documents,
RAG allows language models to access external information,
extending their knowledge beyond what was available in the
training data. Furthermore, by integrating external data, RAG
enables natural language models to effectively provide source
citations, thereby bolstering the credibility of the generated
content [13,14].

Despite the growing body of literature evaluating the use of
LLMs in ophthalmology, the performance of a locally deployed
domain-specific SLM remains unexplored. Therefore, this study
assessed the efficacy of SLM enhanced with RAG technology
compared to ChatGPT 4.0 for answering common patient
inquiries regarding glaucoma. Glaucoma specialists evaluated
the quality of the answers, and the level of readability was
assessed using standardized methods.

Methods

Study Design
This study was conducted at the Ophthalmology Department
of the Bascom Palmer Eye Institute (BPEI) in Miami. Patient
information was not included in this study. Between January

and February 2024, commonly asked questions related to
glaucoma care were queried from reputable online health
information outlets, such as the American Glaucoma Society
(AGS) and Eye Care Forum, which enables patients to ask
questions and receive answers from the American Academy of
Ophthalmology (AAO)–affiliated ophthalmologists.

Three fellowship-trained glaucoma specialists refined the first
pool of 60 questions extracted from online resources by
independently selecting those they considered as frequently
asked in a glaucoma outpatient clinic setting. The 35 questions
that all specialists considered frequent and common questions
from patients with glaucoma were separated for analysis and
categorized into 6 domains, such as pathogenesis, risk factors,
clinical presentation, diagnosis, treatment and prevention, and
prognosis (Multimedia Appendix 1).

Development of the Ophthalmology-Specific SLM
Our ophthalmology-specific SLM was developed based on the
Hugging Face and Haystack algorithms [15,16]. These models
serve as a platform for building and deploying NLP models by
performing indexing, information retrieval, and
question-answering tasks. Specifically, we adopted Mistral 7B,
a 7-billion-parameter model, as the SLM [17]. We trained the
SLM model using 60 ophthalmology books and 7862 papers
from 17 MEDLINE-indexed ophthalmology journals from 2017
to 2023. This process yielded 366,924 snippets, which are
succinct excerpts of information extracted from the dataset.
These snippets play a crucial role in the operation of RAG,
enabling the model to discern the most pertinent information
required to address a given question effectively. RAG uses
snippets to understand which information is most relevant to
answering the specific question asked. These were provided in
PDF format to Haystack [16], which processed and split the
text into 500-word chunks with 100 words of overlap. These
word chunks were converted into model embeddings using the
WhereIsAI/UAE-Large-V1 model for training [18] and stored
in the Haystack Facebook Artificial Intelligence Similarity
Search database. This database is an open-source vector store
and search engine that allows for the storage and retrieval of
parts of a document relevant to the question being asked. For
each question, the 3 most relevant 100-word chunks of text from
the reference material were provided alongside the
ophthalmology question when prompting the language models.
We set the temperature to 0.5, the token limit to 500, and top-p
to 1.0. We systematically searched publicly available literature
databases, including PubMed and Google Scholar, using the
keyword “ophthalmology” to construct the
ophthalmology-specific dataset integrated with the RAG system.
We prioritized open access documents published in
peer-reviewed journals and directly relevant to clinical
ophthalmic knowledge.

Large Language Model
For comparison with LLMs, we used ChatGPT 4.0, developed
by OpenAI, a 1.8 trillion-parameter LLM [19]. ChatGPT is a
generative artificial intelligence LLM chatbot that interacts with
text and engages in human-like interactions [19]. It is built on
the GPT architecture and was initially trained on extensive
amounts of text from books, papers, and online sources. The
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model’s training process involves minimizing the difference
between the expected and actual words in the dataset, enabling
it to produce coherent text based on presented prompts [20,21].
Later versions, such as ChatGPT 4.0, have enhanced their
functionalities, with over 1 billion users globally [22]. The
performance of the LLM model was assessed using the currently
available online version at the time of the study, and only the
first response for each question was documented. We used the
same inference hyperparameters to ensure comparability with
the SLM, with a temperature of 0.5, a token limit of 500, and
top-p set to 1.0.

Prompt Design
Each question was presented to the language models as a
standardized prompt, following recent recommendations to
maximize the performance of language models [23]. A prompt
acts as a clear instruction provided to a language model to
generate the desired output, in our case, an answer to a question
frequently asked by a patient with glaucoma. The language
models were all prompted in a zero-shot fashion, meaning that
no examples of questions were provided in the prompt. The
prompt was specific and contextual: “Act as a glaucoma
specialist during a medical appointment and answer the
following question considering it was asked by a patient.” The
same prompt was used for the SLM and LLM before each of
the 35 selected questions was presented as a stand-alone query.
After each query, the conversation was reset to minimize the
memory retention bias. All generated responses were formatted
as plain text to conceal chatbot-specific features and randomly
shuffled before being presented to 3 ophthalmologists for
grading of glaucoma.

Accuracy and Quality Evaluation
Each answer was evaluated by 3 glaucoma specialists (MG,
LB, and VVC). The language models’ identities were concealed
to prevent bias, and the presentation order was randomized for
the graders. Their main task was to individually rate the accuracy
of language model responses on a 3-point scale:+1 for responses
containing inaccuracies that could significantly mislead patients
and potentially cause harm (ie, “poor”);+2 for responses with
possible factual errors, but unlikely to mislead or harm patient
(“borderline”); and +3 for “good” or error-free responses. Each
response’s total quality score was calculated by summing the
scores of all 3 graders, with a minimum possible score of 3 and
a maximum possible score of 9. In addition, we used a majority
consensus approach to obtain an “overall” accuracy rating for
each chatbot response, considering the most common rating
among the 3 graders. In cases where there was no consensus
among graders (ie, each grader provided a different rating), we
adopted a stringent approach and assigned the lowest rating.
Agreement among graders was evaluated using Fleiss kappa.

Readability and Quality of Health Information
Evaluation
To assess the readability of the chatbot answers, each answer
was input into an online readability tool (Readable) [24]. Four
readability scales were used, including the Flesch-Kincaid Grade
Level, Gunning Fog Index, Coleman-Liau Index, and Simple
Measure of Gobbledygook (SMOG) Index. All readability

formulas estimate the number of years of education required to
fully understand a text. However, each formula uses different
equations and variables to calculate it. The Flesch-Kincaid Grade
Level focuses on words per sentence and syllables per word.
The Gunning Fog Index considers words per sentence and
syllables per word. The Coleman-Liau Index measures the
average number of letters per 100 words and the average number
of sentences per 100 words. The SMOG Index focuses on the
number of polysyllabic words in a sample of 30 sentences.

The formula’s output is a number, called the grade level,
corresponding to the years of education required to fully
understand the text. Content aimed at the public should have a
grade level of around 8. Texts above 17 require a graduate-level
education for complete comprehension [25].

Statistical Analysis
Statistical analyses were performed using the Stata Statistical
Software Release 18 (StataCorp LLC). The proportions of
“Good,” “Borderline,” and “Poor” accuracy ratings were
compared between SLM and LLM using a 2-tailed Fisher exact
test. The Wilcoxon rank-sum test was used to examine the
differences between the 2 language models’ overall answer
quality and comprehensiveness scores. Fleiss kappa was
calculated to measure interrater agreement. Statistical
significance was set at P<.05 for all analyses. Post hoc power
analysis was performed to assess the observed mean difference
in quality scores between the language models. We calculated
the standardized effect size based on the observed means and
pooled SD and estimated statistical power using a 2-tailed t test
with an α level of .05.

Ethical Considerations
In accordance with the Declaration of Helsinki, this study did
not involve patients or identifiable private information.
Therefore, review and approval by the University of Miami
Institutional Review Board were not required.

Results

A total of 35 frequently asked questions from patients with
glaucoma were answered by the LLM and SLM and evaluated
by the 3 glaucoma specialists, and a total of 105 gradings were
assigned. The interrater agreement, measured by Fleiss κ among
graders, was 0.28. The partial agreement rate between graders
was 94.3% (99/105). Across the 105 individual accuracy ratings
assigned to each model, the LLM had 74% (n=78) of the
answers classified as good, 20% (n=21) as borderline, and 6%
(n=6) as poor among the graders versus 57% (n=60), 31%
(n=33), and 11% (n=12) for the SLM, respectively (P=.38). The
distribution of quality scores assigned by the graders
demonstrated slightly higher central tendency values for the
LLM but substantial overlap between models. The median
quality score was 8 (IQR 2) for the LLM and 7 (IQR 3) for the
SL, indicating greater variability in evaluator scoring. The
minimum and maximum observed scores were 5-9 for the LLM
and 4–9 for the SLM. No statistically significant difference was
observed between the quality scores from SLM (mean 7.4, SD
1.5 points) and LLM (mean 7.9, SD 1.2 points; P=.13). Post
hoc power analysis indicated that the statistical power to detect
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this observed difference was 32.9%. Multimedia Appendix 2
details the SLM answers and the references used. Multimedia
Appendix 3 shows the answers provided by ChatGPT 4.0.

Table 1 presents an analysis of the consensus-based accuracy
ratings overall and across the 6 glaucoma care domains. There
was no difference in overall accuracy ratings between the
language models (P=.38). For each domain, both models

performed similarly in all areas. The highest performance by
the SLM was in pathogenesis, with 86% (6/7) of the answers
graded as “Good,” while the lowest was in treatment and
prevention, where 28.5% (2/7) of the answers were graded as
“Poor.” Alternatively, LLM’s greatest performing domains were
pathogenesis, treatment and prevention, and prognosis. LLM’s
worst performance domain was risk factors, where 17% (1/6)
of the answers were graded as “Poor.”

Table . Consensus-based accuracy ratings of natural language models responses across glaucoma care domains.

P valueLarge language model, n (%)Small language model, n (%)Number of
questions

Domain

GoodBorderlinePoorGoodBorderlinePoor

≥.996 (86)01 (14)6 (86)1 (14)07Pathogenesis

≥.994 (66)1 (17)1 (17)3 (50)2 (33)1 (17)6Risk factors

.543 (50)3 (50)04 (66)1 (17)1 (17)6Clinical pre-
sentation

≥.991 (50)1 (50)01 (50)1 (50)02Diagnosis

.146 (86)1 (14)02 (28.5)3 (44)2 (28.5)7Treatment and
prevention

.566 (86)1 (14)04 (57)3 (43)07Prognosis

.3826 (74)7 (20)2 (6)20 (57)11 (31.5)4 (11.55)35Overall

Table 2 shows the quality scores for each natural language
model overall and throughout the 6 glaucoma care domains.
The overall quality scores for the SLM and LLM were 258 and

277 (P=.13), respectively. The differences in quality scores
between all the glaucoma care domains were not statistically
significant.

Table . Consensus-based quality scores of natural language models responses across glaucoma care domains.

P valueQuality scoresNumber of questionsDomain

Large language modelSmall language model

.6256587Pathogenesis

.4046416Risk factors

.8746466Clinical presentation

.6814152Diagnosis

.0958467Treatment and prevention

.4557527Prognosis

.1327725835Overall

Table 3 summarizes the readability scores of the responses for
each natural language model. The mean Flesch-Kincaid grade
level was 13.2 (SD 3.2) for the SLM and 11.8 (SD 2.2) for the
LLM. For the Gunning Fog Index, mean scores were 17.7 (SD
4.3) for the SLM and 14.4 (SD 3.0) for the LLM. The mean
results of the Coleman-Liau Index were 14.7 (SD 3.0) for the

SLM compared to 12.5 (SD 1.5) for the LLM. The mean scores
of the SMOG Index were recorded as 15.98 (SD 2.9) for the
SLM and 13.9 (SD 2.1) for the LLM. In all 4 readability
classification systems, the SLM had statistically significantly
higher scores (P<.001).
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Table . Mean readability grade level for small language model and large language model responsesa.

Simple measure of gobbledy-
gook (SMOG) Index, mean
(SD)

Coleman-Liau index, mean
(SD)

Gunning fog index, mean
(SD)

Flesch-Kincaid grade level,
mean (SD)

Readability scores

15.98 (2.9)14.7 (3.0)17.7 (4.3)13.2 (3.2)SLMb

13.9 (2.1)12.2 (1.5)14.4 (3.0)11.8 (2.2)LLMc

aP<.001 in all 3 comparisions.
bSLM: small language model.
cLLM: large language model.

Discussion

Principal Findings
In this study, we developed and evaluated an SLM trained
specifically in ophthalmology to yield clinically relevant
information and answer frequently asked questions about
glaucoma. The responses provided by our model were as
accurate as ChatGPT 4.0, an LLM trained with billions of
parameters, as evaluated by glaucoma specialists. To the best
of our knowledge, this is the first study to compare the
performance of an SLM powered by RAG with ChatGPT 4.0,
demonstrating the feasibility of using a local model to answer
frequently asked questions about glaucoma and provide
references for further reading.

The answers from the SLM developed in this study achieved a
mean quality score of 7.4 (SD 1.5) points, which was
comparable to the mean quality score of the LLM (7.9, SD 1.2
points out of a total of 9 points; P=.13). Moreover, the
consensus-based accuracy ratings for the answers of both natural
language models were also considered equivalent (P=.38). The
performance of SLM was also comparable in all 6 glaucoma
domains studied, including pathogenesis, risk factors, clinical
presentation, diagnosis, treatment and prevention, and prognosis.
These results highlight the potential role of SLMs in
ophthalmology practice, as they offer a more affordable,
adaptable, and straightforward integration into actual
ophthalmology clinics. Furthermore, unlike ChatGPT 4.0, which
is not open-source and refines its model using user-provided
information, SLMs can be trained and operated locally within
an institution, significantly reducing the risk of sensitive
information leakage, making them a more realistic choice for
future integration of natural language models in practical settings
[12]. A previous study by Sharir et al [26] estimated the cost of
US $80,000 per 1.5 billion parameter model. In this context,
training a model such as ChatGPT 4.0 would require US
$96,000,000, while an SLM such as the one used in our study
would require US $373,000, a more realistic amount for many
institutions worldwide [26].

The use of natural language models in artificial
intelligence–driven chatbots has increasingly infiltrated daily
life [27]. The ability of these models to provide immediate
answers across a wide array of inquiries has garnered
considerable interest in the health care sector [28-30]. In
ophthalmology practice, one of the most relevant applications
of natural language models is responding to patient queries
commonly encountered in practice [31-33]. Lim et al [32]

compared the performance of 3 different LLMs in answering
frequent questions about myopia. Using a 3-level grading scale
similar to our study (poor, borderline, and good), they reported
mean total scores of 8.19 (SD 1.14) for ChatGPT-4.0, 7.35 (SD
1.70) for ChatGPT-3.5, and 7.13 (SD 1.63) for Google Bard.
Regarding categorical ratings, 80.6% of ChatGPT-4.0 responses
were classified as “good,” compared to 61.3% for
ChatGPT-3.5% and 54.8% for Google Bard. Our findings, with
mean total scores of 7.9 (SD 1.2) points for the LLM
(ChatGPT-4.0) and 7.4 (SD 1.5) points for the
ophthalmology-specific SLM, align closely with these previous
results. Furthermore, the proportion of responses classified as
“good” in our study (78/105, 74% for the LLM and 60/105,
57% for the SLM) is consistent with previously reported results
also by Lim et al [32]. While Momenaei et al [33] evaluated
ChatGPT 4.0’s ability to address retinal disease queries,
responses were considered appropriate in 84.6%, 92%, and
91.7% of the questions concerning retinal detachments, macular
holes, and epiretinal membranes, respectively. In both instances,
the ChatGPT 4.0 responses were graded by different groups of
ophthalmologists as consistently appropriate. Despite these
positive results, LLMs, such as ChatGPT, are often expensive,
inflexible, and unfeasible to implement in local contexts. Recent
advancements in NLP also include multimodal LLMs [34]. For
instance, Choi et al [34] successfully used multimodal language
models to integrate structured ocular data to calculate safety
indicators and predict contraindications in laser vision correction
procedures. Their results indicated superior accuracy and
flexibility compared to traditional machine learning approaches,
underscoring significant clinical potential. Despite these
encouraging outcomes, practical challenges remain regarding
the broader implementation of such advanced technologies in
clinical settings. Specifically, multimodal models often require
significant computational resources, entail high costs, and may
raise concerns about data security and patient privacy. Thus,
while multimodal approaches offer considerable promise,
specialized smaller scale models, such as the SLM presented
in our study, represent a cheaper and feasible solution for
real-world deployment, balancing accuracy, adaptability,
cost-efficiency, and local data control.

One major concern of implementing ChatGPT in clinical settings
is its lack of ability to provide source citations [35]. Studies
have indicated that ChatGPT often provides false references for
its generated responses, leading to concerns over response
reliability and the risk of inaccuracies [36]. In contrast, the
combination of RAG with SLM guarantees the citation of all
sources, offering clear evidence for shared information. This
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ability is a crucial benefit of SLM in clinical contexts, enhancing
its utility in delivering reliable, evidence-supported information
to patients. Unlike ChatGPT 4.0, which cannot cite references
for its responses, SLM equipped with RAG can specify the
exact reference and its metadata, including DOI, publication
year, and journal name, used to generate a response. The ability
to locally deploy domain-specific SLMs with RAG opens
several avenues for real-world clinical use. In ophthalmology
clinics, SLMs could serve as virtual assistants capable of
providing preliminary education to patients, addressing common
concerns before or after consultations, and supporting
decision-making through curated literature. This could reduce
physician workload and improve information retention. These
systems could also be embedded in telemedicine platforms or
patient portals to enhance access to personalized, trustworthy,
and reference-backed content, especially for chronic conditions
like glaucoma.

Although our study did not directly compare the models’
responses to responses by human experts, recent evidence
suggests that language models may already be approaching
human-level performance in natural language generation [37].
A preprint by Jones et al [37] demonstrated that when
appropriately prompted to adopt a human persona,
state-of-the-art LLMs were judged to be the human more often
than real human participants in a controlled 3-party Turing test,
effectively passing the original Turing test design. These
findings imply that, at least in open-ended conversational tasks,
language models may generate responses that are
indistinguishable from those of real people. While this supports
the plausibility of expert-level performance in patient education
tasks, further research is required to compare model-generated
content to clinician-authored responses within
ophthalmology-specific domains directly.

Previous studies have shown that natural language models often
generate grammatically correct responses to common patient
inquiries [38]. However, these answers are complex and difficult
for the average layperson to understand fully [39]. The American
Medical Association recommends that health-related information
be communicated at a grade level score of 5-6, which is
equivalent to the reading level of fifth- to sixth-graders [40].
Previous research has indicated that information on glaucoma
available online is often written at a grade level that is not
suitable for health-related information [41-43]. Our analysis
revealed that the answers from both LLM and SLM share the
same limitation of requiring high-level education to fully
understand the answers. In our study, the grade level mean
scores, measured by the Flesch-Kincaid Grade Level, the
Gunning Fog Index, the Coleman-Liau Index, and the SMOG
Index, were 13.2 (SD 3.2), 17.7 (SD 4.3), 14.7 (SD 3.0), and
15.98 (SD 2.9), respectively, for the SLM, and 11.8 (SD 2.2),
14.4 (SD 3.0), 12.5 (SD 1.5), and 13.9 (SD 2.1) for the LLM.
The SLM had a statistically significantly higher grade level in
all 4 metrics (P<.001). This finding is associated with the usage

of scientific resources only as the source material for the SLM
responses, as this material is written at an academic level.

This study had several limitations. It was conducted with a
limited set of questions, focusing solely on a single
ophthalmological condition evaluated by a small panel of 3
glaucoma specialists within a single institution. A multicenter
evaluation on a larger dataset of questions would offer additional
insights into the performance of the SLM powered with RAG
versus LLM in answering questions frequently asked by patients
with glaucoma. Moreover, this study did not directly assess
patient response evaluations. Future studies measuring patients’
opinions on the clarity and quality of the answers could reveal
more details regarding using natural language models as a tool
for answering glaucoma-related questions. Additionally, the
model was not designed exclusively to respond to frequently
asked questions about glaucoma but was trained to address
ophthalmological inquiries in a broader and more technical
context. This approach could have resulted in an underestimation
of the SLM’s performance. However, this study stands as proof
of concept, and the SLM can be further tailored to specific tasks
and other domains in ophthalmology. Furthermore, the post hoc
power analysis shows that the sample size of 35 questions
provided only 32.9% power to detect the observed difference
in quality scores. This indicates a high risk of a type II error,
suggesting that the lack of statistical significance may be due
to insufficient power rather than equivalence in model
performance. Future studies with larger sample sizes are needed
to assess potential differences between SLM and LLM
performances more robustly. Moreover, the prompt did not
contain specific instructions to generate answers to a particular
grade level, which could generate more easily understood
questions and should be explored by future studies. Finally, this
study did not include a direct comparison between the responses
generated by the language models and human experts. Future
research should evaluate how SLM and LLM outputs compare
to clinician-authored answers regarding accuracy,
appropriateness, and patient comprehension.

Conclusion
In conclusion, our study revealed that a specialized SLM may
be able to perform similarly to an LLM in answering frequently
asked glaucoma questions. However, their answers were
unsuitable for health care–related information, as they would
be difficult for the average layperson to comprehend. Given
their comparable performance to LLMs, high customization
potential, ability to provide citations, low cost, and capacity to
operate locally without collecting sensitive data, specialized
SLMs may present as a realistic option for deploying NLP in
real-world ophthalmology clinical settings. Further research is
needed to investigate the incorporation of health care–related
texts with greater readability into SLMs, as they could be more
easily adapted to generate accurate and easy-to-understand
answers.
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Abstract

Background: Early-stage clinical findings often appear only as conference posters circulated on social media. Because posters
rarely carry structured metadata, their citations are invisible to bibliometric and alternative metric tools, limiting real-time research
discovery.

Objective: This study aimed to determine whether a large language model can accurately extract citation data from clinical
conference poster images shared on X (formerly known as Twitter) and link those data to the Dimensions and Altmetric databases.

Methods: Poster images associated with the 2024 American Society of Clinical Oncology conference were searched using the
terms “#ASCO24,” “#ASCO2024,” and the conference name. Images ≥100 kB that contained the word “poster” in the post text
were retained. A prompt-engineered Gemini 2.0 Flash model classified images, summarized posters, and extracted structured
citation elements (eg, authors, titles, and digital object identifiers [DOIs]) in JSON format. A hierarchical linkage algorithm
matched extracted elements against Dimensions records, prioritizing persistent identifiers and then title-journal-author composites.
Manual validation was performed on a random 20% sample.

Results: We searched within 115,714 posts and 16,574 images, of which 651 (3.9%) met the inclusion criteria, and we obtained
1117 potential citations. The algorithm linked 63.4% (708/1117) of the citations to 616 unique research outputs (n=580, 94.2%
journal articles; n=36, 5.8% clinical trial registrations). Manual review of 135 randomly sampled citations confirmed correct
linkage in 124 (91.9%) cases. DOI-based matching was mostly flawless; most errors occurred where only partial bibliographic
details were available. The linked dataset enabled rapid profiling of topical foci (eg, lung and breast cancer) and identification
of the most frequently referenced institutions and clinical trials in shared posters.

Conclusions: This study presents a novel artificial intelligence–driven methodology for enhancing research discovery and
attention analysis from nontraditional clinical scholarly outputs. The American Society of Clinical Oncology was used as an
example, but this methodology could be used for any conference and clinical poster.

(JMIR AI 2026;5:e78148)   doi:10.2196/78148
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Introduction

Background
Generative artificial intelligence (AI) has rapidly transformed
image and visual processing, progressing from early generative
adversarial networks to advanced multimodal models such as
DALL-E and diffusion-based techniques. Recent studies
highlight advancements in text-to-image generation and
semantic image synthesis [1], showcasing improved realism
and contextual understanding. The application of AI in visual
communication design [2] and generative visual intelligence
[3] further demonstrates AI’s expanding role in creative fields.
As generative models continue to evolve, their impact extends
beyond art and entertainment into scientific visualization and
human-computer interaction.

Altmetric and Dimensions are two powerful research analytics
platforms that provide insights into scholarly impact and
research discovery. Altmetric specifically tracks the online
attention a research output receives. It aggregates mentions from
a wide variety of nontraditional sources, including social media
(such as X, formerly known as Twitter, the platform used in
this study), public policy documents, mainstream news outlets,
podcasts, blogs, and others. This provides a real-time gauge of
how research is being discussed and shared among both
academic and public audiences, reflecting its societal or
“alternative” impact [4]. Dimensions, on the other hand, is a
comprehensive research database that integrates publications,
grants, patents, clinical trials, and policy documents, enabling
in-depth bibliometric analysis and research discovery [5]. Unlike
traditional citation-based metrics, these platforms offer a broader
perspective on research influence, making them an essential
complement for researchers, institutions, and policymakers.

Extracting citations from research conference posters presents
unique challenges due to their unstructured format, multimodal
content, and limited metadata. Recent advances in scholarly
document processing and bibliographic reference parsing have
aimed to improve citation extraction from various scientific
sources. Studies on neural network models for scholarly
document processing [6] and automated bibliographic reference
parsers provide insights into leveraging AI for structured citation
extraction. Additionally, research on semantic entity extraction
from academic databases [7] highlights challenges related to
data acquisition and accuracy. These findings suggest that, while
existing methods improve citation extraction in formal
publications, further work is needed to adapt them for
conference posters.

Objectives
The primary goal of this study was to test whether it is possible
to extract citations from conference poster pictures using a large
language model (LLM). The secondary objective was to explore
what extracted data can be used to link the poster citations to
Dimensions and Altmetric data.

Methods

AI Prompt and Testing
To examine whether generative AI can extract information from
conference posters, we used the Google Cloud Vertex AI
environment and tested several LLMs. Through trial and error
and comparison of the quality of the output, we used the Gemini
2.0 Flash (Google; experimental) version for this study. The
prompt used is presented in Textbox 1.

Figure 1 shows an example of a poster image with the locations
from which information was extracted. The JSON format
information returned by the prompt is provided in Textbox 2.
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Textbox 1. Example prompt input.

“You are a researcher and poster identification and citation reference extraction expert. I will provide you with the image or bucket location of a poster
image and you are going to evaluate if the image:

1. is_research_poster (True/False)

2. image_type (one or more of these categories, separated by comma: people, poster, presentation_picture, presentation_slides, selfie, other)

3. image_type_other (if the above answer is other, add another category here)

4. is_readable (True/False)

5. poster_summary (100 words maximum)

If it is a poster then you are going extract the following information for each reference/citation mentioned in the research poster:

1. citation_n (0 is for the poster publication information itself, all the rest are citations)

2. authors

3. first_author_last_name

4. last_author_last_name

5. year

6. doi

7. identifier_other

8. journal_title_original

9. journal_title_full (full name of the journal)

10. volume

11. pages

12. title (just include the citation publication title text and nothing else)

13. other (include any other persistent identifier, link or information you see relevant to find the citation)

14. full_content (add everything included in the citation, for the main poster publication also add the affiliations, funders, sponsors and any other
available information)

Go through these steps:

1- Confirm there is a research poster in the picture

2- If the image quality is low please focus on extracting the DOI at least 3 times. You can try to improve the quality of the pixels yourself

3- Identify the reference/citations section

4- Extract the information for each citation. Numbering each citation (citation #1, #2, etc...)

5- Only complete the fields if you are certain they are correct, otherwise respond null to that field

6- JSON format with all the fields detailed above”
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Figure 1. Example poster picture (with permission). The red outline represents extracted information from the main poster; the blue outline represents
extracted information from references.
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Textbox 2. Extracted code.

{

“is_research_poster”: true,

“image_type”: [

“poster”

],

“image_type_other”: null,

“is_readable”: true,

“poster_summary”: “This research poster investigates neuromuscular changes in football players with previous hamstring injuries (HSI). The study
aims to analyze the influence of previous HSI on neuromuscular adaptations. The methods include isokinetic strength and EMG assessments,
proprioception tests, and flexibility/core stability tests. The results show that even after rehabilitation, players may exhibit decreased biceps femoris
myoelectrical activity during eccentric contractions and proprioceptive deficits at the knee joint. The conclusion emphasizes the need to consider these
persistent changes in rehabilitation and strengthening programs.”,

“citations”: [

{

“citation_n”: 0,

“authors”: “Carlos Areia, Paulo Barreira, Tiago Montanha, José Oliveira, Fernando Ribeiro”,

“first_author_last_name”: “Areia”,

“last_author_last_name”: “Ribeiro”,

“year”: null,

“doi”: null,

“identifier_other”: null,

“journal_title_original”: null,

“journal_title_full”: null,

“volume”: null,

“pages”: null,

“title”: “Neuromuscular changes in football players with previous hamstring injury.”,

“other”: “1 School of Health Sciences, University of Aveiro, Aveiro, Portugal; 2 Arsenal FC, Football Medicine; 3 Research Center in Physical
Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal; 4 School of Health Sciences and Institute of Biomedicine -
İBİMED, University of Aveiro, Aveiro, Portugal”,

“full_content”: “Carlos Areia¹*; Paulo Barreira², Tiago Montanha³; José Oliveira³; Fernando Ribeiro 4\n1 School of Health Sciences, University of
Aveiro, Aveiro, Portugal; 2 Arsenal FC, Football Medicine; 3 Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University
of Porto, Porto, Portugal; 4 School of Health Sciences and Institute of Biomedicine - İBİMED, University of Aveiro, Aveiro, Portugal”

},

{

“citation_n”: 1,

“authors”: “Fyfe JJ, Opar DA, Williams MD, Shield AJ”,

“first_author_last_name”: “Fyfe”,

“last_author_last_name”: “Shield”,

“year”: null,

“doi”: null,

“identifier_other”: null,

“journal_title_original”: null,

“journal_title_full”: null,

“volume”: null,

“pages”: null,

“title”: “The role of neuromuscular inhibition in hamstring strain injury”,
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“other”: null,

“full_content”: “Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury. Br J Sports Med 2013;
47: 86-92.”

},

{

“citation_n”: 2,

“authors”: “Opar DA, Williams MD, Shield AJ”,

“first_author_last_name”: “Opar”,

“last_author_last_name”: “Shield”,

“year”: “2012”,

“doi”: null,

“identifier_other”: null,

“journal_title_original”: null,

“journal_title_full”: null,

“volume”: “42”,

“pages”: “209-224”,

“title”: “Hamstring strain injuries: factors that lead to injury and re-injury”,

“other”: null,

“full_content”: “Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 2012; 42: 209-224”

},

{

“citation_n”: 3,

“authors”: “Brockett CL, Morgan DL, Proske U”,

“first_author_last_name”: “Brockett”,

“last_author_last_name”: “Proske”,

“year”: “2004”,

“doi”: null,

“identifier_other”: null,

“journal_title_original”: null,

“journal_title_full”: null,

“volume”: null,

“pages”: null,

“title”: “Human hamstring muscles adapt to eccentric exercise by changing contraction-induced injury”,

“other”: null,

“full_content”: “Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing contraction-induced injury.
Med Sci Sports Exerc 2004; 36: 379-383.”

},

{

“citation_n”: 4,

“authors”: “Schache AG, Blanch P, Rath D, et al”,

“first_author_last_name”: “Schache”,

“last_author_last_name”: “al”,

“year”: “2011”,

“doi”: null,
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“identifier_other”: null,

“journal_title_original”: null,

“journal_title_full”: null,

“volume”: “46”,

“pages”: “118-121”,

“title”: “Hamstring muscle strength and flexibility in elite Australian Rules football players with previous hamstring strain injury”,

“other”: null,

“full_content”: “Schache AG, Blanch P, Rath D, et al. Hamstring muscle strength and flexibility in elite Australian Rules football players with previous
hamstring strain injury. J Sci Med Sport 2011; 46: 118-121”

}

]

Poster Image Extraction and Inclusion Criteria
For the purposes of this study, we selected poster images posted
on X associated with the American Society of Clinical Oncology
(ASCO) 2024 conference. We used the Tweepy Python library
[8] to do this using the following search terms: “American
Society of Clinical Oncology Annual Meeting 2024” OR
#ASCO24 OR #ASCO2024

Due to the high metadata availability of ASCO conferences,
we also decided to include a smaller, nonclinical conference to
double-check accuracy and citation linkage. For this subanalysis,
we included all International Conference on Science,

Technology, and Innovation Indicators (STI) conferences from
2018 to 2024 (Multimedia Appendix 1).

For the image to be considered for inclusion, it had to be at least
100 kB and mention the word “poster” in the body of the post
to optimize the identification of posts that contained a poster
image to input into the LLM.

Conference Image Analysis at Scale
To be able to do this at scale, we used the following toolkits:
Python (Python Software Foundation); Jupyter Notebooks; and
Google Cloud Vertex AI, Cloud Storage, and BigQuery. The
pipeline is described in Figure 2.

Figure 2. Image analysis and linkage pipeline. ASCO: American Society of Clinical Oncology; GBQ: Google BigQuery.

Linkage Algorithm
From the AI response containing the JSON values, we extracted
and linked data to our Dimensions database using an algorithm
that considered the following information:

• Digital object identifier (DOI) or any other persistent
identifier: this was the most straightforward method of
linkage; when a persistent identifier was available, we used
it to directly link it with the Dimensions database
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• First author last name
• Last author last name
• Year
• Journal
• Volume
• Pages
• Title matching

Title matching involved 2 calculations. The first was match
percentage to identify the textual overlap between citation and
publication titles while accounting for differences in word
counts. First, titles were tokenized to calculate word counts and
matching words. A match percentage was derived by dividing
matching words by the citation title word count. To address
noise from large word count discrepancies, an adjustment

penalized cases with significant differences, weighting matches
in which word counts aligned more closely.

The second calculation was title score=match
percentage×number of words. This was also calculated to
differentiate strong matches in low-count titles that could be
present in many different publications due to commonality.

The primary and simplest method for matching were the
persistent identifiers. The next option was the title matching
algorithm, where only matches with an adjusted match
percentage above 70% were considered for use, with those with
a percentage of >93% used on its own and those with a
percentage between 70% and 90% used in conjunction with the
above indicators. Table 1 describes the algorithm used by
priority order.

Table 1. Matching method priority table.a

Other matches usedMatch percentageMatching method

——bDOI

——PMID

——Clinical trial registry

—Title_Only • 93%
• 82% (+title score >7)
• 71% (+title score >15)

Title_Year_Journal •• Journal title70%
• Citation/publication year

Title_First_Author •• First author last name70%

Title_Last_Author •• Last author last name70%

Title_Volume_Pages •• Journal volume62%
• Journal pages

Title_Authors •• First author last name100% (exact match)
• Last author last namec

—Journal_Volume_Pages • Journal title
• Journal volume
• Journal pages

—Journal_Pages_Year • Journal title
• Journal pages publication year

—Journal_Year_Author • Journal title
• Publication year
• First or last author last name

aThe “authors only” method was used due to our single-conference, small-sample example. This should not be used at scale as it might match a high
number of wrong publications (same authors, different studies).
bNot used.
cThere need to be two of the following matches: first to first, last to last, first to last, or last to first.

In the case of multiple Dimensions publication matches, we
used the highest match percentage or title score. After all these
algorithms had run, we retrieved all the Dimensions IDs linked
to DOI, PubMed identifier (PMID), clinical trial registration,
title, and journal. For the final ID matching decision, we applied
the following rules (see the example in Table 2). If multiple IDs

were retrieved, we selected the most frequent ID as the final
ID. If only 1 ID was retrieved, that was the final ID. If multiple
IDs were retrieved but not repeated, we used the following
priority list: (1) retrieved DOI, (2) retrieved PMID, (3) retrieved
clinical trial ID, (4) retrieved title ID, and (5) retrieved journal
ID.
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Table 2. Algorithm prioritization example using fictional IDs.

Final IDJournal IDTitle IDTrial IDPubMed identifierDigital object identifier

pub.1111111—pub.1111111—apub.1111111pub.1234567

pub.1234567————pub.1234567

pub.1111111———pub.1111111—

NCT882929——NCT882929——

pub.123123pub.123123————

pub.1234567———pub.1111111pub.1234567

pub.1111111pub.123123pub.1111111———

aNot used.

Random Sampling Check
To test the accuracy of the citation extraction and linkage, we
performed a random check of examples, first, for whether the
citation was correct regarding the image information. If this
information was false, we checked whether it was the fault of
the AI extraction (eg, extracting the wrong DOI and
hallucinating an identifier) and whether it was the fault of the
matching algorithm (eg, when the AI extracted the information
correctly but we could not match it to our Dimensions and
Altmetric data).

To ensure that we had at least 100 manually confirmed citations,
we randomly selected 150 examples from our results dataset.
For our subanalysis, due to the small sample size, all citations
were manually confirmed (Multimedia Appendix 1).

Ethical Considerations
Due to the observational nature of publicly available data, this
study was exempt from ethics approval and informed consent.
The example image of the poster in Figure 1 is from the main
author of this manuscript and is shared with his permission.

Results

Overview
This study included, in total, 115,714 X posts from the ASCO
2024 conference, including 23,548 (20.4%) original posts, 4044
(3.5%) quoted posts, and 88,122 (76.2%) reposts. Of these
115,714 posts, 18,218 (15.7%) included at least one attachment,
with 16,574 (14.3%) being labeled as a photo or image. After
applying our eligibility criteria (image of >100 kB and text of
the post including the word “poster”), we narrowed this down
to 793 images to run our AI model. Of these 793 images, a

further 94 (11.9%) were excluded from the analysis as the
quality was too low to be readable by the AI, and 130 (16.4%)
were considered posters by the AI, all confirmed manually
(Figure 2). The final dataset included 651 readable poster
images, with 1117 potential citations identified by our AI model.

In total, we managed to link 708 poster citations (n=332, 46.9%
coming from the main poster information and n=376, 53.1%
from the reference section or content of the poster, with an
average of 1.66, SD 2.58 and median of 1, IQR 0-3 references
per poster) to their respective publication information (616
unique publications) using different matching methods as
described in Figure 3.

We were unable to link over one-third (409/1117, 36.6%) of
the potential citations to their respective Dimensions publication
information due to incomplete information or to the information
retrieving multiple studies, as in the following examples:

• Cox AD et al
Nat Rev Drug Discov
(insufficient information)

• Accurate detection of ER loss (
J Clin Oncol
2022) (unable to match any publication)

• Schuler et al, 2024 (matching multiple publications)
• https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics

(not a citation)
• NURE-COMBO trial: NCT04086115 (identifier outdated

or not correct)
• (Abstract #10521, Hedin T et al.) (not indexed abstract

and/or publication)

Our subanalysis results can be found in Multimedia Appendix
1.
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Figure 3. Poster citation to publication matching algorithm process and results. DOI: digital object identifier; PMID: PubMed identifier.

Validation Accuracy Testing
Of the 708 matches, 150 (21.2%) were randomly selected for
manual curation and confirmation of accuracy. Of these, after
excluding the posters for which we were unable to confirm a
match (not of sufficient quality to be readable by the human

eye), we manually reviewed 135 poster citations, of which 124
(91.9%) were correct matches and 11 (8.1%) were incorrect
matches. A breakdown by matching method can be found in
Table 3.

Our subanalysis of the STI conferences yielded similar accuracy
results (Multimedia Appendix 1).
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Table 3. Number of accurate and inaccurate matches by method (N=135).

Matches, n (%)Matched?Matching method

2 (1.5)YesTitle and other

1 (0.7)NoTitle and other

76 (56.3)YesTitle only

3 (2.2)NoTitle only

2 (1.5)YesTitle and last author

2 (1.5)NoTitle and first author

6 (4.4)YesTitle and first author

8 (5.9)YesTitle and authors

1 (0.7)YesPubMed identifier

1 (0.7)NoJournal, year, and author

9 (6.7)YesJournal, year, and author

4 (3.0)YesJournal, pages, and year

4 (3.0)NoDigital object identifier

9 (6.7)YesDigital object identifier

7 (5.2)YesClinical trial registry identifier

Included Publication Information
A total of 616 unique research outputs (n=580, 94.2% articles
and n=36, 5.8% clinical trial registrations) were matched, with

a few being mentioned in more than one conference poster
(Table 4).

Table 4. Top 10 matched publications by the number of poster citations.

StudyPoster citations, nPublication titleJournalYear

[9]3“The genomic, transcriptomic, and immunological profile of patients with recur-
rent/refractory NSCLC”

Journal of Clinical
Oncology

2024

[10]3“Exploring T cell subsets as predictors of response to BCMA targeting bispecific
antibody therapy in multiple myeloma”

Journal of Clinical
Oncology

2024

[11]3“Association between circulating tumor DNA (ctDNA) and recurrence-free survival
(RFS) in patients (pts) with resected stage III melanoma: an exploratory analysis
of SWOG S1404”

Journal of Clinical
Oncology

2024

[12]3“Challenges and solutions to recruiting diverse populations to oncology clinical
trials: a mixed-methods study of clinical research coordinators”

Journal of Clinical
Oncology

2024

[13]3“Unveiling inequities in representation: racial disparities in supportive care breast
cancer clinical trial enrollment”

Journal of Clinical
Oncology

2024

[14]3“Final results of CORE-001: a phase-2, single arm study of cretostimogene
grenadenorepvec in combination with pembrolizumab in patients with BCG-un-
responsive, non-muscle invasive bladder cancer with carcinoma in situ”

Journal of Clinical
Oncology

2024

[15]3“AI-based approach to enable proactive identification of early lung cancer: a ret-
rospective population health study and economic model”

Journal of Clinical
Oncology

2024

[16]2“First-line systemic therapy following adjuvant immunotherapy in renal cell car-
cinoma (RCC): an international multi-center study”

Journal of Clinical
Oncology

2024

[17]2“Self-expressed needs and gaps in our care of metastatic breast cancer (MBC):
an all-Ireland patient-led online survey (CTRIAL-IE 23-05)”

Journal of Clinical
Oncology

2024

[18]2“PALLAS: A randomized phase III trial of adjuvant palbociclib with endocrine
therapy versus endocrine therapy alone for HR+/HER2- early breast cancer”

Annals of Oncology2020

The 616 research outputs linked as per Dimensions document
classification [5] included 361 (58.6%) conference abstracts,
143 (23.2%) research articles, 39 (6.3%) review articles, 36
(5.8%) clinical trial registrations, 13 (2.1%) letters to the editor,

10 (1.6%) unknown, 4 (0.6%) other types of journal content, 4
(0.6%) correction or erratum notes, 3 (0.5%) editorials, 1 (0.2%)
conference paper, 1 (0.2%) other type of conference content,
and 1 (0.2%) reference work. Interestingly, some of the main
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posters were then published (either as an abstract or full
publication) and achieved a significant level of attention
(according to the Altmetric score), as shown in Table 5.

By linking the poster citations to Dimensions publication and
clinical trial information, it is possible to conduct several

analyses and extract interesting signals, for example, using
research categories. In Figure 4, we used the International
Cancer Research Partnership cancer type taxonomy to be able
to quickly identify the main cancer types mentioned in the poster
citations.

Table 5. Top 10 published posters by Altmetric score.

StudyAltmet-
ric score

Publication titleJournalYear

[19]296“Outcomes of myeloma cast nephropathy in the era of anti-CD38 monoclonal anti-
body-based frontline therapy: A retrospective cohort study”

Journal of Clinical Oncology2024

[20]65“Characterizing the increase in artificial intelligence content detection in oncology
scientific abstracts from 2021 to 2023”

JCO Clinical Cancer Infor-
matics

2024

[21]43“Results from the randomized phase III DREAMM-7 study of belantamab mafodotin
(belamaf) + bortezomib, and dexamethasone (BVd) vs daratumumab, bortezomib,
and dexamethasone (DVd) in relapsed/refractory multiple myeloma (RRMM)”

Journal of Clinical Oncology2024

[22]39“Zanidatamab in previously-treated HER2-positive (HER2+) biliary tract cancer
(BTC): Overall survival (OS) and longer follow-up from the phase 2b HERIZON-
BTC-01 study”

Journal of Clinical Oncology2024

[23]30“First-line systemic therapy following adjuvant immunotherapy in renal cell carci-
noma: an international multicenter study”

European Urology2024

[24]20“Inpatient burden and clinical outcomes of cytokine release syndrome in patients
with cancer: a National Inpatient Sample study”

Journal of Clinical Oncology2024

[25]19“A Phase 1b trial of M3814 (peposertib) in combination with lutetium 177 dotatate
for Well-differentiated somatostatin receptor-positive gastroenteropancreatic neu-
roendocrine tumors (GEP-NETs)”

ClinicalTrials.gov2021
(trial
start
date)

[26]18“Randomized study to assess colonic microbiome changes in response to energy
drink consumption (ROSANNA trial)”

Journal of Clinical Oncology2024

[27]18“Atezolizumab versus placebo in combination with bevacizumab and non-platinum-
based chemotherapy in recurrent ovarian cancer: final overall and progression-free
survival results from the AGO-OVAR 2.29/ENGOT-ov34 study”

Journal of Clinical Oncology2024

[17]13“Self-expressed needs and gaps in our care of metastatic breast cancer (MBC): an
all-Ireland patient-led online survey (CTRIAL-IE 23-05)”

Journal of Clinical Oncology2024
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Figure 4. Top cancer type research mentioned in the American Society of Clinical Oncology 2024 conference posters classified by publication and
clinical trial citation according to the International Cancer Research Partnership cancer type taxonomy.

We then used the authors’ affiliations to calculate the most
frequently referenced institutions in shared posters (this could
include the poster itself or inside reference), with the following
top three for research articles: (1) Dana-Farber Cancer Institute
(35 poster citations), (2) the University of Texas MD Anderson
Cancer Center (30 poster citations), and (3) Memorial Sloan
Kettering Cancer Center (24 poster citations).

The following were the top three for clinical trials: (1) SWOG
Cancer Research Network (4 poster citations), (2) University

of North Carolina Lineberger Comprehensive Cancer Center
(3 poster citations), and (3) National Cancer Institute (3 poster
citations).

Focusing on clinical trials, by linking cited clinical trials to their
respective Dimensions information, we were able to explore
some interesting information and signals on the status of these
trials; for example, in Figures 5 and 6, we outline the active
years and overall status and phase for all 36 matched clinical
trial registrations.
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Figure 5. Overall status and active years of all clinical trials cited by the American Society of Clinical Oncology 2024 conference posters.

Figure 6. Trial phase and active years of all clinical trials cited by the American Society of Clinical Oncology 2024 conference posters. N/A: not
applicable.
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Included X Profiles and Posts
The final dataset included 651 images with readable posters
and 1117 potential citations. These images came from 240 X
profiles and 347 unique X posts, ranging from a minimum of
1 to a maximum of 4 images per post.

Most of the included posts (330/347, 95.1%) were original posts,
with most (318/347, 91.6%) originating during the ASCO 2024
conference period (May 31, 2024, to June 4, 2024), as shown
in Figure 7.

Figure 7. Included post timeline classified by type of post.

The top three profiles sharing posters were the following: (1)
DFCI_BreastOnc (14 posts with 16 poster images), (2)
CSCancerCenter (7 posts with 7 poster images), and (3)
MDAndersonNews (6 posts with 6 poster images).

Discussion

Principal Results
This study aimed to explore the use of an LLM to extract both
the main citations as well as references (where available) from
poster images. It also explored how were different strategies
good at trying to link the free-text extracted poster citation data
to the Dimensions and Altmetric databases. As the ASCO
conferences are well indexed, mostly in the Journal of Clinical
Oncology, we decided to also include a subanalysis of a smaller,
nonclinical conference that matched similar results. The LLM
and algorithm can be tested on any poster at any conference.

This exploratory study demonstrated that it is indeed possible
to extract structured citation data from poster images using
LLMs and relatively easy to link to the Dimensions and
Altmetric databases in cases in which the DOI or other persistent
identifiers are present; however, it became significantly more
challenging for references without these identifiers, and we tried
to find creative solutions using the available extracted data

points. Our random sampling accuracy testing highlighted that
the LLM was particularly good at extracting the correct
information from both the main poster and references (or other
poster content citations), with the former usually being easier
to link to the publication through the title and authors. When
an identifier was provided in the references section, it was also
quite straightforward to link it to the respective publication;
however, it was more challenging to do so when only limited
information was provided, for example, just the first author’s
last name with “et al” and the journal (with the year in
parentheses) as it could provide erroneous linkage to multiple
publications.

For most posters (124/135, 91.9%), the LLM extracted the
correct information, and using our Dimensions database, we
managed to successfully link most of the citations with complete
data provided in the poster. In some cases, we even managed
to link a poster to both its respective clinical trial registration
[28] and publication [29]. Interestingly, during the manual
random sample, in a lot of cases in which a picture was taken
of several posters and people at the same time, the AI still
managed to extract enough partial information to be able to link
to the publication data. According to our random sampling
analysis, most of the errors were not from the AI extraction but
from our matching algorithm, and several future improvements
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were identified. First, journal+year+volume is not sufficient
and should only be used as a last resort. Many of the errors
encountered were in this category, and despite this being already
one of the most recent matching methods within our algorithm,
we should consider other, more recent methods before this one.
Second, even when using identifiers, we should consider other
methods of matching in conjunction with them. In some cases,
the AI seemed to hallucinate a DOI that matched the wrong
publication. In other cases, the DOI was wrong (we noticed this
particularly in older studies).

Our matching algorithm was relatively basic and needs further
improvement as it was built through trial and error until an
optimal level of accuracy was achieved using the selected
method. Albeit limited, this algorithm was sufficient to prove
our hypothesis successfully. In future studies and applications
of this technology, we will consider other matching methods
such as using multiple types of author information, sponsors,
funders, organizations, and the content of the poster itself (which
we can try to match to an abstract, for example). However, to
the best of our knowledge, this is the first study to successfully
extract poster image information and link it to a research
repository. Despite our hypothesis’s success, poster citations
should be used thoughtfully to avoid citation duplication (eg,
if the conference poster abstract is published online). Therefore,
it is our view that these poster citations may not be suitable to
be used as formal citations but should perhaps be considered as
attention mentions instead (a debatable opinion). As the images
were shared through an X post, we believe that the correct way
of presenting this information would be as a research attention
(similar to when someone posts a publication link or DOI), and
this would be a novel way to track conference attention.

Alternative metrics are becoming increasingly important, and
tools such as Altmetric, PlumX, and others are increasing their
capabilities in capturing different types of research attention
[30]. Conference posters can contain novel, important
information that often goes unpublished or share early insights
on studies (eg, interim clinical trial results) months or years
before the final publication [31]. We used the ASCO 2024
conference example to highlight that, due to the agile nature of
health care practice (see the COVID-19 pandemic as an
example), having access to timely poster citation information
may be important for clinical and strategic decisions.

By linking poster citations to their respective research
publication or clinical trial information, it is possible to extract
interesting insights and signals to explore at scale. In this study,
we used a narrow, limiting example as a proof of concept;
however, future research will test this at scale with multiple
conferences through the years in several fields (including new
ones such as humanities, social sciences, and engineering),
testing practical, economical, and computational feasibility of
poster or image citation extraction.

Limitations
We noticed in some rare cases that, if a poster was about a
systematic review that referenced other publications in the
content, the LLM often assumed that to be a poster mention.

While not the desired behavior, it might extend the capabilities
of this model and the number of publications identified as cited
in that poster (which is, in fact, correct and in accordance with
our study objectives).

ASCO posters are routinely published by the Journal of Clinical
Oncology and issued a DOI, and therefore, the metadata are
easy to obtain. Many other important conferences do not publish
material with DOIs and would be considerably harder to match.
To test this, we used a smaller nonclinical conference as a
subanalysis (Multimedia Appendix 1) that yielded similar
results.

During the random sampling accuracy testing, we noted that,
when the quality of the poster was poor but passable (according
to the is_readable variable returned by the AI), it was hard for
the human eye to confirm its accuracy, and therefore, the poster
was not included in the random sampling analysis. Future work
should include thresholds of quality for accuracy checking. We
also did not perform a sample size calculation for the random
sampling analysis, and the 150-sample check was an arbitrary
number that we felt was sufficient to be representative of our
data together with the STI conference subanalysis, in which we
conducted the accuracy check in all citations due to the small
sample.

Another limitation is that we did not fully explore linking
methods between the data retrieved from the image and our
datasets. There might be other creative ways to link more
publications to our (and other) data. For example, in this study,
we struggled to match publications in which only the first author,
year, and journal were shared, and there might be other clever
ways to match these in our dataset (by increasing context using
general poster information and perhaps another AI model to
help select the correct publication within a list). Another
example is when the LLM hallucinated while extracting a
persistent identifier (eg, DOI or PMID) and other information
was provided. A fallback method could be added to the
algorithm to identify a nonmatch from the identifier and
prioritize other matching methods instead. Future work will
involve improving our algorithm to maximize poster citation
matching.

This study also opens the door to other image citation extraction
algorithms, for example, of conference presentations (or
available online presentation slides in which research mention
and citation is likely) or presentation video analysis and citation
extraction using AI.

Conclusions
The objective of this study was to confirm the hypothesis that
AI can be used to extract citations from poster images. Our
study concluded that it is not only possible but also
straightforward to do it in a scalable way, with most of the effort
lying in accurately connecting these citations to the correct
publication data through different methods. This study opens
the door for future use of AI on image data extraction to collect
scholarly mentions and citations from novel sources, as well as
other relevant clinical data from conference posters.
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