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Abstract

Background: HIV viral suppression is essential for improving health outcomes and reducing transmission rates among people
living with HIV. In Uganda, where HIV/AIDS is a major public health concern, machine learning (ML) models can predict viral
suppression effectively. However, the limited use of explainable artificial intelligence (XAI) methods affects model transparency
and clinical utility.

Objective: This study aimed to develop and compare ML models for predicting viral nonsuppression in Ugandan people living
with HIV on antiretroviral therapy (ART), and then systematically apply comprehensive XAI techniques to the best-performing
model to identify key predictors and demonstrate interpretability at both population and individual patient levels.

Methods: We retrospectively analyzed clinical and demographic data from 1101 Ugandan people living with HIV on ART at
the HIV clinic in Muyembe Health Centre IV between June 2016 and April 2018, focusing on predicting viral nonsuppression
(viral load >1000 copies per milliliter). The dataset was divided into model-building (training: 80%) and validation (test: 20%)
sets. To address class imbalance, the synthetic minority over-sampling technique was applied. For global explanation, 8 ML
algorithms—logistic regression, stacked ensemble, random forest, support vector machines, extreme gradient boosting (XGBoost),
k-nearest neighbors, naïve Bayes, and artificial neural networks—were compared. Model performance was evaluated using
metrics such as accuracy, precision, recall, F1-score, Cohen κ, and area under the curve (AUC). For local explanation, individual
conditional expectation plots, Shapley Additive Explanations (SHAP), breakdown, and SHAP force plots were used to provide
insights into predictions for individual patients.

Results: The XGBoost ensemble model demonstrated superior performance with an accuracy of 0.89, precision of 0.59, recall
of 0.65, and AUC of 0.80. The model achieved high specificity (0.93) and moderate sensitivity, yielding a Cohen κ of 0.55 and
F1-score of 0.62, indicating good discriminative ability for viral nonsuppression prediction. SHAP feature importance analysis
identified adherence assessment over the preceding 3 months as the most influential predictor of viral nonsuppression, followed
by age group, urban residence, and duration on ART. Local SHAP consistently demonstrated that poor adherence was the primary
driver of both correctly identified nonsuppressed cases and false positive predictions, reinforcing adherence as the critical
determinant of treatment outcomes.

Conclusions: The XGBoost model demonstrated optimal performance for predicting viral nonsuppression among Ugandan
people living with HIV on ART, achieving an AUC of 0.80. Comprehensive XAI analysis identified adherence assessment as
the primary predictor, followed by age group, residence type, and ART duration. XAI methods provided transparent interpretation
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of model predictions at both population and individual patient levels, enabling identification of key risk factors for targeted clinical
interventions in resource-limited settings.

(JMIR AI 2026;5:e68196) doi: 10.2196/68196
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Introduction

HIV/AIDS remains a major public health issue in Uganda, with
an estimated 1.4 million people living with the virus and an
adult prevalence of 5.2%. According to the most recent
estimates, approximately 93% of individuals living with HIV
in Uganda are currently receiving antiretroviral therapy (ART)
[1,2]. Despite challenges, progress is evident with 1.2 million
individuals on antiretroviral treatment and a 44% reduction in
new infections since 2010. Significant strides have been made
in reducing pediatric HIV infections by 61%, though vertical
transmission rates after breastfeeding remain at 8.6%. Continued
efforts are essential to meet the goal of ending AIDS as a public
health threat by 2030 [1-3].

Viral load monitoring remains a crucial component of ART
success due to its early detection of treatment failure, enabling
timely interventions to address adherence issues or drug
resistance [1]. It distinguishes between true drug resistance and
temporary adherence lapses, allowing for targeted interventions
without unnecessary medication changes [4]. In addition, public
health officials can evaluate program effectiveness and identify
areas for improvement by tracking trends in viral suppression
rates. Achieving viral suppression, defined by the World Health
Organization (WHO) as an HIV viral load <1000 copies per
milliliter, is the primary goal of ART for people living with
HIV. This public health threshold, used for global monitoring
and in resource-limited settings, differs from clinical thresholds
used in high-income countries (<200 or <50 copies per milliliter
for “undetectable” status) [5-8]. This crucial milestone not only
significantly reduces the risk of transmitting HIV to sexual
partners but also minimizes the risk of mother-to-child
transmission during breastfeeding. However, predicting and
achieving viral suppression can be challenging due to the
complex interplay of factors beyond adherence to ART
medication. Research suggests that factors such as age, sex,
sociodemographic characteristics, clinical, treatment, and
potentially psychological factors also play a role in influencing
treatment success [9-11]. Consequently, there is growing interest
in using machine learning (ML) models to enhance prediction
accuracy.

ML analyzes complex, high-dimensional data and captures
complex relationships between variables [12]. Rajula et al [12]
further state that this capability is valuable in HIV viral
suppression prediction, where traditional statistical methods
often struggle with this type of data, potentially overlooking
crucial factors influencing viral failure risk. Several studies in
Eastern and Southern Africa have demonstrated the potential
of ML algorithms such as random forest and logistic regression
for predicting viral suppression in HIV [13-18]. For instance,

Mamo et al [18] demonstrated the potential of ML approaches,
achieving an area under the curve (AUC) of 0.9989 for viral
failure prediction using random forest with a comprehensive
methodology including cross-validation and imbalanced data
handling. While these results are promising, the near-perfect
performance highlights the need for external validation studies
to establish realistic performance benchmarks and confirm the
generalizability of ML models in diverse HIV care settings.

Despite significant advancements in ML for predicting HIV
viral suppression, the adoption of explainable artificial
intelligence (XAI) techniques, which provide transparent
insights into how models make predictions, remains limited
within this domain [19]. Our study hypothesized that
comprehensive XAI techniques could be successfully integrated
with ML models to provide interpretable predictions for HIV
viral suppression in a resource-limited setting, identifying key
risk factors at both population and individual patient levels.
This gap presents a critical opportunity for improvement through
the implementation of local and global interpretability methods.

Our study addressed this limitation by developing and
comparing ML models for HIV viral suppression prediction in
Ugandan people living with HIV, and then systematically
applying comprehensive XAI techniques to enhance model
interpretability. Multiple ML algorithms were built and
compared, XAI methods were applied to the best-performing
model to identify key predictive factors, and interpretability
was demonstrated at both population and individual patient
levels. This integrated approach combined predictive accuracy
with transparent model interpretation, providing actionable
insights for clinical decision-making in resource-limited settings.

Methods

This section outlines the methodological approach used to
achieve our research objectives (Multimedia Appendix 1).

Study Design
This study conducted a secondary analysis of a retrospective
cohort dataset originally collected by Wakooko et al [11], who
used traditional binary logistic regression analysis. The original
study reviewed clinical records of people living with HIV on
ART for at least 6 months at Muyembe Health Centre IV
(HCIV), the primary ART site in Bulambuli District, Uganda.
In contrast to the original analysis, this study used ML
approaches to develop predictive models for viral suppression
outcomes. Furthermore, XAI techniques were applied to the
best-performing model to provide insights into the factors
influencing viral suppression, enhancing both model
interpretability and transparency in the clinical decision-making
process.
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Study Setting
This study used a dataset collected in Bulambuli District, located
in Eastern Uganda, with Muyembe HCIV serving as the sole
data source. Although the district comprises 10 Health Centre
IIIs and 1 HCIV, Muyembe HCIV functions as the district’s
primary and fully operational ART site. It maintains the most
complete ART records and provides centralized HIV care for
the area (Multimedia Appendix 2).

Study Population, Sampling, and Data Acquisition
This study used a secondary dataset sourced from the Mendeley
data repository [20], comprising information extracted from
medical records of people living with HIV who received ART
at Muyembe HCIV between June 2016 and April 2018. The
study population consisted of people living with HIV enrolled
in care at Muyembe HCIV during the study period. From an
initial cohort of 2050 people living with HIV enrolled at the
facility, 1101 participants met the inclusion criteria and were
included in the final study sample. A total of 949 individuals
were excluded for not meeting the inclusion criteria (Figure 1).

Figure 1. Flowchart of participant selection for the study of people living with HIV on ART at Muyembe Health Centre IV, June 2016 to April 2018.
ART: antiretroviral therapy.

The dataset included demographic, clinical, and
treatment-related variables of people living with HIV receiving
ART. Variables such as age, sex, WHO clinical stage at ART
initiation, ART regimen, cluster of differentiation 4 (CD4) count
at ART initiation, adherence assessment, and treatment duration
were incorporated into the analysis (Table S2 in Multimedia
Appendix 3 provides comprehensive mapping between variable
descriptions, code names, and original data codes). Adherence
assessment was conducted by reviewing patient treatment cards,
which contained documented records of medication adherence
over the preceding 3 months as recorded by health care providers
during routine clinic visits.

The primary outcome of interest in this study was viral
nonsuppression, defined as a viral load greater than 1000 copies
per milliliter, consistent with Uganda’s national antiretroviral
treatment monitoring guidelines [6]. To facilitate model
predictions and subsequent clinical interpretation, viral load
measurements were dichotomized, whereby viral nonsuppression
was assigned a value of 1 (positive class), and viral suppression
was assigned a value of 0.

Inclusion and Exclusion Criteria
Participants were eligible for inclusion if they were on ART for
6 months or longer and had viral load test results available. All
ages were included, covering a wide range of people living with
HIV from pediatric to adult populations.
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Data Preparation and Preprocessing
The dataset was randomly partitioned into training (80%) and
testing (20%) subsets, with stratification to preserve the outcome
variable distribution (viral suppression status). We assessed
missingness patterns across all 27 variables initially extracted
from the dataset (Table S1 in Multimedia Appendix 3). Factor
levels were harmonized across subsets, and variables with more
than 80% missingness (specific other medication, reason for
stopping ART, and specific opportunistic infection) were
excluded. All preprocessing steps, including imputation, were
performed exclusively on the training dataset to prevent data
leakage and ensure unbiased model evaluation. Remaining
features underwent systematic cleaning, including mean
imputation for numeric variables and mode imputation for
categorical predictors, with clinically informed handling of
missing values through “unknown” categories for marital status
and supporter relationships to preserve potential clinical
significance of missingness patterns. Ordinal variables (eg,
WHO clinical stage, age group, ART duration, adherence
assessment, weight, and time before viral load testing) were
encoded as ordered factors, ensuring that clinically meaningful
ordering was preserved. Nominal categorical variables (eg, sex,
marital status, residence type, opportunistic infection history,
tuberculosis history on ART, point of entry in ART clinic, ART
history, ART supporter presence, supporter relationship, reported
side effects, dosing frequency, and pre-ART counseling status)
were harmonized across datasets, aligned to consistent reference
categories, and subsequently one-hot encoded using dummy
variables. The derived categorical variable CD4 lymphocyte
count category was removed in favor of retaining the original
continuous CD4 lymphocyte count at ART initiation.

Two distinct preprocessing pipelines were implemented. The
first did not apply any class-imbalance technique and relied
solely on structured preprocessing steps using the recipes
package (dummy encoding, normalization, ordinal scoring, and
zero-variance removal). The second pipeline addressed class
imbalance by applying the synthetic minority over-sampling
technique (SMOTE) to the training data, followed by support
vector machine-recursive feature elimination (SVM-RFE) for
feature selection of predictors. Feature set sizes varied across
model implementations: the final dataset contained 20 features,
preprocessing expanded this to 25 features for selected models,
while other feature selection approaches yielded reduced sets
of 13 features for the extreme gradient boosting (XGBoost)
model. All augmentation and feature selection procedures were
applied exclusively to training data, preserving test set integrity
and enabling systematic evaluation of different preprocessing
strategies while maintaining fully standardized, reproducible,
and leakage-free datasets suitable for downstream model
development.

Model Training and Tuning
This section outlines the key steps undertaken to develop ML
models for predicting HIV viral suppression among patients
receiving ART in Uganda. The following subsections describe
model building and model performance and evaluation.

Model Building
A diverse set of ML models was developed to predict viral
nonsuppression status, including random forest, XGBoost,
artificial neural networks, support vector machines, logistic
regression, k-nearest neighbors, naïve Bayes, and a stacked
ensemble with random forest and XGBoost base learners and
an XGBoost meta-learner. Stacked ensembles are a 2-level
modeling strategy that harnesses the strengths of multiple ML
models [21,22]. Model development used nested 10-fold
cross-validation to optimize hyperparameters and minimize
overfitting. Each algorithm was trained using structured
hyperparameter grids. These models were chosen based on their
proven effectiveness in classification tasks and their ability to
handle complex relationships within the data.

Model Performance and Evaluation
Evaluation incorporated a comprehensive set of metrics,
including accuracy, precision, recall (sensitivity), specificity,
F1-score, Cohen κ, and AUC. Performance was assessed through
both internal cross-validation and independent test sets, enabling
robust benchmarking of the models. In addition, feature
importance and the stability of selected predictors were
examined to compare model behavior across the imbalanced
and SMOTE-SVM-RFE pipelines.

Recall was prioritized due to its clinical importance in
identifying patients at high risk for failing to achieve viral
suppression. The F1-score offered a balanced view of precision
and recall, particularly useful for imbalanced datasets. Cohen
κ accounted for the possibility of agreement occurring by
chance, providing a more robust measure than simple accuracy.
The receiver operating characteristic curve visually represented
the trade-off between true positive (TP) rates and false positive
(FP) rates, with the AUC quantifying the model’s discriminative
ability.

Following model training, the optimal classification threshold
was determined using the Youden J statistic
(sensitivity+specificity–1) on the training set receiver operating
characteristic curve [23]. This approach maximizes the
combined sensitivity and specificity and represents a posttraining
internal validation step that does not influence model fitting.
The resulting threshold was held fixed and applied unchanged
to the independent test set for all performance metric
calculations and confusion matrix computation.

Probability calibration was performed using isotonic regression
fitted on the training set predictions [24]. The fitted calibration
function was then applied to the independent test set to generate
calibrated probability estimates. A calibration plot was created
for the best-performing model to evaluate alignment between
predicted probabilities and actual outcomes. Brier scores were
calculated to quantify the accuracy of probabilistic predictions
before and after calibration [25].

Interpretation Methods
Our research used a multifaceted approach to interpret the
best-performing model used for HIV viral suppression
prediction. This approach combined global and local
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interpretability techniques to understand how features influenced
the model’s decisions.

Global Explanation
We incorporated global Shapley Additive Explanations (SHAP)
for interpretability, which assigned attribution values to each
feature, explaining its contribution to specific predictions [26].
SHAP summary plots helped identify the most important global
features influencing the best model’s predictions. Furthermore,
we used dependence plots to visualize the average effect of
individual features on predictions, showing how the predicted
outcome (eg, viral nonsuppression) changed in response to
variations in each feature [27].

Local Explanation
Local interpretability techniques examined the reasoning behind
individual predictions [19]. Individual conditional expectations
(ICEs) were used to illustrate how changes in a single feature,
while holding others constant, impacted predictions for each
participant [28,29]. Breakdown plots further decomposed
predictions into contributions from individual features,
visualizing their influence on specific predictions [29,30]. In
addition, SHAP was used to explore feature interactions and
their influence on individual predictions, providing deeper
insight into local model reasoning.

Software and Analytical Tools
The analysis was conducted on a machine with the following
specifications: graphics: Intel Iris Plus Graphics 1536 MB,
RAM: 16 GB 3733 MHz LPDDR4X, and processor: 2 GHz
Quad-Core Intel Core i5, running macOS Sonoma (version
14.6.1; 23G93). The programming languages used include
Python (version 3.9; Python Software Foundation) and R
(version 4.3.3, 202-02-29, “Angel Food Cake”; R Foundation
for Statistical Computing), with RStudio 2024.09.0+375 (Posit
Software, PBC) serving as the integrated development
environment for both R and Python, while Stata 18 SE
(StataCorp LLC) was used to import and perform preliminary
descriptive analyses on the raw dataset, which was provided in
Stata’s proprietary .dta file format. The RStata package was
used to import and describe the data in R.

Python integration was achieved via the reticulate package,
using pandas for data manipulation. In R, dplyr was used for
cleaning and renaming columns, improving data clarity. Data
wrangling and preprocessing were conducted using a suite of
R packages. The dplyr package was used for data manipulation

tasks, such as filtering, mutating, and summarizing data. The
tidymodels framework was used for recipe creation and model
baking. ML models were trained and evaluated using the caret
package, supporting hyperparameter tuning and cross-validation.
To ensure interpretability, a suite of XAI packages—iml, vip,
pdp, breakDown, SHAPforxgboost, and DALEX—was used,
providing tools for variable importance, partial dependence
plots, breakdown plots, and SHAP [19].

Ethical Considerations
The original study, titled “Viral Load Suppression and
Associated Factors among HIV Patients on Antiretroviral
Treatment in Bulambuli District, Eastern Uganda: A
Retrospective Cohort Study” by Wakooko et al [11], received
ethics approval from both the Busitema University Faculty of
Health Sciences Higher Degrees and Research Committee and
the Mbale Regional Referral Hospital Research and Ethics
Committee (Ref: MRRH-REC-IN-COM 081/2018). Permission
to conduct the study was further obtained from the Bulambuli
District Health Office. A waiver of informed consent was
granted, as the study involved secondary analysis of existing
medical records initially collected for routine patient care.
Participant privacy and confidentiality were maintained through
deidentification procedures: the data abstraction tool used
numerical identifiers rather than names, ensuring that no
individual personal data were exposed, and all collected data
were stored securely with access restricted to research personnel.
No compensation was provided to participants, as no direct
participant contact occurred. The research presented no risk of
harm to participants. For this current secondary analysis study,
ethics approval was granted by the School of Consumer
Intelligence and Information Systems Research Ethics
Committee of the University of Johannesburg (approval:
2024SCiiS029).

Results

This section presents the findings from our analysis of the ML
models developed to predict HIV viral suppression among
Ugandan people living with HIV receiving ART.

Clinical and Demographic Profile
This study analyzed baseline sociodemographic, clinical, and
biomarker data to understand factors influencing viral
suppression among patients receiving ART in Uganda. A
detailed breakdown of these features stratified by viral
suppression status is presented (Table 1).
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Table 1. Baseline sociodemographics, clinical factors, and biomarkers of people living with HIV on antiretroviral therapy (ART) in a retrospective
cohort study in 2019, Bulambuli District, Uganda.

Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

Age group (years)

4 (2.5)20 (2.1)24 (2.2)0-5

19 (12.1)50 (5.3)69 (6.3)6-12

13 (8.3)28 (3)41 (3.7)13-19

62 (39.5)372 (39.4)434 (39.4)20-35

59 (37.6)474 (50.2)533 (48.4)Above 35

Sex

45 (28.7)289 (30.6)334 (30.3)Male

112 (71.3)655 (69.4)767 (69.7)Female

Marital status

64 (40.8)237 (25.1)301 (27.3)Single

84 (53.5)629 (66.6)713 (64.8)Married

9 (5.7)78 (8.3)87 (7.9)Divorced

Residence type

90 (57.3)588 (62.3)678 (61.6)Rural

67 (42.7)356 (37.7)423 (38.4)Urban

Adherence assessment last 3 months

59 (37.6)19 (2)78 (7.1)Poor <80%

51 (32.5)96 (10.2)147 (13.4)Fair 80%-95%

47 (29.9)829 (87.8)876 (79.6)Good >95%

WHOa clinical stage at ART initiation

39 (24.8)200 (21.2)239 (21.7)Stage 1

78 (49.7)462 (48.9)540 (49)Stage 2

40 (25.5)273 (28.9)313 (28.4)Stage 3

0 (0)9 (1)9 (0.8)Stage 4

Weight at ART initiation (kg)

14 (8.9)56 (5.9)70 (6.4)1-20

76 (48.4)413 (43.8)489 (44.4)21-50

67 (42.7)475 (50.3)542 (49.2)Above 50

Opportunistic infection history

12 (7.6)68 (7.2)80 (7.3)Yes

145 (92.4)876 (92.8)1021 (92.7)No

Tuberculosis history on ART

3 (1.9)12 (1.3)15 (1.4)Yes

154 (98.1)932 (98.7)1086 (98.6)No

Point of entry in ART clinic

130 (82.8)791 (83.8)921 (83.7)OPDb

19 (12.1)120 (12.7)139 (12.6)Maternity

8 (5.1)33 (3.5)41 (3.7)Antenatal care service

Duration on ART (months)
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

2 (1.3)8 (0.8)10 (0.9)3-6

4 (2.5)29 (3.1)33 (3)7-11

58 (36.9)288 (30.5)346 (31.4)12-24

93 (59.2)619 (65.6)712 (64.7)More than 24

ART history

4 (2.5)17 (1.8)21 (1.9)Yes

153 (97.5)927 (98.2)1080 (98.1)No

Reported ART side effects

17 (10.8)71 (7.5)88 (8)Yes

140 (89.2)873 (92.5)1013 (92)No

Frequency of ARVc dosing

90 (57.3)603 (63.9)693 (62.9)Once

67 (42.7)341 (36.1)408 (37.1)Twice

Pre-ART counseling status

135 (86)805 (85.3)940 (85.4)Yes

22 (14)139 (14.7)161 (14.6)No

Treatment supporter presence

145 (92.4)883 (93.5)1028 (93.4)Yes

12 (7.6)61 (6.5)73 (6.6)No

Treatment supporter relationship

28 (17.8)196 (20.8)224 (20.3)Care giver

90 (57.3)516 (54.7)606 (55)Relative

2 (1.3)11 (1.2)13 (1.2)Peer

21 (13.4)66 (7)87 (7.9)Biological parent

16 (10.2)155 (16.4)171 (15.5)Marriage partner

Time before viral load test on ART (months)

12 (7.6)98 (10.4)110 (10%)6

87 (55.4)489 (51.8)576 (52.3)12

58 (36.9)357 (37.8)415 (37.7)>12

Current ART regimen simplified

95 (60.5)642 (68)737 (66.9)TDFd-based

54 (34.4)271 (28.7)325 (29.5)AZTe-based

7 (4.5)26 (2.8)33 (3)ABCf-based

1 (0.6)5 (0.5)6 (0.5)Other ART

CD4g count category

114 (72.6)687 (72.8)801 (72.8)<200

31 (19.7)194 (20.6)225 (20.4)200-500
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Not suppressed >1000 RNA copies per
milliliter (n=157)

Suppressed <1000 RNA copies per milliliter
(n=944)

Total (N=1101)Predictors

12 (7.6)63 (6.7)75 (6.8)>500

aWHO: World Health Organization.
bOPD: outpatient department.
cARV: antiretroviral.
dTDF: tenofovir disoproxil fumarate.
eAZT: zidovudine.
fABC: abacavir.
gCD4: cluster of differentiation 4.

Among the 1101 people living with HIV on ART, 944 (85.7%)
achieved viral suppression (<1000 RNA copies per milliliter).
Four key demographic and clinical factors demonstrated notable
patterns in relation to viral suppression outcomes.

Adherence patterns showed a strong association with viral
suppression. Among participants with good adherence (>95%),
94.6% (829/876) achieved viral suppression compared to only
24.4% (19/78) of those with poor adherence (<80%). Fair
adherence (80%-95%) resulted in 65.3% (96/147) suppression
rates, demonstrating a clear adherence-response gradient. Age
distribution revealed differential suppression rates across groups.
Participants aged 35 years and older had the highest suppression
rate at 89.9% (474/533), while adolescents (aged 13-19 years)
showed the lowest at 68.3% (28/41). Children aged 6-12 years
had a suppression rate of 72.5% (50/69), indicating age-related
challenges in achieving optimal outcomes.

Duration on ART showed that established patients performed
better, with 87% (619/712) of those on treatment >24 months
achieving suppression compared to 83.2% (288/346) of patients
treated for 12-24 months. Newer patients (3-11 months) had

suppression rates of 86% (588/678). Residence type
demonstrated urban-rural disparities, with rural residents
achieving 86.7% (356/423) suppression compared to 84.2%
(356/423) among urban residents, though this difference was
modest.

Global Explanation
The analysis included the performance evaluation of supervised
learning classifiers, the assessment of feature importance, and
the generation of dependence plots to illustrate the relationships
between key features and model predictions.

Performance of Supervised Learning Classifiers
The imbalanced pipeline (Table 2) revealed substantial
performance variation across algorithms, with neural networks
achieving the highest accuracy (0.90) and precision (0.70), while
k-nearest neighbors exhibited optimal recall (0.68). However,
class imbalance severely impacted several algorithms, notably
logistic regression, which achieved high precision (0.93) but
critically low recall (0.13), rendering it clinically unsuitable for
viral nonsuppression detection.

Table 2. Comparative performance of machine learning models on imbalanced data (train set: 882, test set: 219).

AUCaκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.830.540.600.930.610.590.89XGBoostb

0.770.520.590.930.610.580.88Stacked ensemble (XGBoost
meta-learner)

0.830.460.540.920.550.530.87Random forest

0.800.460.550.870.680470.85K-nearest neighbors

0.56—c0.10.790.130.930.69Logistic regression

0.75——1.00——0.86Naïve Bayes

0.820.450.530.910.550.510.86SVMd

0.780.530.590.960.510.700.90ANNe

aAUC: area under the curve.
bXGBoost: extreme gradient boosting.
cNot available.
dSVM: support vector machine.
eANN: artificial neural network.

The SMOTE-balanced pipeline (Table 3) demonstrated
improved recall across most algorithms, confirming the
effectiveness of synthetic oversampling for addressing class

imbalance. XGBoost achieved optimal overall performance
with balanced metrics: accuracy (0.89), precision (0.59), recall
(0.65), and robust agreement (κ=0.55).

JMIR AI 2026 | vol. 5 | e68196 | p. 8https://ai.jmir.org/2026/1/e68196
(page number not for citation purposes)

Ngema et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Comparative performance of machine learning models on SMOTEa-balanced and SVM-RFEb selected data (train set: 1008, test set: 219).

AUCcκF1-scoreSpecificityRecallPrecisionAccuracyModel

0.800.550.620.930.650590.89XGBoostd

0.760.300.440.740.710.310.74Stacked ensemble (XGBoost
meta-learner)

0.780.500.570.940.580.560.88Random forest

0700.250.390.770.580.300.74K-nearest neighbors

0.820.350.470.800.680.360.79Logistic regression

0.700.350.440.930.420.460.85Naïve Bayes

0.670.330.390.970.290.600.87SVMe

0.740.270.390.860.450.340.80ANNf

aSMOTE: synthetic minority over-sampling technique.
bSVM-RFE: support vector machine-recursive feature elimination.
cAUC: area under the curve.
dXGBoost: extreme gradient boosting.
eSVM: support vector machine.
fANN: artificial neural network.

XGBoost emerged as the superior performer across both
pipelines, demonstrating consistent excellence in ensemble
learning principles. On the SMOTE-balanced dataset, XGBoost
achieved clinically relevant performance with 65% sensitivity
for viral nonsuppression detection while maintaining 93%
specificity for correctly identifying suppressed patients. The
model’s balanced F1-score (0.62) and substantial agreement
(κ=0.55) indicate robust predictive capability suitable for clinical
implementation. Feature selection via SVM-RFE enhanced
model interpretability while preserving discriminative
performance, yielding an AUC of 0.80 that meets clinically
acceptable thresholds for viral suppression prediction.
Cross-validation identified optimal hyperparameters at iteration
35. The model used the following hyperparameters: nrounds=35,
max_depth=7, eta=0.1, gamma=1, colsample_bytree=0.8,
min_child_weight=4, subsample=0.8, lambda=2.0, and
scale_pos_weight=1.30 to address class imbalance. Threshold
optimization yielded 0.611 for test evaluation to balance
specificity and recall.

Isotonic regression calibration, fitted on training data and applied
to the test set, substantially improved probability estimates.
Calibration performance demonstrated marked improvement,
with the Brier score decreasing from 0.1324 (uncalibrated) to

0.0739 (calibrated), representing a 44.2% reduction and
indicating enhanced reliability of probability estimates. The
calibrated model demonstrated enhanced discriminative
performance, with AUC increasing modestly from 0.799 to
0.838 (Multimedia Appendix 4).

Feature Importance
SHAP analysis (Figure 2A) revealed differential feature impacts
on viral nonsuppression predictions, with adherence assessment
demonstrating the strongest influence on model decisions,
followed by age group, residence type (urban), and duration on
ART. The beeswarm plot illustrates that poor adherence
assessment consistently drives predictions toward viral
nonsuppression (positive SHAP values), while good adherence
strongly predicts viral suppression (negative SHAP values).
Feature importance rankings (Figure 2C) confirmed adherence
assessment as the dominant predictor contributing 54.8% of
model gain, with duration on ART (10.2%), age group (8.4%),
and urban residence (4.9%) representing secondary but clinically
relevant factors. This hierarchy emphasizes adherence as the
critical determinant of treatment outcomes, consistent with
established clinical understanding that medication compliance
fundamentally governs ART effectiveness.
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Figure 2. Model evaluation metrics for XGBoost classifier. (A) SHAP feature impact (beeswarm) illustrating feature influence on predictions, (B)
AUC, (C) feature importance based on relative contribution, and (D) confusion matrix. AUC: area under the curve; SHAP: Shapley Additive Explanations;
XGBoost: extreme gradient boosting.

Dependence Plots
SHAP dependence plots (Figure 3) revealed distinct nonlinear
relationships between key predictors and viral nonsuppression
risk. Adherence assessment exhibited a clear monotonic
relationship, with poor adherence (lower values) consistently
increasing SHAP values toward viral nonsuppression
predictions, while optimal adherence (higher values) drove
predictions toward viral suppression. Age group demonstrated
a nonlinear pattern with pediatric and adolescent populations
showing substantially elevated risk: young children (aged 0-5
years) exhibited moderately positive SHAP values (~0.5),
school-aged children (aged 6-12 years) showed markedly
increased risk (SHAP>0.5), while adolescents (aged 13-19
years) displayed the highest predicted nonsuppression risk

(SHAP>1.0). Conversely, adults aged 20-35 years demonstrated
reduced risk (SHAP<0.5), with those aged 35 years and older
showing protective effects (negative SHAP values~–0.1).
Residence type displayed a binary pattern where urban residence
associated with higher SHAP values (just below 0.5), indicating
increased nonsuppression risk compared to rural residence.
Duration on ART revealed a complex nonlinear relationship
with early treatment periods (3-6 months), showing substantial
variability (SHAP values ranging from 0.4 to –0.7), while
patients at 7-11 months demonstrated elevated risk (SHAP>0.4).
The intermediate period (12-24 months) exhibited the highest
predicted nonsuppression risk (SHAP values 0.0 to 0.8), with
long-term patients (>24 months) showing predominantly
protective effects (SHAP values ranging from 0.1 to –0.6).
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Figure 3. XGBoost dependence plots illustrating the marginal effect of selected predictor variables on the predicted probability of HIV viral suppression.
SHAP: Shapley Additive Explanations.

Local Explanation
The analysis encompassed ICEs, breakdown plots, SHAP-based
model explainability, force plots, and clustering to provide
detailed insights into the model’s decision-making process at
the individual level.

Individual Conditional Expectations
The ICE plot using Ceteris-paribus for the XGBoost model
illustrates how 4 key features influenced the model’s
nonsuppression predictions for 4 individual cases (Figure 4).
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Figure 4. Individual conditional expectation plot using Ceteris-paribus profiles for the XGBoost model. FN:41: false negative, row 41; FP:13: false
positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Ceteris-paribus profiles for 4 representative patients (true
positive, row 9 [TP:9], false positive, row 13 [FP:13], true
negative, row 16 [TN:16], and false negative, row 41 [FN:41])
illustrated distinct individual responses to feature variations
across correct and incorrect predictions. The TP case (TP:9)
demonstrated a high baseline probability (~0.65-0.70), with
adherence assessment showing the steepest probability decline
from poor to good adherence, while maintaining elevated risk
across most feature combinations. The FP case (FP:13) exhibited
moderate baseline probability (~0.25-0.30) with pronounced
sensitivity to adherence changes and notable probability
elevation at younger age groups, contributing to its

misclassification. The true negative (TN) case (TN:16)
maintained consistently low probabilities (~0.1-0.2) across all
feature variations, with adherence assessment providing the
most substantial impact but insufficient to elevate risk
substantially. The false negative (FN) case (FN:41) displayed
consistently high predicted probabilities (~0.65-0.70)
comparable to the TP case across all 4 features, yet was
incorrectly classified despite exhibiting similar risk profiles.

Breakdown Plots
The breakdown plots for individual cases (TP, FP, TN, and FN)
illustrate how specific predictors influenced the overall
prediction for each observation (Figure 5).
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Figure 5. XGBoost breakdown plots for the top 13 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative, row
41; FP:13: false positive, row 13; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost: extreme gradient boosting.

Breakdown plots for the 13 selected features revealed the
cumulative contribution of individual predictors to final
prediction outcomes across the 4 representative cases. The TP
case (TP:9) demonstrated a systematic progression from baseline
intercept (0.320) to final prediction (0.813), with adherence
assessment providing the largest positive contribution (+0.365),
followed by duration on ART (+0.136). Additional features
showed mixed effects, with marital status (married) contributing
a positive increment, while other features provided negative
contributions that partially offset these increases, and the net
cumulative effect elevated the prediction above the classification
threshold.

The FP case (FP:13) exhibited substantial progression from
intercept (0.320) to final prediction (0.781), with adherence
assessment dominating the prediction increase (+0.365),
followed by age group contributing moderately (+0.031). Marital

status (married) and residence type (urban) provided combined
positive contributions (+0.048), while other features provided
negative contributions that partially offset these increases.
Despite the counterbalancing effects of protective features, the
model’s final probability assessment substantially exceeded the
decision boundary at 0.575, resulting in the misclassification
of this actually suppressed patient.

The TN case (TN:16) demonstrated protective feature
dominance, with adherence assessment contributing the largest
negative effect (–0.099), followed by age group (–0.062) and
residence type (urban) (–0.032), while other features provided
minimal positive or negative adjustments. The cumulative
protective contributions drove the final prediction to 0.088,
substantially below the classification threshold, enabling the
correct identification of this virally suppressed patient through
predominantly risk-reducing feature effects.
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The FN case (FN:41) presented a complex feature interaction
pattern, with age group providing the primary risk elevation
(+0.184), while adherence assessment (–0.076), marital status
(married) (–0.077), and duration on ART (–0.069) contributed
substantial protective effects. The competing influences of
risk-enhancing and protective features resulted in a suppressed
final prediction of 0.196, falling considerably below the 0.575

threshold and causing misclassification of this patient with
actual viral nonsuppression.

Shapley Additive Explanations
The SHAP value bar charts (Figure 6) depict the top contributing
features for each individual case (TP, FP, TN, and FN). These
plots highlight how key predictors influence the model’s output
for viral suppression or nonsuppression predictions.

Figure 6. XGBoost SHAP value bar charts for the top 10 features that influenced the prediction outcomes for 4 individual cases. FN:41: false negative,
row 41; FP:13: false positive, row 13; SHAP: Shapley Additive Explanations; TN:16: true negative, row 16; TP:9: true positive, row 9; XGBoost:
extreme gradient boosting.

SHAP value bar charts revealed distinct feature contribution
patterns across the 4 representative cases, illustrating
individual-level model explanations for each prediction outcome.
The TP case (TP:9) demonstrated adherence assessment as the
dominant positive contributor (SHAP value>1.5), followed by
marital status (single) (~0.1), with most remaining features
showing minimal negative contributions close to 0. This pattern
indicates that poor adherence primarily drove the model’s
prediction toward viral nonsuppression for this correctly
identified high-risk patient.

The FP case (FP:13) exhibited adherence assessment as the
primary driver (SHAP value~0.9), with residence type (urban)
and age group contributing moderately (~0.3), while most other
features remained near-neutral with minimal negative
contribution from duration on ART. The substantial positive
contribution from adherence assessment, combined with other
risk factors, elevated the prediction above the classification
threshold despite the patient’s actual viral suppression status.

In the TN case (TN:16), adherence assessment emerged as the
most significant feature, contributing a negative value of high
magnitude (SHAP value: –1.2), followed by age group (SHAP
value: –0.4). These contributions reduced the predicted
probability of nonsuppression, correctly guiding the model to
classify the patient as virally suppressed, consistent with their
actual status.

The FN case (FN:41) displayed age group as the strongest
positive contributor (SHAP value~0.4), whereas adherence
assessment, duration on ART, and marital status showed
negative contributions (approximately –1.2, –0.4, and –0.15,
respectively). This conflicting pattern of protective features
outweighing age-related risk factors resulted in an
inappropriately low prediction for a patient with actual viral
nonsuppression.

SHAP Force Plot
The SHAP force plot (Figure 7) highlights how individual
predictors contribute to the model’s predictions of viral
suppression or nonsuppression across all observations.
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Figure 7. XGBoost SHAP force plot analysis of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot revealed feature contribution patterns
across all observations, with adherence assessment consistently
dominating predictions through substantial positive SHAP
values for poor adherence and negative values for good
adherence. Age group exhibited nonlinear effects, with pediatric
and adolescent ranges generating positive contributions while
adult groups provided protective effects. Duration on ART
showed variable influences, with intermediate treatment periods
contributing to nonsuppression risk and early or long-term
durations demonstrating protective effects. Urban residence
consistently produced positive SHAP values compared to rural

residence, whereas married status typically associated with
increased nonsuppression predictions. The visualization
effectively demonstrated how competing feature influences
determine threshold crossing, revealing the dynamic balance
between risk-enhancing and protective factors across individual
clinical profiles.

SHAP Force Clustering
The SHAP force plots (Figure 8) display 4 distinct patient
clusters, each characterized by varying influences of key
predictors on viral suppression outcomes.
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Figure 8. XGBoost SHAP force plot clustering of predictors for HIV viral suppression in Ugandan people living with HIV. SHAP: Shapley Additive
Explanations; XGBoost: extreme gradient boosting.

The SHAP force plot clustering revealed 4 distinct patient
phenotypes based on feature contribution patterns for viral
suppression predictions. Cluster 1 (observations 0-50)
demonstrated predominantly protective profiles characterized
by substantial negative SHAP values from adherence assessment
(>–3) and age group (>–1), with minimal counteracting
contributions from other features. This cluster represented
patients with good adherence, older age groups, and rural
residence, consistently driving predictions toward viral
suppression.

Cluster 2 (observations 51-125) exhibited low-risk profiles with
negative SHAP values of greater magnitude from adherence
assessment (>–2), counterbalanced by moderate positive
contributions from other features. This cluster represented
patients with good adherence across mixed age groups (young
adults and older patients) and diverse residential settings (both
rural and urban), with predictions consistently favoring viral
suppression despite some offsetting risk factors.

Cluster 3 (observations 126-160) demonstrated predominantly
high-risk profiles characterized by substantial positive SHAP
values from adherence assessment (>2) and age group, with
minimal protective contributions from other features. This
cluster represented patients with poor adherence and younger
age groups (particularly pediatric and adolescent populations),
consistently driving predictions toward viral nonsuppression.

Cluster 4 (observations 161-219) showed variable risk patterns
with heterogeneous SHAP value distributions across features,
indicating diverse clinical profiles where feature interactions

produced inconsistent directional effects. This cluster
highlighted the complexity of prediction patterns in patients
with mixed risk and protective factors.

Discussion

This section discusses the implications of our findings on
predicting viral suppression in Ugandan people living with HIV
on ART. We summarize principal findings, acknowledge study
limitations, compare findings with previous research, and discuss
the broader significance and potential clinical implications.

Principal Findings
This study successfully developed an interpretable ML model
for predicting viral nonsuppression in Ugandan people living
with HIV, achieving robust performance with AUC 0.80, recall
0.65, F1-score 0.62, and Cohen κ 0.55. The SMOTE-enhanced
XGBoost model with XAI techniques revealed critical insights
into viral suppression determinants and patient risk stratification.

Adherence emerged as the overwhelming predictor across all
analytical approaches, contributing 54.8% of model gain and
consistently demonstrating the largest SHAP values. This
finding reinforces adherence as the fundamental determinant
of treatment success, though the magnitude of its influence
suggests that current adherence measurement approaches may
inadequately capture the complexity of medication-taking
behavior in this population. The model identified a nonlinear
age relationship, with adolescents (aged 13-19 years) showing
peak nonsuppression risk (SHAP>1.0), declining through young
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adults, and reaching protective effects in patients aged 35 years
and older (SHAP~–0.1). This pattern aligns with known
developmental challenges in adolescent HIV care but quantifies
the risk magnitude for clinical decision-making.

Urban residence consistently predicted increased nonsuppression
risk (SHAP<0.5), despite the dataset’s rural majority. This
finding challenges conventional assumptions about health care
access advantages and suggests that urban-specific barriers may
outweigh accessibility benefits in this population. However,
this finding is isolated to this dataset and may not be
generalizable to broader contexts.

The intermediate treatment period (12-24 months) emerged as
the highest-risk phase, potentially reflecting treatment fatigue
or viral resistance development. This temporal vulnerability
window has important implications for intensified monitoring
and intervention timing.

SHAP clustering revealed 4 distinct patient phenotypes:
protective profiles with good adherence and older age (cluster
1), low-risk patients with mixed demographics but good
adherence (cluster 2), high-risk adolescents with poor adherence
(cluster 3), and complex profiles with variable risk factors
(cluster 4). This stratification framework enables targeted
intervention strategies aligned with specific risk patterns rather
than one-size-fits-all approaches.

Limitations
The absence of external validation using independent datasets
limits confidence in model generalizability beyond the
single-site study population at Muyembe HCIV. Routinely
collected clinical data introduced several quality threats,
including systematic bias from recoding missing values to “N/A”
categories and selection bias from analyzing complete records
only, which reduced dataset size and potentially excluded
patients with complex clinical profiles characterized by
incomplete documentation. This approach may have
inadvertently favored patients with better health care
engagement, limiting model applicability to more vulnerable
populations who are typically underrepresented in complete
clinical records.

The analysis combined pediatric and adult patients without
separate subset evaluation, creating variable coding challenges
that potentially compromised model precision. Marriage status
proved irrelevant for children, caregiver relationships varied in
significance across age groups, and patient weight categories
applied uniform standards across vastly different developmental
stages. The weight variable’s reduced contribution to model
performance likely reflects the complexity of applying
standardized categories where weight implications for viral
suppression differ substantially between pediatric and adult
populations. Additionally, the relatively modest dataset size
(N=1101) may have constrained the ensemble algorithm’s ability
to capture complex feature interactions, while SMOTE
application for class imbalance correction carries overfitting
risks if synthetic minority samples inadequately represent true
population characteristics.

Comparison With Prior Work
This study aligns with several investigations that have explored
the potential of ML for predicting HIV viral suppression, each
possessing its own strengths and limitations [13-18,31]. Various
ML algorithms have been used in these studies, with random
forest and logistic regression emerging as the most frequently
used methodologies.

The findings of Kimaina et al [14] were particularly relevant,
as they reported similar performance metrics and the use of
ensemble techniques in their analyses. Despite the super learner
classifier being identified as the best performer—comprising
stacked ensemble models—the XGBoost model demonstrated
superior performance compared to other individual algorithms.
In our study, we also identified logistic regression and random
forest as the top-performing models, following the XGBoost
classifier.

A recent study by Seboka et al [16] further emphasized the
effectiveness of the XGBoost classifier in predicting viral
suppression, identifying critical predictors such as regimen
change, adherence level, CD4 lymphocyte count, duration on
ART, and tuberculosis status. Though these studies provided
insights through global interpretation, they lacked local
explanations, limiting the ability to compare individual-level
predictions and tailored interventions.

Influential factors in our study reaffirm the critical role of
adherence to ART as a pivotal predictor of viral nonsuppression,
corroborating previous research that has similarly highlighted
its significance in treatment outcomes [17,32-34]. Esber et al
[17] demonstrated that adherence, along with CD4 lymphocyte
count and ART regimen, was crucial in predicting viral
nonsuppression. In contrast, Wagner et al [33] emphasized that
viral suppression among participants on dolutegravir is not
dependent on strict adherence levels; however, their study also
indicated that traditional ART is associated with viral
suppression and different adherence levels.

Our identification of age group as a significant predictor aligns
with evidence from resource-limited settings. Cross-sectional
studies in Cambodia found that older adolescents had a
significantly lower likelihood of viral nonsuppression compared
to younger peers [35]. This is corroborated by prospective data
from Kenya and Uganda, where younger age independently
predicted both failure to achieve viral suppression and increased
risk of virologic rebound [36]. Population-level data from rural
KwaZulu-Natal further support age-related disparities,
demonstrating substantially lower viral suppression rates among
younger populations, with particular challenges among the
younger male population in achieving viral suppression targets
[37]. These clinical and population studies emphasize that
younger populations require targeted interventions including
enhanced psychosocial support and treatment literacy to improve
viral suppression outcomes. These findings collectively support
age as a critical predictor requiring tailored approaches for
younger people living with HIV.

Studies from sub-Saharan Africa show mixed findings, with
some demonstrating higher viral suppression in rural areas due
to older patient demographics and better ART adherence
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compared to urban counterparts, while others report better urban
outcomes due to improved health care access [38]. Our study
found urban residence to be a risk factor for viral
nonsuppression, aligning with the former. South African data
indicate that virological suppression varied by geographical
setting, from 94.6% in urban settings to 88% in rural settings,
though this contradicts our findings [39]. In Cameroon, viral
suppression was 75% in urban sites compared to 67.7% in rural
sites [40]. Our counterintuitive finding may reflect specific
urban health care challenges in our setting, including health
care fragmentation or urban-specific barriers despite proximity
to services. However, this finding is isolated to this dataset and
may not be generalizable to broader contexts.

Duration on ART was found to be associated with viral load
suppression, with longer durations linked to improved outcomes.
This finding is consistent with previous studies [41-43], which
highlight that prolonged ART engagement enhances the
likelihood of achieving viral suppression. These results reinforce
the importance of sustained adherence to treatment in managing
HIV effectively.

Model Interpretability and Clinical Implications
Our primary use of XAI was to identify population-level patterns
that inform general clinical and public health strategies. SHAP
global feature importance analysis across all 1101 patients
revealed that adherence assessment was consistently the
strongest predictor of viral nonsuppression, followed by age
group, urban residence, and ART duration. These aggregate
patterns, derived from the entire cohort, form the basis of our
general conclusions about risk factor hierarchies and provide
evidence for prioritizing adherence support programs in HIV
care settings. Partial dependence plots and ICE curves further
confirmed that these relationships held consistently across
different patient subgroups, demonstrating robust
population-level patterns rather than isolated associations.

While population-level findings drive our general conclusions,
individual patient explainability serves 2 critical complementary
functions. First, breakdown plots and individual SHAP values
validate that population-level patterns manifest consistently at
the patient level, ensuring that our aggregate findings are not
statistical artifacts but reflect genuine clinical mechanisms. For
example, examining individual predictions confirmed that

adherence consistently dominated decision pathways across
diverse patient profiles, strengthening confidence in our
population-level conclusion about adherence primacy. This
emphasizes the clinical value of individualized interventions
and illustrates how XAI mitigates the inherent black-box nature
of ML models by revealing transparent, interpretable decision
pathways [44-46].

Second, individual explainability demonstrates clinical
applicability by showing how the model functions in practice.
Analysis of specific cases, including FPs where poor adherence
drove incorrect nonsuppression predictions despite actual viral
suppression, illustrates both the model’s reasoning process and
its limitations. These examples do not change our
population-level conclusions but demonstrate how clinicians
might use the model for personalized risk assessment and
intervention planning in real-world settings.

This dual approach to explainability fosters accountability and
trust in health care artificial intelligence (AI) systems by
enhancing comprehensibility at both population and individual
levels [47,48]. Transparency in AI decision-making, enabled
by XAI, has the potential to build trust among health care
professionals and patients alike, facilitating wider adoption of
AI-powered health care solutions [45]. Additionally, XAI helps
mitigate biases within AI models, promoting fairer and more
ethical applications [47-49]. Understanding how various factors
influence model predictions allows health care professionals to
improve accuracy and ensure that AI-driven decisions align
with clinical priorities, thus enhancing the overall utility of AI
in health care settings.

This study demonstrates that XGBoost ML models can
accurately predict viral nonsuppression in Ugandan patients
with HIV, achieving strong discriminative performance (AUC
0.80). XAI analysis identified adherence assessment as the most
critical predictor, followed by age group, urban residence, and
ART duration. These findings support the integration of ML
into clinical decision-making for targeted interventions,
particularly adherence support programs for high-risk
populations. Future research should focus on external validation
across diverse health care settings and the incorporation of
additional social determinants of health to enhance model
generalizability and clinical utility.
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XAI: explainable artificial intelligence
XGBoost: extreme gradient boosting
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