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Abstract

Background: Medical residency is characterized by high stress, long working hours, and demanding schedules, leading to
widespread burnout among resident physicians. Although wearable sensors and machine learning (ML) models hold promise for
predicting burnout, their lack of clinical explainability often limits their utility in health care settings.

Objective: This paper presents EMBRACE (Explainable Multitask Burnout Prediction Using Adaptive Deep Learning), a novel
framework designed to predict and explain future burnout in resident physicians through an adaptive multitask deep learning
approach. The framework aims to provide clinically actionable and trustworthy burnout predictions by integrating explainable
ML techniques.

Methods: EMBRACE applies deep multitask learning (3 tasks) using wearable sensor data for context-aware burnout prediction
and explanation. The adaptive multitask learning framework predicts workplace activities and future burnout levels, and
automatically completes a clinically validated burnout survey. Additionally, an explainability study was conducted using SHAP
(Shapley Additive Explanations) to provide feature importance scores and visualizations for clinicians, enhancing the transparency
and interpretability of the predictions. We evaluated the model on three datasets: (1) a collected dataset of 28 resident physicians
(mean age 27.5, SD 3.5 years), over 2-7 days (average 3.6 days) with research protocols approved by the institutional review
board (#2021-017) of Berkshire Medical Center, University of Massachusetts Chan Medical School; (2) the publicly available
WESAD (Wearable Stress and Affect Detection) dataset from 15 participants; and (3) the SWELL-KW (SWELL Knowledge
Work) dataset containing workplace stress and activity data from 25 participants (8 females and 17 males).

Results: On our collected dataset, EMBRACE achieved 93% recall, 91% precision, and 0.91 R2 error in predicting 5-class
activities, 4-class future burnout levels, and 1 clinically explainable survey (Mini-Z with 10 questions). On the WESAD dataset,
the model achieved 94.1% recall and 94.6% precision for 3-class stress level prediction. On the SWELL-KW dataset, EMBRACE

obtained 89% recall, 86% precision, and 0.88 R2 error in predicting 5-class activities, 3 burnout measures (joyful, satisfaction,
and stress) with 2 classes on each measure, and 4 survey assessments (a total of 20 questions). The explainability study, using
SHAP values, highlighted key contributing factors such as heart rate variability, sedentary activity duration, and interruptions,
improving clinical trust and interpretation of burnout predictions. Of 23 participants, 21 (91%) reported satisfaction with the
explainability of feature importance summaries.

Conclusions: EMBRACE provides a clinically explainable and actionable solution for early burnout detection in resident
physicians, leveraging advanced ML techniques and SHAP-based explanations. Validation of proprietary and publicly available
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datasets demonstrates their robustness and generalizability. Future research may explore scaling the model across different clinical
environments and assessing its long-term impact on health care outcomes and physician well-being.

(JMIR AI 2026;5:e57025) doi: 10.2196/57025
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Introduction

Foundations of Physician Burnout
Burnout is a psychological syndrome emerging as a prolonged
response to chronic interpersonal stressors on the job. It is
characterized by 3 dimensions: emotional exhaustion,
depersonalization, and reduced personal accomplishment. Stress,
on the other hand, is a more immediate reaction to a challenge
or demand, often leading to burnout when experienced
frequently or intensely. In our work, we focus on predicting
physician burnout by analyzing the stress levels observed
through various wearable sensors.

Background
Workplace stress is a pervasive issue that affects individuals
across various professions and industries [1]. It encompasses
the psychological, emotional, and physical strain experienced
by employees due to demanding work conditions, excessive
workload, and challenging interpersonal dynamics [2]. Recent
statistics highlight the magnitude of the workplace stress
problem, with studies indicating that 80% of employees reported
feeling stressed at work sometimes, and 60% of absenteeism
was associated with stress in some ways in that survey [3,4].
This alarming trend raises concerns about the impact of
workplace stress on individuals’ well-being, job satisfaction,
and overall quality of life [5].

Recognizing the detrimental effects of workplace stress,
researchers and clinicians have developed clinically validated
tools to assess and detect stress levels in workers [6]. These
tools typically involve questionnaires and surveys that measure
various dimensions of stress, including task load, mental effort,
emotion, and perceived stress [7]. Additionally, real-time
methods for quantifying continuous mental workload have been
proposed [8]. One widely used tool is the Maslach Burnout
Inventory, which evaluates burnout by measuring emotional
exhaustion, depersonalization, and personal accomplishment
among professionals [9]. Another prominent tool is the
Copenhagen Burnout Inventory, which focuses on personal,
work-related, and client-related burnout, providing a
comprehensive view of burnout sources [10]. The Perceived
Stress Scale is frequently used to measure the perception of
stress in workers, assessing how unpredictable, uncontrollable,
and overloaded respondents find their lives [2,11]. Additionally,
the Job Content Questionnaire assesses job characteristics such
as decision latitude, psychological demands, and social support
at work, which are critical factors influencing stress and burnout
[12]. The Mini-Z survey is another widely used tool that assesses
various dimensions of burnout and job satisfaction, including
stress, workload, and control over work, making it effective in
both clinical and research settings [10,13]. These tools help in

identifying stress levels and sources, allowing for targeted
interventions to mitigate the adverse effects of workplace stress
and improve overall well-being.

While these tools provide valuable insights and are clinically
explainable to nurses and clinicians, they are often limited by
their reliance on self-reporting and retrospective assessments,
which can be subject to recall biases and may not capture
real-time stress experiences [14]. To address these limitations
and provide real-time monitoring of workplace stress, wearables
and machine learning (ML) techniques have emerged as
promising solutions. Wearable devices equipped with sensors
can collect physiological and behavioral data from individuals
throughout their workday, offering continuous and objective
measurements of stress-related indicators such as heart rate
variability, skin conductance, and physical activity. These
devices have been extensively used in various studies to monitor
and assess stress levels in real time. For instance, a study
validated the Empatica E4 wristband’s ability to detect heart
rate variability and electrodermal activity (EDA) metrics in
stress-inducing conditions [15]. Another research project focused
on the continuous monitoring of stress using
photoplethysmogram sensors integrated into wrist-worn devices,
highlighting significant changes in physiological responses
during stress-inducing tasks [16]. These developments
underscore the potential of wearable technology in providing
reliable, objective, and continuous stress monitoring solutions
[17]. ML algorithms can then analyze these data and predict
stress levels in real time [18].

Medical residency is undeniably one of the most challenging
and demanding workplace stress situations that individuals can
experience. Medical residency is a highly challenging and
demanding period characterized by extended working hours
and schedules [19]. The demanding work schedules and long
hours of residency, coupled with work-home interference, create
a highly stressful environment that predisposes residents to
burnout due to several stressors, including sleep deprivation,
conflicts with coworkers, difficulty adapting to a new
environment, heavy patient responsibilities, lack of control over
schedules, and personal traits such as neuroticism or introversion
that increase the risk of burnout [20]. Burnout can cause physical
symptoms (headache, fatigue, gastrointestinal distress, flu, and
sleep and appetite changes) and psychological symptoms
(irritability and reduced concentration), as well as behaviors
like procrastination, daydreaming, and substance use [21].
Additionally, it can lead to an increased risk of depression,
suicidal thoughts, and cardiovascular problems [22]. Moreover,
the COVID-19 pandemic has exacerbated the long-standing
issue of resident burnout in the US health care system,
highlighting the urgent need for interventions to support and
protect the well-being of these essential frontline workers before
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it is too late [23]. The combined use of advanced wearable
sensor technologies and ML algorithms can facilitate the early
identification of burnout, thereby providing an opportunity to
prevent its occurrence [18].

Despite their potential benefits, wearable sensors and ML-based
predictions may suffer from a lack of clinical explainability,
potentially leading to mistrust among clinicians and limiting
their practical use in real-time clinical settings [24,25].

Contributions
This paper introduces a novel framework, EMBRACE
(Explainable Multitask Burnout Prediction Using Adaptive
Deep Learning), for enhancing the prediction and explanation
of future burnout in residents by using a clinically validated
survey that is easily comprehensible and reliable for clinicians.
More specifically, our key contributions are

• In EMBRACE, we develop a wearable sensor-based
improved workplace activities and stress recognition
framework using a deep multitask learning (MTL)
technique. Then, using that, we develop a novel explainable
MTL framework to automatically predict future burnout
and explain the prediction by filling out a clinically
validated and trustworthy burnout prediction survey tool.

• We validated the accuracy and explainability of our
proposed EMBRACE framework using real-time collected
data from 28 internal medicine residents (2-7 days each) in
a natural hospital duty setting with appropriate institutional
review board approval (#2021-017) of Berkshire Medical
Center of the University of Massachusetts Chan Medical
School.

• We assessed the generalizability of the EMBRACE
framework by testing its performance on two publicly
available occupational stress prediction datasets. The results
demonstrated the framework’s robustness and effectiveness
across diverse datasets, highlighting its potential for broader
application in real-world settings.

Related Work

ML Approaches to Burnout Detection
The use of ML techniques in detecting burnout among resident
physicians is a relatively new area of research. While ecological
momentary assessment has shown effectiveness in predicting
burnout among residents [26], incorporating ML methods has
the potential to enhance prediction performance [27]. However,
real-time burnout prediction necessitates continuous monitoring
of health vitals and ML techniques [28-30]. Recent systematic
reviews [29,30] indicate that existing just-in-time burnout
prediction techniques use biomarkers such as skin temperature,
motion-based activities (accelerometers), electrodermal
fluctuations, and wristband-based blood volume pulse. Various
ML algorithms such as multilayer perceptron (MLP), random
forest, k-nearest neighbors, support vector machine, linear
regression, convolutional neural networks (CNN), fully
convolutional network, Time-CNN, ResNet MLP, CNN-LSTM
(long short-term memory), MLP-LSTM, InceptionTime, and
others have been used in these studies [29,30]. However, a
common limitation among these works is the lack of clinical

explainability, which has not been adequately addressed in this
research field [25,29,30].

Multitask Deep Learning Frameworks on Wearable
Sensor Computing
Recent advancements in deep learning (MTL) frameworks have
demonstrated significant improvements in the performance of
wearable sensor computing. Taylor et al [31] developed an MTL
model that simultaneously predicts physical activity levels and
stress markers using data from wearable devices. Their approach
highlighted the benefits of shared representations in improving
the generalizability and accuracy of the predictions [31].
Similarly, Sabry et al [32] introduced a deep MTL framework
for health monitoring that integrates tasks such as activity
recognition, sleep stage detection, and stress level prediction,
showing enhanced performance over single-task models.
Another noteworthy contribution by Arefeen and Ghasemzadeh
[33] focused on leveraging MTL to predict both physiological
and behavioral responses, illustrating the model’s robustness
across different wearable sensor datasets.

Context-Aware Stress Prediction Using Wearables
Context-aware stress prediction has gained traction as it enables
more accurate and personalized stress monitoring. Aqajari et al
[34] proposed a context-aware framework that uses
environmental and physiological data from wearable sensors
to predict stress levels, achieving higher accuracy compared to
context-agnostic models. Similarly, Campana and Delmastro
[35] developed a context-aware stress monitoring system that
integrates location-based data and social interactions with
physiological signals, demonstrating significant improvements
in stress prediction accuracy. The work by Zhang et al [36]
further advanced this field by incorporating ML algorithms to
analyze multimodal sensor data, thereby providing real-time
stress detection and feedback.

Explainable Wearable Sensor Computing
Many researchers proposed different interpretable and
explainable artificial intelligence (AI) algorithms to make
complex AI prediction models explainable, which include the
Additive Feature Attribution method and the local interpretable
model-agnostic explanations (LIME) approach [37]. The SHAP
(Shapley Additive Explanations) approach combines LIME
with Shapley values to provide explanations for black-box
models [38]. Other methods include class activation mapping
[39], DeepLIFT (Deep Learning Important Features) [40], and
layer-wise relevance propagation [41] for interpreting CNNs.
In health care, explainable AI applications have been developed
for interpreting imaging studies and real-time predictions [42].
One previous work proposed interpretable ML techniques for
stress prediction using wearables, but it only provided a
simplistic representation of top features based on SHAP, which
lacks clinical significance [43]. Adapa et al [44] proposed a
supervised ML method to predict burnout among resident
physicians that takes a bunch of surveys to understand different
workplace problems and activities related to it, and—based on
those longitudinal surveys on personal, physical, workplace
environmental, and physiological status measures—performed
a supervised ML approach to identify some highly correlated
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factors (emotional exhaustion, depersonalization, race
demographics, etc). EMBRACE offers both efficient burnout
prediction and a clinically validated survey-filling-out method,
hypothesizing that the clinical survey of burnout estimation is
explainable and trustworthy among resident physicians. Recent
studies have focused on making these systems more
interpretable. Abdelaal et al [45] introduced an explainable AI
framework for wearable health monitoring that uses SHAP
values to provide insights into model predictions, enhancing
trust among clinicians. Additionally, De Cannière et al [46]
proposed an interpretable deep learning model that visualizes
feature importance and decision pathways, making the model’s
outputs more comprehensible for end users. Another significant
contribution by Kyriakou et al [47] involves the development
of a transparent stress detection system that combines rule-based
logic with ML to offer clear explanations of its predictions.

Our proposed EMBRACE framework leverages a clinically
explainable, multitask adaptive deep learning approach, making
it superior by providing trustworthy and actionable insights for
burnout prediction. By integrating context-aware stress
prediction with explainable AI techniques, EMBRACE ensures
high accuracy and transparency. This combination addresses
the limitations of existing models, thereby enhancing the
practical utility of wearable sensor computing in clinical settings.

The primary aim of this study is to develop and validate the
EMBRACE framework, a clinically explainable adaptive
multitask deep learning model, for predicting and explaining
future burnout among resident physicians using wearable sensor
data. We hypothesize that integrating real-time physiological
data, context-aware activity recognition, and explainable ML
techniques will significantly enhance the accuracy,
interpretability, and clinical trustworthiness of burnout
predictions. We further hypothesize that the EMBRACE
framework’s performance will generalize effectively across
diverse clinical environments, supporting timely interventions
to mitigate burnout and promote physician well-being.

Methods

The EMBRACE framework consists of two core components:
(1) an algorithm for detecting workplace activity and stress
using a publicly available dataset and (2) an adaptive algorithm
for detecting burnout level and explanation in our collected
dataset, as well as in the publicly available dataset [3].

Publicly Available Wearable Stress and Affect
Detection Dataset (D1)
We used the WESAD (Wearable Stress and Affect Detection)
public dataset [48]. This dataset comprises recordings from 15
participants (12 male and 3 female) who were equipped with 2
wearable devices: the RespiBAN Professional and the Empatica
E4. The RespiBAN device, positioned on the chest, captured
signals such as body acceleration (along 3 axes), body
temperature, respiration, electrocardiography, electromyography,
and EDA, all sampled at a frequency of 700 Hz. The Empatica
E4 wristband measured signals including hand acceleration
(along 3 axes), skin temperature, blood volume pulse, and EDA,
with these signals being recorded at varying sampling rates. All

signals from the Empatica E4 were subsequently upsampled to
a uniform rate of 64 Hz using the Fourier method. The
participants selected for this study excluded individuals with
mental or cardiovascular conditions, those who were pregnant,
and heavy smokers, with an average age of 27.5 years. During
the data collection phases, participants either stood or sat during
the baseline, amusement, and stress phases (with half of the
participants standing and the other half sitting for each phase).
In contrast, all participants sat during the meditation phase (for
details, see Multimedia Appendix 1) [49-52].

Building upon previous research on stress detection using the
WESAD dataset [48], we considered 3 distinct classification
tasks in this study. The first task [48] focused on distinguishing
between stress and nonstress states using data from 3 phases:
baseline, stress, and amusement. The aim was to classify stress
(stress phase) versus nonstress (baseline and amusement phases)
(S vs NS). The second task [48] aimed to differentiate among
3 states: baseline, stress, and amusement (B vs S vs A). The
third task [48] extended the classification to 5 distinct classes:
baseline, stress, amusement, meditation, and recovery (B vs S
vs A vs M vs R).

Publicly Available Stress and User Modeling Dataset,
SWELL-Knowledge Work Dataset (D2)
The SWELL-KW (SWELL Knowledge Work) dataset comprises
accelerometer, heart rate, and galvanic skin response sensor
data along with activity labels and subjective stress assessments
from workplace activities [50-52]. Data were collected from 25
participants (average age 29, SD 4.2 years) performing tasks in
controlled laboratory scenarios designed to induce stress
(neutral, time pressure, and email interruptions). Each participant
completed all scenarios over a 3-hour session, with sensors
operating at 50 Hz (accelerometers), 1 Hz (heart rate monitors),
and 10 Hz (galvanic skin response sensors). Activity labels
included making presentations, paper writing and planning,
writing and reading emails, programming, creating overviews,
information searching, and time away from the keyboard,
annotated via video recordings for accuracy.

Subjective stress was assessed using 4 validated surveys: NASA
(National Aeronautics and Space Administration) Task Load
Index (NASA-TLX), Rating Scale Mental Effort (RSME),
Self-Assessment Manikin (SAM), and Perceived Stress Scale
(PSS) [53]. NASA-TLX measures task load across mental,
physical, and temporal demand, performance, effort, and
frustration (scores are averaged, with higher scores indicating
higher stress). RSME rates mental effort (0-150 scale; higher
indicates higher stress). SAM captures valence, arousal, and
dominance emotions pictorially (higher arousal and lower
valence indicate higher stress) [54]. PSS provides a global
measure of perceived stress (10-item, 0-40 scale; for details,
see Multimedia Appendix 1) [53].

Ethical Considerations
The study received approval (exemption) from the institutional
review board (#2021-017) of Berkshire Medical Center of the
University of Massachusetts Chan Medical School. Participants
voluntarily participated in this study and provided informed
consent before enrollment. All data were stored in a secure,
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HIPAA (Health Insurance Portability and Accountability
Act)-compliant server with proper deidentification to protect
participant privacy. The study adheres to ethical guidelines and
regulatory requirements for conducting research with human
participants. Participation in this study was entirely voluntary.
No incentives or gifts were provided to participants, a fact that
was clearly communicated during recruitment and outlined in
the consent document.

Our Data Collection Principles

Medical and Clinical Tasks of Interest
The medical and clinical task of interest in our study is
prognostic, focusing on predicting the future occurrence of
burnout among internal medicine resident physicians. This
involves continuous monitoring of physiological data using
wearable sensors to estimate the risk of burnout, thereby
allowing timely interventions.

Research Question
The primary research question addressed in this study is, “Can
continuous monitoring of physiological data using wearable
sensors, combined with ML techniques, accurately predict future
burnout levels in resident physicians?” The outcomes of interest
include the levels of burnout, stress, and satisfaction, as
measured by the Mini-Z Burnout Survey [13]. The study aims
to identify significant predictors of burnout and develop an
explainable ML model to enhance clinical decision-making.
The Mini-Z survey is widely recognized as a clinically validated
and concise tool for assessing burnout, stress, and job
satisfaction, making it ideal for our target study on resident
physicians who face high-pressure environments. Its simplicity
and focus on actionable dimensions like workload, electronic
medical record (EMR) stress, and control over work ensure that
it captures relevant factors contributing to burnout, aligning
perfectly with the predictive goals of our EMBRACE
framework. The survey’s structured 10-item format facilitates
automated completion via ML models, enabling seamless
integration with wearable sensor data for real-time burnout
prediction. Mini-Z’s broad adoption in health care settings
ensures that its results are interpretable and trustworthy for
clinicians, enhancing the explainability and clinical utility of
our framework. By targeting key predictors of burnout and
providing clear thresholds for intervention, the Mini-Z survey
supports our objective of delivering clinically actionable insights
to improve resident physicians’ well-being.

Known Predictors and Confounders to What Is Being
Predicted or Diagnosed
Predictors of burnout in this study include physiological
measures such as heart rate variability, skin conductance, and
physical activity levels, collected using the Empatica E4 watch
[55]. These predictors are chosen based on existing literature
that links them to stress and burnout. Confounders may include
individual differences in baseline stress levels, workload
intensity, and personal coping mechanisms. These factors are
controlled through initial baseline assessments and continuous
monitoring.

Overall Study Design
The study uses a prospective cohort design, where 28 internal
medicine resident physicians are monitored over a period
ranging from 2 to 7 days. Data collected includes physiological
metrics from wearable sensors and responses to the Mini-Z
Burnout Survey [13]. The study is divided into training,
validation, and testing phases to develop and evaluate the ML
model.

Medical Institutional Settings
The study is conducted at a renowned teaching-based medical
center, Berkshire Medical Center of the University of
Massachusetts Chan Medical School, where the internal
medicine residency program is hosted. The collected data and
the ML model are intended to be used in this clinical setting to
monitor and predict burnout among resident physicians.

Target Population
This study targets internal medicine resident physicians from
various postgraduate year (PGY1, PGY2, and PGY3) levels.
The model aims to generalize across this population to provide
accurate burnout predictions for different stages of residency
training.

Intended Use of the ML Model
The ML model is intended to be used as a tool for continuous
monitoring and early detection of burnout among resident
physicians. It will provide real-time alerts to medical staff and
wellness coordinators, enabling proactive interventions. The
intended users (with residents’ consent) include clinicians,
residency program directors, and wellness coordinators, who
will use the model’s outputs to support residents’ well-being.

Existing Model Performance Benchmarks for This Task
Existing benchmarks for burnout prediction models typically
involve metrics such as accuracy, recall, precision, and the area
under the receiver operating characteristic curve. Previous
studies using ML methods have reported varied performance,
often limited by a lack of real-time data and clinical
explainability. Our study aims to surpass these benchmarks by
incorporating continuous physiological monitoring and
explainable AI techniques.

Burnout Classes
Burnout levels were assessed using the Mini-Z Burnout Survey,
which includes 10 questions scored on a 5-point Likert scale,
along with an additional open-ended question. Three different
burnout scales were derived from these responses:

1. Joyful Measure: The total score is calculated by summing
the points from all 10 items, with a score range of 10 to 40
points. A score of 20 or higher indicates a joyful work
environment, which has been used to design a 2-class
problem: joyful or not joyful work environment.

2. Satisfaction Scale: This scale is derived by adding the points
from questions 1, 2, 3, and 4, resulting in a score range of
4 to 25 points. A score of 20 or higher indicates a highly
supportive environment, which has been used to design a
2-class problem: satisfied or not satisfied work environment.
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3. Stress Scale: The stress scale is calculated by summing the
points from questions 5, 6, 7, and 8, with a score range of
4 to 25 points. A score of 20 or higher indicates a low-stress
environment with reasonable EMR pressures, which has
been used to design a 2-class problem: high or low stress
at work environment.

Participants were asked to complete the Mini-Z survey daily,
and their responses were used to establish baseline burnout
levels and track changes over the study period. This continuous
assessment allows for timely interventions to prevent and
mitigate burnout.

Our Collected EMBRACE Dataset Description (D3)
The study included 28 internal medicine resident physicians
(average age 27.5, SD 3.5 years) from a renowned
teaching-based medical center, spanning different postgraduate
years (PGY1, PGY2, and PGY3). Inclusion criteria required
participants to be actively engaged in their residency program,
while exclusion criteria involved any medical conditions that
could interfere with stress and burnout assessment. Data
collection was prospective, with participants wearing an
Empatica E4 watch continuously from the start to the end of
their daily duties, covering periods ranging from 2 to 7 days.
Each participant contributed to a total of 98 days of data, with
each day spanning 8 to 13 hours of working hours, averaging
10.5 hours per day, resulting in approximately 1029 hours of
physiological data and 98 different daily ground truth data from
surveys. Of 98 days, 33 (34%) were identified as burnout days
(the days that ended with a burnout as per the burnout survey),
spanning over 19 out of 28 (68%) residents. The collected data
included heart rate variability, skin conductance, and physical
activity levels, recorded at frequencies of 1, 10, and 50 Hz,
respectively. Additionally, participants completed the Mini-Z
Burnout Survey daily via a web-based form sent to their cell
phones, providing subjective assessments of burnout, stress,
and satisfaction. Potential biases include self-reporting
inaccuracies and the variability in daily workloads, which were
controlled through baseline assessments and continuous
monitoring. The dataset consists of longitudinal records with
multiple data points per participant, encompassing continuous
(physiological measures) and categorical (survey responses)
data. Data preprocessing involved normalizing physiological
measures and handling missing data through imputation
methods. Known quality issues include potential sensor
malfunctions and variability in self-reported data. The sample
size was deemed sufficient based on standard ML training
requirements, ensuring adequate model performance and
stability. The data are stored in a secured, HIPAA-compliant
server and are available for further research upon request,
adhering to data sharing policies. Table S1 in Multimedia
Appendix 1 presents the description of the study.

Detecting Workplace Activity and Stress Using Existing
Dataset

Multitask Deep Learning for Joint Activity and Stress
Detection
A multitask deep learning framework for wearable sensor-based
activity and stress detection involves training a single model to

simultaneously perform multiple tasks, specifically activity
recognition and stress level classification. The framework
combines both tasks into a single neural network architecture,
allowing shared representations to be learned and leveraging
the complementary information present in the data.

Input Data
The input data consist of time-series sensor readings from

wearable devices, denoted as X ∈ RT×N, where T represents the
length of the time series and N is the number of sensor channels.

Activity Recognition Task
Activity recognition aims to predict the activity type based on
sensor data. The predicted activity labels are denoted as Yact ∈
{0, 1}C

act, where Cact represents the number of activity classes.
The output layer for activity recognition is defined as

Oact = softmax(Wact × H + bact) (1)

where H represents the shared hidden representations obtained
from the network, Wact is the weight matrix, and bact is the bias
term specific to the activity recognition task.

Stress Level Classification Task
Stress level classification aims to predict the stress level based
on sensor data. The predicted stress labels are denoted as Ystress

∈ {0, 1}C
stress, where Cstress represents the number of stress level

classes. The output layer for stress level classification is defined
as

Ostress = softmax(Wstress × H + bstress) (2)

where H represents the shared hidden representations obtained
from the network, Wstress is the weight matrix, and bstress is the
bias term specific to the stress level classification task.

Shared Representation Learning
The shared representation learning module learns a
representation that captures both activity and stress-related
patterns in the input data. This module consists of a combination
of 1 CNN with 32 hidden nodes each and 2 LSTM layers with
64 hidden nodes each to extract meaningful features from the
input time series. The final fused hidden representation obtained
from this module is denoted as H.

Loss Function
The multitask loss function combines the losses from both tasks
to jointly optimize the model. The loss function is defined as a
combination of activity recognition loss (Lact) and stress level
classification loss (Lstress), weighted by respective task-specific
coefficients (α and β):

Loss = α × Lact + β × Lstress (3)

Learning
The model is trained using backpropagation and gradient descent
optimization techniques, minimizing the multitask loss function.
The shared representation learning module and task-specific
layers are updated jointly during training. By training the
multitask deep learning framework, the model learns to extract
relevant features from the wearable sensor data and
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simultaneously perform activity recognition and stress level
classification tasks. This joint learning approach enables the
model to leverage the shared representations and potentially
improve the performance of both tasks compared to training
separate models.

Burnout Prediction and Explanation

Multitask Few-Shot Domain Adaptation for Mini-Z
Survey and Burnout Prediction
To build a multitask few-shot deep domain adaptation
framework based on the previous framework, we will adapt it
to the scenario where wearable sensor data serves as input, the
source domain involves multitask stress and activity recognition,
and the target domain focuses on predicting the answers to a
multitask Mini-Z survey questionnaire [13] and burnout
prediction. The objective is to estimate the overall burnout scale
class based on the Mini-Z survey questions’ answers. We
describe this model as follows.

Preliminaries
In this framework, we have a similar input data representation
where the source domain framework is the previously described
multitask deep learning architecture for stress and activity
recognition tasks. The model architecture includes shared
representation learning, output layers for activity recognition
(Oact) and stress level classification (Ostress), and corresponding
labels Yact and Ystress. In the target domain, the focus shifts to
predicting the answers to the multitask Mini-Z survey
questionnaire. The objective is to estimate the overall burnout
scale class based on the answers to the Mini-Z survey questions.
For each Mini-Z survey question, a separate output layer is
defined in the neural network architecture. The output layer for
predicting the answer to question i is denoted as Oi = f(WiH +
bi), where H represents the shared hidden representations
obtained from the network, Wi is the weight matrix specific to
question i, bi is the bias term associated with question i, and f
is an appropriate activation function. The estimated overall
burnout scale class is derived from the answers to the Mini-Z
survey questions. This has been achieved by defining a range
of total Mini-Z survey questions’ answers and mapping them
to specific burnout scale classes.

Multitask Adaptive Loss Function
The multitask loss function for the target domain includes the
task-specific loss for Mini-Z survey questions prediction
(LMini-Z) and the overall burnout scale class loss (Lburnout),
weighted by respective task-specific coefficients (γ and δ). The
loss function is defined as

Loss = γ · LMini-Z + δ · Lburnout (4)

where Lburnout is the cross-entropy loss for the overall burnout

scale class estimation, and LMini-Z is the R2 loss metric. R2 is a
goodness-of-fit measure for regression models. This statistic
indicates the percentage of the variance in the dependent variable

that the independent variables explain collectively. R2 measures

the strength of the relationship between our model and the
dependent variable on a convenient 0%-100% scale (see
Multimedia Appendix 1).

Few-Shot Domain Adaptation
Few-shot domain adaptation aims to transfer knowledge from
the source domain to the target domain, even when labeled data
in the target domain is limited [56]. We modify the
Model-Agnostic Meta-Learning (MAML) algorithm [57]
according to our multitask source and target problem, which
allows the model to quickly adapt to new tasks using 10 labeled
samples from each class. The modified MAML algorithm
includes initialization of model parameters and source domain
training. Then, the few-shot domain adaptation includes
selecting a few target samples with labels to define a new target
task with the cloned source model’s parameters. Then, for each
target domain task, we perform a few gradient update steps on
target parameters using few samples and compute the
task-specific target loss in the inner loop; and compute the
gradient of the task-specific target loss with respect to source
parameters and update it. Finally, we evaluate the adapted target
task model using Mini-Z survey answer–based prediction (see
Algorithm S1 in Multimedia Appendix 1).

Results

Setup

Source and Target Dataset Setup
The EMBRACE burnout dataset (D3) we collected does not
include ground truth data for activity recognition. However, to
effectively interpret burnout, it is crucial to predict workplace
activity summaries, evaluate burnout levels, and use clinically
validated survey tools to enhance explainability and build trust
among physicians. To address this, we used the SWELL-KW
(D2) dataset as our source data. This dataset uses the same
wearable sensor (Empatica E4) as ours and provides labeled
workplace activities along with ground truth data for workplace
stress assessment. In our problem setup, the target dataset is our
collected EMBRACE dataset (D3).

Task Definitions
There are two tasks involved in the source dataset (D2)—task
1 (Tact): 5-class activity recognition (writing reports, making
presentations, reading email, searching for information, and
others); and task 2 (Tstress): 3-class stress level recognition
(neutral, interruption, and time pressure). On the other hand,
there are four tasks involved in the target dataset (D3)—task 1
(Tsurvey_answers): a 10-class regression problem to fill out survey
questions; task 2 (Tburnout1): a 2-class overall measure (joyful
work environment or not); task 3 (Tburnout2): a 2-class satisfaction
scale (highly supportive work environment or not); and task 4
(Tburnout3): a stress scale (low stress environment with reasonable
EMR pressure or not). In Figure 1, we present the schematic
diagram of our entire framework with multiple task
specifications.
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Figure 1. The schematic diagram of the proposed framework.

Implementation
Our proposed model was implemented using Python’s Keras
library with the TensorFlow backend. For the regression task,
denoted as Tsurvey_answers, we used the RMSE loss function. In
contrast, for the classification tasks, which encompassed the
remaining tasks, we used categorical cross-entropy loss. These
loss functions were used while jointly training the few-shot
MAML algorithm.

Hyperparameter Tuning
The optimization of our system was performed using the Adam

optimization function with a learning rate of 1×10−3. The
selection of the optimized learning rate and the weighting
parameter β (set to 0.25) was achieved through hyperparameter
tuning. The learning model of our framework was executed on
a server equipped with a cluster of 3 Nvidia GTX GeForce Titan
X GPUs and an Intel Xeon CPU (2.00 GHz) processor, along
with 12 gigabytes of RAM.

Training
For training the multitask stress and workplace activity
recognition framework, we used the D2 dataset (SWELL-KW)
as input. This dataset included readings from wearable sensors
such as accelerometers, heart rate monitors, and galvanic skin
response sensors. The framework was trained to address two
tasks. To adapt the shared module of the target adaptive

multitask explainable burnout prediction, we used the trained
weights for initialization (domain adaptation). Subsequently,
we replaced the inputs with our collected dataset, D3, with
readings from wearable sensors such as accelerometers, heart
rate monitors, and EDA sensors. Additionally, we modified the
output layer to accommodate the 4 aforementioned task
problems.

Timeseries Leave-One-Out-Cross-Validation Setup
The conventional 10-fold cross-validation approach [58] is not
suitable for sequential data. Therefore, to train and assess the
performance of our proposed EMBRACE framework, we adopt
a time-series cross-validation method [8,59]. Here, we partition
the entire sequential dataset into two halves. Subsequently, we
randomly select a sequence of data from the first half as the
training sample and another random sequence from the second
half as the testing sample. This process is repeated 10 times to
generate 10 distinct pairs of training and testing data sequences.
While generating such training and testing data sequences, we
maintained a leave-one-person-out (leave-one-out
cross-validation or LOOCV) strategy (leaving the training
dataset included the individual relevant dataset out while
selecting the testing dataset); thus, the person (out of 28) we
chose to include in the training dataset would never be selected
for the testing dataset. Figure 2 presents a sample of the
LOOCV-based training and testing dataset generation technique
that prevents data leakage between training and testing datasets.
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Figure 2. Example leave-one-person-out strategy-based training and testing sample generation without data leakage.

Accuracy Evaluation Criteria
To evaluate individual task-level classification performance in
the multitask setting of the EMBRACE framework, the accuracy
metric was measured in a macro or balanced setting. For
example, balanced accuracy calculates the accuracy for each
task individually and then takes the average of these accuracies
across all tasks, treating each task equally regardless of its
sample size, using balanced accuracy (see Equations in
Multimedia Appendix 1). This ensures a balanced contribution

from all tasks to the overall performance metric. Balanced
accuracy is suitable in scenarios where all tasks are equally
important, and their performance needs to be evaluated
independently of dataset size. It is particularly useful in MTL
problems where sample sizes vary significantly between tasks.

To add more significance in the performance evaluation, we
included balanced precision, recall, and F1-score as metrics too
[60]. Additionally, we calculate the standard deviation of all
these metrics to evaluate the presence of overfitting (Table 1).

Table 1. EMBRACEa framework predicted individual Mini-Z burnout survey questionnaire–specific answers and overall burnout assessment performance
(R2 coefficient), regression precision, recall, and F1-score stated in the Accuracy Evaluation Criteria section. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR2Questions

80.6 (0.9)78.9 (0.8)79.5 (0.9)78.5 (0.9)Q1

76.4 (0.9)75.3 (0.9)77.4 (0.8)75.8 (0.7)Q2

71.6 (1.0)70.5 (1.2)70.6 (1.1)69.5 (1.9)Q3

86.5 (0.9)84.6 (0.9)87.8 (0.7)84.6 (0.9)Q4

98.3 (0.01)97.5 (0.01)98.2 (0.01)97.5 (0.01)Q5

97.1 (0.02)96.3 (0.01)95.9 (0.02)96.3 (0.01)Q6

93.6 (0.01)93.6 (0.02)94.8 (0.03)93.6 (0.02)Q7

91.3 (0.8)90.4 (0.2)88.5 (1.1)90.5 (0.3)Q8

88.8 (0.9)85.9 (0.5)87.1 (1.2)86.5 (0.9)Q9

91.5 (0.8)90.2 (1.0)89.4 (1.1)90.2 (1.0)Q10

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

To evaluate individual task-level regression performance (ie,

the prediction explanatory power), we used R2 coefficient as

the primary evaluation metric. R2 is a goodness-of-fit measure
for regression models. This statistic indicates the percentage of
the variance in the dependent variable that the independent

variables explain collectively. R2 measures the strength of the
relationship between your model and the dependent variable on

a convenient 0%-100% scale. The percentage of R2 has been
presented in Multimedia Appendix 1. For perfect prediction,

R2=100, while R2=0 indicates no explanatory power. To estimate
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precision, recall, and F1-score for regression tasks, we
discretized the regression into predictions by considering
proximity between predicted and true values using a threshold
value of δ=0.5.

Workplace Activity Recognition Performance
The SWELL-KW (D2) dataset contains detailed annotations of
several workplace activities for 25 participants, including
activities such as making presentations, paper writing, paper
planning, writing emails, reading emails, programming, creating
overviews, searching for information, and being away from the
keyboard. However, due to significant overlaps between some
of these activities, it was challenging to accurately distinguish
them using wearable accelerometers and EDA sensors alone.
Therefore, we consolidated these activities into five distinct
categories: (1) writing (paper writing and paper planning), (2)
presenting (making presentations, programming, and creating

overviews), (3) email (writing emails and reading emails), (4)
searching (searching for information), and (5) others (time away
from keyboard, etc).

Table 2 presents the overall accuracy, precision, recall, and
F1-score for workplace activity recognition, with values of
91.6%, 93.1%, 91.6%, and 93.9%, respectively. These results
are accompanied by reasonably low standard deviations,
indicating no signs of overfitting. Notably, the classification of
writing activities achieves a significantly higher accuracy of
97% compared to other tasks. To compare the performance of
our activity recognition task, we implemented the Bi-LSTM
(bidirectional long short-term memory) [61], perceptron [62],
BayesNet [62], decision tree [62], and K-Star [62] algorithms.
Table 2 presents a comparison of various performance metrics
between our model and the baseline algorithms. The results
demonstrate that our model outperforms all the baseline
algorithms implemented in this study.

Table 2. Comparison of workplace activity recognition performance across different algorithms with the EMBRACEa framework. Data are presented
as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

77.2 (1.7)76.4 (1.5)75.8 (1.6)76.4 (1.5)K-Star

81.9 (1.5)80.2 (1.2)81.5 (1.3)80.2 (1.2)Decision tree

84.0 (1.2)82.9 (1.1)83.1 (1.0)82.9 (1.1)BayesNet

87.4 (1.0)86.5 (1.0)86.9 (1.1)86.5 (1.0)Perceptron

93.7 (0.4)91.4 (1.0)93.0 (0.6)91.4 (1.0)Bi-LSTMb

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
bBi-LSTM: bidirectional long short-term memory.

Stress Classification Performance

Linking Stress to Burnout and Use of Existing Datasets
Stress and burnout are closely linked, with chronic stress being
a significant predictor of burnout in many occupations.
Prolonged exposure to stress without sufficient recovery leads
to emotional exhaustion, one of the key components of burnout
[9]. Research has shown that stress affects not only physical
health but also cognitive and emotional functioning, contributing
to higher rates of burnout in high-demand environments [63].
Additionally, the accumulation of stress over time without
effective coping mechanisms has been associated with an
increase in depersonalization and reduced personal
accomplishment, further solidifying the connection between
stress and burnout [64]. Since wearable sensor-based burnout
prediction datasets are not available, we apply our proposed
framework to existing wearable stress datasets, such as the
WESAD (D1) [48] and SWELL-KW (D2) [50-52] datasets.

WESAD Data
The WESAD (D1) dataset includes 5 emotional states: baseline,
amusement, stress, meditation, and recovery. However, the

WESAD researchers noted that meditation and recovery are not
typical everyday emotional states and focused on the 3 primary
states: baseline, amusement, and stress [48]. Following their
approach, we excluded all data related to the meditation and
recovery states, reducing the dataset to a 3-class problem. Table
3 reports the overall accuracy, precision, recall, and F1-score
for stress level recognition on the WESAD (D1) dataset, with
values of 94.1%, 94.2%, 94.1%, and 94.6%, respectively.
Similar to the activity recognition results, the standard deviations
remain reasonably low, indicating no signs of overfitting.
Notably, the classification of the baseline stress level achieves
an impressive accuracy of 98.9%. To compare with existing
algorithms, we implemented SELF-CARE [65], the Gaussian
mixture model, and CNN algorithms (Table 4). The
SELF-CARE method uses selective sensor fusion and
context-aware techniques to enhance stress detection accuracy,
achieving an accuracy of 86.34%, a precision of 87.2%, a recall
of 85.9%, and an F1-score of 86% for 3-class stress classification
[65].
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Table 3. Proposed algorithm-based 3-class stress level (baseline, stress, and amusement) classification performance details on the publicly available
WESADa (D1) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

98.6 (0.02)98.9 (0.01)97.8 (0.02)98.9 (0.01)Baseline

95.5 (0.07)93.7 (0.08)94.8 (0.02)93.7 (0.08)Stress

92.0 (0.09)90.8 (0.10)91.9 (0.10)90.8 (0.10)Amusement

94.6 (0.02)94.1 (0.03)94.2 (0.03)94.1 (0.03)Overall

aWESAD: Wearable Stress and Affect Detection.

Table 4. Comparison of the proposed algorithm with state-of-the-art algorithms on the WESADa (D1) dataset to predict 3-class stress levels (baseline,
stress, and amusement). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

84.0 (1.3)82.5 (1.2)83.2 (1.1)82.5 (1.2)Gaussian mixture model [48]

90.7 (0.8)89.8 (0.9)90.5 (1.0)89.8 (0.9)Convolutional neural networks [48]

87.4 (0.7)86.2 (1.0)87.0 (0.8)86.2 (1.0)Random forest [48]

86.0 (0.6)85.9 (0.7)87.2 (0.6)86.34 (0.8)SELF-CARE [65]

93.9 (0.2)91.6 (0.9)93.1 (0.5)91.6 (0.9)Ours

aWESAD: Wearable Stress and Affect Detection.

SWELL-KW Data
The SWELL-KW (D2) dataset contains stress data collected
from participants under 3 work conditions: neutral, interruptions,
and time pressure. Table 5 reports the overall accuracy,
precision, recall, and F1-score performance metrics of our

proposed algorithm for 3-class stress level classification on the
SWELL-KW (D2) dataset, with values of 94.7%, 94.7%, 94.7%,
and 95.1%, respectively. Similar to the results from the WESAD
dataset, the standard deviations remain low, indicating no signs
of overfitting. Notably, the classification of the neutral stress
level achieves an impressive accuracy of 99.5%.

Table 5. Proposed algorithm-based 3-class stress level (neutral, interruptions, and time-pressure) classification performance details on the publicly
available SWELL-KWa (D2) dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyStress levels

99.1 (0.01)99.5 (0.0)98.2 (0.01)99.5 (0.0)Neutral

96.3 (0.06)94.1 (0.07)95.4 (0.01)94.1 (0.07)Interrupt

92.8 (0.08)91.2 (0.09)92.7 (0.09)91.2 (0.09)Time

95.1 (0.01)94.7 (0.02)94.7 (0.02)94.7 (0.02)Overall

aSWELL-KW: SWELL Knowledge Work.

To compare with existing algorithms, we implemented the
following models stated in Table 6. Koldijk et al [66] used the
SWELL-KW dataset and compared several ML algorithms.
Support vector machine with an radial basis function kernel
achieved an accuracy of 90.03%, while other models like Naive
Bayes, K-Star, and BayesNet achieved lower accuracies of
64.77%, 65.81%, and 69.08%, respectively. More advanced

models like random forest (87.09%) and MLP (88.54%)
outperformed simpler methods [66]. Similarly, de Vries et al
[67] used a learning vector quantization approach, achieving
88% accuracy for stress classification. Based on these results,
we can conclude that our framework demonstrates competitive
performance against other existing methods.
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Table 6. Comparison of the proposed algorithm with state-of-the-art algorithms on the SWELL-KWa (D2) dataset to predict 3-class stress levels
(neutral, interruptions, and time-pressure). Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

67.45 (3.5)66.89 (2.5)69.56 (3.9)64.77 (4.3)Naive Bayes

66.72 (4.1)67.53 (4.1)63.8 (3.7)65.81 (3.8)K-Star

69.08 (2.1)70.1 (1.9)70.0 (3.1)69.08 (2.5)BayesNet

91.0 (0.9)90.03 (0.8)90.1 (0.7)90.03 (0.8)Support vector machine (RBFb kernel) [66]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

89.1 (1.3)88.54 (1.2)89.3 (1.1)88.54 (1.2)Multilayer perceptron [66]

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aSWELL-KW: SWELL Knowledge Work.
bRBF: radial basis function.

EMBRACE Dataset
The EMBRACE dataset contains data for predicting burnout
levels based on several measures, including the joyful measure,
satisfaction scale, and stress scale. In addition to burnout

measures prediction, we also use Mini-Z survey questions to
predict specific responses for questionnaire completion. Tables
7 and 8 present the regression and classification performance
for survey question completion and burnout prediction using
our adaptive MTL framework.

Table 7. EMBRACEa framework–based burnout prediction performance details on our collected dataset. Note that the Mini-Z burnout survey has 3
burnout measures (joyful measure, satisfaction scale, and stress scale) with 2 classes each to classify. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyBurnout measures

81.3 (0.14)82.5 (0.15)83.5 (0.2)82.7 (0.1)Joyful measure

79.5 (0.2)78.4 (0.15)80.5 (0.2)79.2 (0.1)Satisfaction scale

90.3 (0.1)89.5 (0.1)87.6 (0.11)89.3 (0.05)Stress scale

86 (0.1)84.8 (0.2)86.4 (0.1)85.1 (0.1)Overall

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.

Table 8. Comparison of Mini-Z survey questionnaire–specific answer score (regression problem) prediction performance of our proposed algorithm
with state-of-the-art algorithms, where individual answer ranges from 1 to 5. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionR 2Algorithms

83.2 (1.0)82.3 (1.1)82.8 (0.9)82.6 (1.0)Random forest [66]

81.0 (0.8)79.8 (1.2)80.6 (0.9)80.3 (1.1)Decision tree [68]

86.5 (0.8)85.4 (0.9)86.1 (0.7)85.7 (0.8)Bi-LSTMa [61]

88.8 (0.7)87.6 (0.4)88.3 (0.8)87.7 (0.5)Ours

aBi-LSTM: bidirectional long short-term memory.

Table 1 shows that our framework performs well in predicting

survey question responses, with overall percentage R2

coefficient, precision, recall, and F1-score of 87.7%, 88.3%,
87.6%, and 88.8%, respectively (refer to the Accuracy
Evaluation Criteria section). Although a few questions (such as
Q1, Q2, and Q3) show relatively lower performance, the
adaptive MTL framework efficiently compensates, yielding
robust overall results.

Table 8 shows that our EMBRACE framework outperforms
several baseline algorithms, including random forest, decision
tree, and Bi-LSTM, in predicting Mini-Z survey questionnaire

responses. With an overall percentage R2 coefficient, precision,
recall, and F1-score of 87.7%, 88.3%, 87.6%, and 88.8%,
respectively, the framework demonstrates robust performance.
Notably, while some questions (eg, Q1, Q2, and Q3) exhibit
lower individual performance, the adaptive MTL approach
effectively compensates for these discrepancies, ensuring
reliable overall results. Compared to other models, EMBRACE
achieves higher precision and recall across all metrics,
highlighting its superior ability to capture the nuances of
physician burnout through clinically validated survey responses.
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Table 9 reports the performance for burnout prediction,
achieving an overall balanced accuracy, precision, recall, and
F1-score of 94.7%, 94.7%, 94.7%, and 95.1%, respectively
(refer to the Accuracy Evaluation Criteria section). The standard
deviations across both tasks remain low, indicating no signs of
overfitting.

To compare with existing algorithms, we implemented learning
vector quantization, random forest, and Bi-LSTM [61], all of

which have been shown to perform well in burnout and stress
prediction tasks. Table 9 compares these algorithms’
performance on the EMBRACE dataset. The Bi-LSTM
algorithm performs closest to our model but is still slightly
lower in every metric. The learning vector quantization and
random forest models perform moderately well but do not match
the high performance of our EMBRACE framework.

Table 9. Comparisons of our proposed algorithm based on overall burnout prediction accuracy with state-of-the-art algorithm performance on our

collected EMBRACEa dataset. Data are presented as mean% (SD%).

F1-scoreRecallPrecisionAccuracyAlgorithms

88.4 (0.8)88.0 (1.1)88.5 (0.9)88.0 (1.1)Learning vector quantization [67]

87.5 (1.1)87.09 (1.0)87.7 (0.9)87.09 (1.0)Random forest [66]

94.0 (0.7)93.5 (0.9)93.9 (0.6)93.6 (0.8)Bi-LSTMb [61]

95.1 (0.2)94.7 (0.9)94.7 (0.5)94.7 (0.9)Ours

aEMBRACE: Explainable Multitask Burnout Prediction Using Adaptive Deep Learning.
aBi-LSTM: bidirectional long short-term memory.

Explainability Study
The primary focus of the explainability study in the EMBRACE
framework is to enhance the clinical trustworthiness and
usability of the burnout prediction system through an easily
interpretable, explainable ML model. This study aims to make
complex model predictions comprehensible to the end users
(resident physicians and clinicians) by providing insights into
how the predictions are derived, thus increasing their clinical
utility.

Setup
We implemented the explainability module as a supplementary
step in the EMBRACE system, focusing on two primary outputs:
(1) the completion of a clinically validated burnout survey
(Mini-Z) and (2) a summary of workplace activity, stress
measures, and burnout indicators. The Mini-Z survey responses,
which serve as a clinically explainable output, are automatically
filled based on the model’s burnout prediction. These survey
responses reflect the participants’ stress, workload, and overall
satisfaction levels.

In this study, we adopted SHAP as our primary explainability
tool for wearable sensor-based burnout and stress prediction.
SHAP values assign importance scores to each feature used in
the model, offering a detailed breakdown of how each feature
contributes to the final prediction. These explanations are then
converted into an intuitive format that can be easily interpreted
by clinicians. For visualization, we generated 2 main outputs:
SHAP value-based feature importance plots and a time-series
summary of activities and stress indicators throughout the day.

Use of ML in Explainability
Our adaptive multitask deep learning model leverages
time-series data from wearable sensors such as heart rate, EDA,
and accelerometer readings to predict burnout. Once the
predictions are made, we use SHAP to interpret the contributions
of each sensor reading toward the burnout prediction. For

example, SHAP values illustrate whether elevated heart rate or
prolonged sedentary periods are significant contributors to
burnout risk.

In addition to the burnout predictions, we also predict the
responses to Mini-Z survey questions, which include satisfaction
with work, perceived stress, and control over workload. SHAP
analysis allows the model to break down these predictions,
showing how different stressors (eg, EMR workload or
workplace interruptions) influence the outcomes. This
transparency ensures that clinicians can trust the model’s
predictions and understand the underlying factors driving these
outcomes.

Visualization
Visualization plays a crucial role in translating the explainable
ML outcomes into actionable insights for clinicians. Our model
outputs two primary visual aids:

1. Feature Importance Plot:
The SHAP-based feature importance plot ranks the top
features contributing to burnout, such as heart rate
variability, sedentary activity duration, or frequent
interruptions. Clinicians can use this ranking to quickly
identify key stressors associated with burnout risk and focus
on interventions for the most significant factors.

2. Activity and Stress Summary:
This time-series summary visualizes the participant’s daily
activity breakdown, including tasks such as writing notes,
responding to emails, and attending meetings. These
activities are mapped to stress levels measured by the
wearable sensors. The summary offers clinicians an
at-a-glance overview of how workday activities contribute
to stress and burnout risks.

Below are sample tables that represent these visualizations for
one participant (sample no. 1).
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These tables provide clinicians with a clear understanding of
key features influencing burnout (Table 10), a summary of daily
activities (Table 11), and a summary of stress levels (Table 12).

This visualization enables clinicians to take targeted actions
based on the specific stressors and activities contributing to
burnout.

Table 10. Feature importance table for person (sample no. 1).

Importance rankSHAPa valueFeature

10.45Heart rate variability

20.38Sedentary activity duration

30.35Time spent writing notes

40.30EMRb time

50.25Interruptions frequency

60.20Sleep quality (night before)

aSHAP: Shapley Additive Explanations.
bEMR: electronic medical record.

Table 11. Activity summary table for person (sample no. 1).

Percentage of the dayTime spent (hours)Activity

454.5Writing notes

202.0Responding to emails

151.5Attending meetings or presenting

101.0Searching for information

101.0Breaks (away from keyboard)

Table 12. Stress summary table for person (sample no. 1).

Percentage of the dayDuration (hours)Stress level

353.5High stress

252.5Medium stress

303.0Low stress

101.0Neutral or relaxed

End-of-Day Email Alerts and Feedback Collection
To ensure proactive interventions, the EMBRACE framework
sends an end-of-day email to the resident physician with a
summary of the day’s activities, stress levels, and a filled-out
Mini-Z survey. The email includes a visual breakdown of the
day’s workload and corresponding burnout predictions, along
with recommendations to mitigate future burnout risks.
Clinicians and residents can review the survey and workplace
summary to identify stressors and consider adjustments in daily
routines.

Furthermore, the system integrates a feedback loop, where
physicians can provide input on the model’s predictions and
explanations. The feedback is collected through a web-based
form linked in the email, where clinicians can indicate whether
the burnout prediction and activity summary matched their
actual experience. This feedback is invaluable for further
refining the EMBRACE model, ensuring it adapts to the unique
experiences of individual residents and physicians over time.

By integrating SHAP values, visualization tools, and real-time
feedback collection, the EMBRACE framework effectively
bridges the gap between complex ML models and clinically
actionable insights. The explainability study showcases how
these tools enhance both the interpretability and usability of the
burnout prediction system, enabling physicians to make
informed decisions regarding their well-being.

Evaluation of the Satisfaction of Explainable
Visualization
Additionally, we conducted an end-of-study survey to evaluate
the impact of our visualizations on participants’ understanding
of burnout. The survey, completed by 23 out of 28 participants,
assessed the clarity of the 3 explanations: feature importance
summary, activity summary, and stress summary. Among the
23 participants, 20 (87%) reported that the feature importance
summary was the most impactful. Furthermore, 21 (91%)
participants expressed high satisfaction with the explainability
of the feature importance summary, 18 (78%) participants were
highly satisfied with the activity summary, and 21 (91%)
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participants were highly satisfied with the stress summary
explanation. These findings underscore the importance of
explainability in promoting user trust and comprehension of

predictive models in clinical settings. Table 13 provides the
details of our end-of-study survey results.

Table 13. Poststudy survey responses: satisfaction with feature importance, activity summary, and stress summary explanations.

Stress summary (n=23), n (%)Activity summary (n=23), n (%)Feature importance (n=23), n (%)Satisfaction level

21 (91)18 (78)20 (91)Highly satisfied

2 (9)3 (13)1 (4)Somehow satisfied

0 (0)1 (4)0 (0)Neutral

0 (0)1 (4)1 (4)Somehow dissatisfied

0 (0)0 (0)0 (0)Totally unsatisfied

Discussion

Validation of EMBRACE With Wearable Sensors,
MAML, and Correlation Analysis
Our proposed EMBRACE framework demonstrated that
adaptive multitask deep learning, integrated with wearable
sensor data and SHAP-based explanations, effectively predicts
future burnout among resident physicians, significantly
improving clinical interpretability, trust, and actionable insights.

We have chosen the Empatica E4 wearable sensor for its robust
and validated capability to capture key physiological indicators
associated with burnout, stress, and exhaustion, including heart
rate, EDA, skin temperature, and accelerometry data. The
device’s accuracy and widespread use in clinical research ensure
reliable data collection, aligning with our objective to quantify
predictors and confounders of burnout. Established studies have
demonstrated strong correlations between heart rate and EDA
with stress, anxiety, and exhaustion, making these metrics
critical for identifying burnout-related patterns. Furthermore,
the inclusion of skin temperature and accelerometry enriches
the dataset by providing insights into thermoregulation and
activity levels, which are important confounders for
differentiating physical and psychological stressors.

We have used the MAML algorithm in this study because it is
particularly suited for scenarios with limited labeled data and
the need to generalize across diverse tasks, such as detecting
burnout indicators across individuals with varying physiological
baselines. Unlike traditional ML algorithms, MAML efficiently
adapts to new tasks with minimal fine-tuning, enabling
personalized predictions in dynamic and heterogeneous
environments. Additionally, its meta-learning approach ensures
robust model performance even when faced with variability in
wearable sensor data, making it ideal for addressing the
challenges of burnout prediction in real-world settings.

The findings of this study provide valuable insights into the
relationship between workplace activities, stress levels, and
burnout among resident physicians. By applying the multitask
workplace activity and stress detection algorithm to our collected
dataset (D3), we effectively analyzed and predicted burnout
levels with high accuracy. The correlation analysis using the
Pearson correlation coefficient technique between predicted

workplace activities, stress levels, Mini-Z questionnaire
responses, and burnout measures offers a comprehensive view
of the stress-burnout relationship. These correlations are
visualized in Figure 3.

Our results reveal several key relationships. Foremost, highly
interruptive and time-pressured workplace activities were
strongly associated with elevated stress levels and negative
responses to the Mini-Z questionnaire. These findings align
with previous studies, which demonstrate that frequent
interruptions and increased workload pressures contribute to
burnout. For instance, residents who experience continuous
interruptions may struggle to focus on critical tasks, leading to
higher stress and dissatisfaction. This is evident in survey items
such as Q5 (“I feel a great deal of stress because of my job”)
and Q6 (“The amount of time I spend on the EMR at home”),
both of which exhibited strong correlations with time-pressured
activities.

Moreover, the correlation between note-writing activities,
especially related to EMR documentation, and higher stress
levels further underscores the role of administrative tasks as a
significant contributor to burnout. Stress related to EMR use
has been widely reported in health care literature, and our
analysis corroborates these findings, confirming that
documentation burdens are a key stressor for residents. As
shown in the correlation heatmap, these tasks are closely aligned
with burnout predictors.

Interestingly, a positive correlation between presentation
activities and job satisfaction was observed. Activities that
involve presenting or participating in discussions were linked
to a more joyful work environment, suggesting that these tasks
may foster a sense of professional accomplishment or
engagement, serving as protective factors against burnout.

From an explainability perspective, the SHAP values were
crucial in providing insights into how specific workplace
activities and physiological measures influenced burnout
predictions. Visualizing the contribution of individual features,
such as heart rate variability and sedentary activity duration,
enhanced clinical trust in the model’s predictions. The real-time
interpretability facilitated by email alerts and feedback loops
played a key role in engaging residents with their data, providing
a feedback mechanism for continuous model improvement.
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Figure 3. Pearson correlation coefficient (R) heatmap among detected workplace activities, stress levels, Mini-Z survey responses, and burnout measures.

Conclusion and Future Work
This paper introduces the EMBRACE framework, a novel
multitask adaptive deep learning approach designed for
predicting and explaining burnout in resident physicians. By
integrating wearable sensor data with the clinically validated
Mini-Z burnout survey, EMBRACE provides a unique approach
to clinically explainable burnout prediction. The combination
of workplace activity recognition, stress level detection, and
explainable burnout prediction offers clinicians actionable
insights into the burnout risks faced by resident physicians.

Our results demonstrate high prediction accuracy across all
tasks, with the framework outperforming several baseline
models, including Bi-LSTM, learning vector quantization, and
random forest. The SHAP-based explainability mechanisms
also significantly enhanced the interpretability of model outputs,
building clinician trust and enabling real-time interventions
based on predicted burnout risks.

Despite these promising findings, the study has limitations. The
relatively small sample size of 28 participants limits the
generalizability of the results. Further studies with larger, more
diverse populations are needed to validate the findings.
Additionally, while EMBRACE offers detailed insights into
stress and burnout, further research is required to assess the
long-term effectiveness of the suggested intervention strategies.
A longitudinal satisfaction study would also be valuable in
evaluating the impact of explainable AI in reducing burnout in
clinical settings.

Future work will focus on expanding the framework by
incorporating additional physiological and behavioral metrics,
such as sleep quality and social interactions, to provide a more
comprehensive assessment of burnout risks. We also aim to
develop personalized interventions based on real-time
predictions, allowing for tailored strategies to mitigate burnout
before it escalates. Scaling the framework to different clinical
environments and assessing its adaptability in various health
care settings will also be key areas of exploration.
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