JMIR Al Tunduny & Shibwabo

Review

Explainable Al Approaches in Federated Learning: Systematic
Review

Titus Tunduny, M Sc; Bernard Shibwabo, PhD

School of Computing & Engineering Sciences, Strathmore University, Nairobi, Kenya

Corresponding Author:

Titus Tunduny, MSc

School of Computing & Engineering Sciences
Strathmore University

PO Box 59857 — 00200

Nairobi

Kenya

Phone: 254 728778002

Email: ttunduny@gmail.com

Abstract

Background: Artificial intelligence (Al) has, in the recent past, experienced arebirth with the growth of generative Al systems
such as ChatGPT and Bard. These systems are trained with billions of parameters and have enabled widespread accessibility and
understanding of Al among different user groups. Widespread adoption of Al hasled to the need for understanding how machine
learning (ML) models operate to build trust in them. An understanding of how these models generate their results remains ahuge
challenge that explainable Al seeks to solve. Federated learning (FL) grew out of the need to have privacy-preserving Al by
having ML models that are decentralized but still share model parameters with a global model.

Objective: This study sought to examine the extent of development of the explainable Al field within the FL environment in
relation to the main contributions made, the types of FL, the sectorsit is applied to, the models used, the methods applied by each
study, and the databases from which sources are obtained.

Methods: A systematic search in 8 electronic databases, namely, Web of Science Core Collection, Scopus, PubMed, ACM
Digital Library, IEEE Xplore, Mendeley, BASE, and Google Scholar, was undertaken.

Results: A review of 26 studies revealed that research on explainable FL is steadily growing despite being concentrated in
Europe and Asia. The key determinants of FL use were data privacy and limited training data. Horizontal FL remainsthe preferred
approach for federated ML, whereas post hoc explainability techniques were preferred.

Conclusions: Thereispotential for development of novel approaches and improvement of existing approachesin the explainable
FL field, especialy for critical areas.

Trial Registration: OSF Registries 10.17605/OSF.10/Y 85WA; https://osf.ioly85wa

(IMIR Al 2026;5:€69985) doi: 10.2196/69985
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explainable artificia intelligence; federated learning; explainable federated artificial intelligence; privacy-preserving machine
learning; model interpretability

explainable artificial intelligence (XAl) [2,4,6]. How a ML
model worksisimportant in building trust and reliability in its
prediction or classification results, especialy in critical areas.
XAl approaches such as linear interpretable model-agnostic

M.af:hine learning (ML) has become increas_ingly prevglent in explanations (LIME) [7] and Shapley Additive Explanations
critical sectors such as health care and security [1,2] driven by (SHAP) [8] perform well with centralized models, although

the need to process copious amounts of edge device data [3]. challenges remain [9]. Growing data privacy legisiation such
However, highly performant ML algorithms often operate 8 a5the General Data Protection Regulation [10], HIPAA (Health

“black boxes” [4,5], creating a need for ML explainability 10 |,q,rance Portability and Accountability Act) [11], and Kenya's
build trust. This has led to increased research in the field of
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Data Protection Act [12] have further complicated centralized
ML development.

Federated learning (FL), introduced by McMahan et al [13] in
2016, enables privacy-preserving training on decentralized data
stored on edge devices [13,14]. A central server distributes a
global model to clients, who train it locally and send updates

Tunduny & Shibwabo

(learned parameters) back, ensuring that data never leave the
device. Thefederated ML processisoutlinedin Figure 1. These
updates are aggregated from selected clients (polling) typically
using the federated average algorithm [13] to refine the global
model. This processisrepeated over several rounds, preserving
privacy whileimproving model performance[15]. Thefederated
averaging algorithm is outlined in Textbox 1.

Figure 1. Federated machine learning process showing globa model distribution and update of the global model on the federated learning (FL)

aggregation server.
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Textbox 1. Federated averaging agorithm showing its mechanism.

Instructions

Initialize global model weights wy

For each communication round t= 1, 2,..., T do

Server sends current model weights w; to a subset of clients

Wiy = we —nVE(we; §) , where € isabatch of local data
Clients send updated weights wi+ 1k back to the server
Server aggregates client updates:
wiia = X (%) whs (weighted by client data size)

End For
Return final global model weights w*

Each selected client k trains on local data for E epochs with learning rate n:

FL has demonstrated its potential as a privacy-preserving
technique suitable for rea-world applications despite its
challenges [16,17]. However, its deployment in sensitive
domains such as patient-embedded devicesrequiresahigh level
of trust. This opens up significant research opportunities in
integrating XAl techniques in FL environments. By enabling
explanations on model generalizations at the data source while
maintaining privacy, XAl can offer rea-time benefits and
enhance trust in artificial intelligence (Al)—driven embedded
systems. FL can be categorized based on communication
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architecture or data partitioning. By communication architecture,
FL models can be categorized as centralized or decentralized.
By data partitioning, FL. models can be categorized as horizontal,
vertical, or transfer learning (TL) [18].

Centralized FL

In centralized FL (CFL), aglobal model is shared with various
clients, who train it localy and send back the learned
parameters. The server aggregates these updated parameters
using algorithms such as federated averaging to improve the
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global model. Clients are selected through polling, and
differential privacy can be applied by adding noise to the
updates. CFL faces challenges such as client heterogeneity,

Figure 2. Centralized and decentralized federated learning (FL) in action.
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limited communication and computing resources, fairness,
security, and trust [ 19]. The structure of CFL isshownin Figure
2A.

Aggregation server E—
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(A) Centralized FL

Distribute latest global
model

Upload model parameters

Client

(B) Decentralized FL

Decentralized FL

Decentralized FL—also known as distributed FL—eliminates
the need for a central server. Each client trains a local model
and shares the parameters with their peers using protocols such
as pointing, gossip, and broadcast. Clients act as both learners
and aggregators while refining their model based on peer
updates. Therefore, the global model is devel oped from peer to
peer [20,21]. The structure of decentralized FL is shown in
Figure 2B.
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Horizontal FL

Horizontal FL (HFL) involves clients that share the same data
features but have different data samples. Each client holds
instanceswith similar attributes (eg, name, gender, date of birth,
and salary), but theindividual records (samplesand rows) differ.
This setup is ideal when datasets have high feature overlap
across clients but differ in the entities they contain [22]. Figure
3A depicts the structure of HFL.
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Figure 3. Federated learning (FL) types, showing horizontal FL,
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vertical FL, and federated transfer learning.
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Vertical FL

Vertical FL (VFL) iswhere clients share the same data samples
but have different feature sets. Each client holds part of the
information for the same users; for example, one client may
have demographic data, whereas another may have financial
data. VFL isideal when full data sharing is not possible, such
as in hedth care settings with multiple institutions holding
complementary patient data[23]. Figure 3B showsthe structure

explainability of FL models, including the methods used to
explain the models, whether novel or existing, and how they
have been used. This study also delves into the deployment
contexts for FL models, including the types of FL used. Unlike
prior works such asthe study by Singh et al [24], which broadly
examines FL applications, and the study by Aggarwal et al [25],
which explores general FL use cases, this study also focused
on the application areas for explainable FL models and their
associated challenges, as well as providing the direction of the

of VFL. trends.
Federated TL

Methods
Federated TL (FTL) mergesthe conceptsof FL and TL. InFTL,
a pretrained model from arelated task is distributed to all the  Qverview

clients. Each client fine-tunes (adapts) the pretrained model
using their local data. FTL is useful when training data are
limited or privacy sensitive, such as in health care, allowing
clients to benefit from existing models while preserving data

This study followed established guidelines for systematic
literature review studies [26] and adhered to the PRISMA
(Preferred Reporting Items for Systematic Reviews and

privacy. FTL structured is showcased in Figure 3C.

Contributions

Meta-Analyses) reporting standards (Figure 4) [27]. Its main
objective was to assess the development of XAl within FL. To
achieve this, the following review questions were formulated.

This study makes contributions to the field of explainable FL
in the following ways: it offers origina insights into the
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FL: federated learning.

Records removed before screening:
Duplicate records removed (n=56)

Records excluded (n=1830)

Records excluded:

Non-FL (n=6)
Explainability (n=10)

Full text inaccessible (n=5)
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Figure4. PRISMA flowchart for selection of systematic review literature.
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Research Questions

To understand the explainable approaches in FL, research
questions (RQs) were raised and grouped under 1 of 3
categories.

RQ 1: Trends and Contributions

To understand the contributions of the existing literature, three
guestionswereraised: (1) when werethe explainable FL studies
published? (2) In which countries or regions are the studies or
study applications located, or which countries or regions are
the authors of the studies affiliated with? (3) What arethe main
contributions of the studies identified?

RQ 2: Application Areas

The application areasfor FL, coupled with the application areas
for explainability, were explored based on the following
guestions: (1) what are the application areas of explainable FL
models? (2) What types of FL have been applied in the studies?
(3) Why was FL adopted in the studies?

RQ 3: Model Explainability
The XAl models and their categories were reviewed based on
the following questions: (1) which XAl algorithms or models

https:/ai jmir.org/2026/1/e69985
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have been applied or used in the studies? (2) What category of
XAl dothe models or algorithms used in the studiesfall under?
(3) What data sources or datasets (if available) were used in the
development of the models used in the studies?

Search Strategy

The reported results followed the population, intervention,
comparison, and outcome guidelines [28]. The search string
generation processis outlined in Multimedia Appendix 1. The
generated search string was adapted to the 8 different databases,
as outlined in Multimedia Appendix 2.

Eligibility Criteria

Of the 1933 initial search results, 26 (1.3%) peer-reviewed
studies published between 2016 and 2024 were selected.
Inclusion was based on relevanceto XAl within any FL context.
Exclusion criteria included non—English-language papers,

non—peer-reviewed studies, and inaccessiblefull texts and gray
literature as they are not easily retrievable [29].

Screening

Screening was conducted by 2 independent reviewersusing the
CADIMA software[30]. Initial screening was based on thetitles
and abstracts, followed by a blind full-text review. Conflicts
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wereresolved through discussion, and athird party wasinvolved
when there was|ack of consensus. A strong interrater reliability
was achieved, with ak value of 0.74.

Data Extraction and Synthesis

Key details from the selected studies, such astitle, authorship,
affiliation, publication year, data used, and answersto the RQs,
were extracted and synthesized using Google Sheets. This
process was undertaken by 2 reviewers to minimize bias.
Multimedia Appendix 3 contains al the data used for analysis
and synthesis.

Quality Assessment

Overview

Quality assessment was undertaken by the 2 researchers (TT
and BS) asrecommended by Xiao and Watson [26]. The criteria
used included handling of overfits, missing data, and use of
multiple datasets and validation techniques. The evaluation was
based on the PRISMA guidelines[27].

Tunduny & Shibwabo

Risk-of-Bias Analysis. I ndividual Studies

The risk of bias of the individual studies focused on potential
biases of data selection and model training. The criteria used
included handling of overfit and underfit, missing datatreatment,
use of multiple datasets, and ML evaluation metrics. A total of
69% (18/26) of the studies reported clear mechanisms for
mitigating against overfitting and underfitting. In total, 31 (8/26)
of the studies lacked evidence of such mitigation. A total of
77% (20/26) of the studies did not address missing data
treatment, increasing the risk of data and selection biases [31],
especialy as most of the studies used preexisting datasets.

Figure5[20,32-56] showstherisk of bias per study, highlighting
how each implemented underfitting and overfitting, missing
datatreatment, use of multiple datasets, and internal and external
validation. Missing data treatment was not clearly identified in
most studies (19/26, 73%), with only 27% (7/26) reporting any
treatment done. Internal and external validation was conducted
in most of the studies (19/26, 73%).

Figure 5. Heat map showing risk mitigation by study for the selected studies.

Study

Chen et al [20]

Nguyen et al [32]
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Ambesange, Annappa, and Koolagudi [37]
Arthi et al [38]
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Mu et al [41]
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El Houda et al [43]

Bdrcena et al [44]

Haffar, Sdnchez, and Domingo-Ferrer [45]
Saad, Brik, and Ksentini [46]

Huong et al [47]
Singh and Adhikari [48]

Nikul et al

Salim, Turnbull, and Moustafa [50]
Patel et al [51]

Ren etal [52]

Wu et al [53]

Wang and Zhang [54]

Zheng et al [55]

Li et al [56]

All studies used ML evaluation techniques such as precision,
recall, accuracy, F-score, mean squared error, mean absolute

error, R?, areaunder the receiver operating characteristic curve,
and the Kolmogorov-Smirnov test. A total of 69% (18/26) of
the studies used internal validation techniques (train-test
validation split or k-fold cross-validation), with 31% (8/26) of
the studies reporting no clear interna validation. Most of the
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studies (15/26, 58%) had a low risk of bias for their model
training, athough the lack of missing data training was a key
concern.

Risk-of-Bias Analysis Across Studies

The risk of bias across studies was evaluated on the use of
multiple datasets and the use of externa ML validation
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techniques such as benchmarking against state-of-the-art models.  validation. Only 42% (11/26) of the studies used multiple
A total of 73% (19/26) of the studies performed external datasets, increasing therisk of bias (Figure 6).

validation. In total, 27% (7/26) of the studies lacked external
Figure 6. Risk-of-bias analysis showing different bias evaluation methods.
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Results

The selection of the articlesisillustrated in Figure 4. Theresults
regarding the RQs are presented in the following sections
(Multimedia Appendix 4).

RQ Category 1: Trendsand Contributions

We analyzed the publication trends in explainable FL. While
FL emerged in 2016, the first article on XAl for FL was

https://ai.jmir.org/2026/1/e69985
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published in 2020(1 publication). The number of articles showed
consistent annual growth, culminating in 11 studies in 2024
(Figure 7), which represents the current peak and nearly half
(1126, 42%) of the included studies. The trgjectory showed
increased interest in this research area despite the low number
of total publications (N=26 studies), indicating significant
opportunities for future research.

IJMIR Al 2026 | vol. 5| €69985 | p. 7
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Tunduny & Shibwabo

Figure 7. Publication trends for the selected studies by year.
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Our analysis of author affiliation revealed a pronounced Africa’'s potential to benefit from privacy-preserving ML
geographical imbalance, with Asian and European institutions  solutionsamidst resource constraints. Figure 8 showsthe authors
dominating. In contrast, African and South Americaningtitutions ~ affiliation by continent were Asia (23), Europe (11), Australia
remained significantly underrepresented, a critical gap given (4), North America (1), South America (1) and Africa (1).

Figure 8. Author affiliation by country for the selected studies (created using the Bing Maps integration in Microsoft Excel [57], which is published
under limited license per the Microsoft Bing Maps Terms of Use [58]).
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Despite the African continent having huge potential for rich, geographically sparselocations or in different institutions, and
diverse, and high-volume datathat can beused in ML research, also in different formats) still poses a challenge. Lack of a
collating and accessing the distributed data (stored in  computing backbone—including internet connectivity and cloud
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computing—further leads to data being sourced from
high-income countries [59]. Moreover, data scarcity and the
lack of proper infrastructure have been highlighted by Fabila
et a [60] and Nieto-Mora et a [61] as limiting the research in
data-rich diverse areas such as Africa.

Two dominant approaches for achieving explainability in FL
systems emerged: those that are intrinsically explainable (ante
hoc) [20,32-35] and those that use a surrogate model for
explainability (post hoc) [36-53]. In total, 8% (2/26) of the
studies [54,55] could not be properly categorized and were
classified as “Unspecified.”

Figure9. Frequency of federated learning adoption motivations.

Tunduny & Shibwabo

RQ Category 2: Application Areas
Overview

The mativations for adoption of FL were analyzed. They were
categorized into model security, computation and
communication challenges, data quality and availability, data
management and sharing, and data protection and safety. The
results are shown in Figure 9. The main motivation was data
management and sharing, followed by data quality and
availability.

Federated learning adoption motivation

Model security I 1

Computation and communication challenges
(communication overhead and limited computational power)

Data quality and availability
(quality, imbalance, heterogeneity, and volume)

Data management and sharing
(governance, aggregation, and sharing)

Data protection and safety
(privacy, security, safety, and Isolation)

Application Area and Type of FL Used

The application areaand type of FL applied were assessed, and
theresults are summarized in Table 1. The application areawith
the highest number of studies was heath with 27% (7/26).
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Networking and finance followed closely with 23% (6/26) and
15% (4/26) of the studies, respectively. Fault detection
encompassed 8% (2/26) of the studies, and agriculture, space
exploration, urban planning, and social mediaencompassed 4%
(1/26) of the studies each.
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Table 1. Summary of the studies based on application area, type, and category of federated learning (FL).

Application area and type of FL Centralized FL Studies
Health

Transfer learning Yes [36,37]

Horizontal FL Yes [32,38-40]

Vertical FL Yes [41]
Space exploration

Horizontal FL _a [42]
Networking

Horizontal FL Yes [33,43-46]

Vertical FL Yes [34]
Finance

Vertical FL Yes [20,42,55]

Horizontal FL Yes [35]
Fault detection

Horizontal FL Yes [47,54]
Agriculture

Horizontal FL Yes [48]
Urban planning

Vertical FL Yes [49]
Social media

Horizontal FL No [50]
Manufacturing

Horizontal FL Yes [51]
Energy

Horizontal FL Yes [52]
Generic

Vertical FL Yes [53,56]

3ot applicable.

HFL (17/26, 65% of the studies) wasthe major type of FL used,
with VFL and TL reported in 31% (8/26) and 8% (2/26) of the
studies, respectively.

RQ Category 3: Model Explainability
The selected studies were reviewed for their approach to model
explainability, which isessential to building trust in predictions.

InFL, understanding model outputs hel ps assesstheir reliability
and identify the need for adjustments or improvements.

XAl Techniques

Overview

XAl, first introduced by the Defense Advanced Research
Projects Agency in 2015, helps experts understand how ML
models arrive at their decisions, thereby increasing trust in the
outputs. XAl techniques can be categorized as either global or
local depending on the level of explainability. Global XAl
techniques offer a broad view of the model’s behavior by

https:/ai jmir.org/2026/1/e69985
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highlighting important features. Local XAl techniques focus
on explaining individual predictions.

XAl techniques also differ based on whether they are intrinsic
to the model (ante hoc or white box), such as decision trees, or
applied after training (post hoc), such as LIME [7], which uses
simpler models to explain complex ones.

Additionally, some model explainers are model agnostic and
can be applied to awide group of ML models, whereas others
aremodel specific and tailored to particular algorithms, offering
deeper insights but requiring more expertise. We provide abrief
overview of the techniques in the following sections.

LIME Technique

LIME [7] is a popular model-agnostic explainer that uses a
simple surrogate model, typically asparselinear model, trained
on locally perturbed data to approximate and explain the
individual predictions of a complex model. While it is widely
adopted, LIME's effectiveness depends on the quality of the

IMIR Al 2026 | vol. 5| 69985 | p. 10
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surrogate fit, and its sampling process introduces uncertainty,
resulting in nondeterministic and potentially inconsistent
explanations for the same input [62].

SHAP Technique

SHAP 8] isaloca and global explainer that is based on game
theory. SHAP explains a prediction of each instance by
computing the contribution of each feature to the prediction.
SHAP uses additive contribution to compute a fair value for
each feature by computing the contribution of each feature to
the final model outcome to understand the importance of each
feature. The SHAP explanation is shown in the following
equation, where g is the explanation model, X' is the coalition
vector, M is the maximum coalition size, and is the feature
attribution for featurei:

Q(IJ] = ¢+ E;‘il i

Gradient-Weighted Class Activation M apping

Gradient-Weighted Class Activation Mapping [63] is an
explainer that uses the spatial information naturally retained in
the last convolutional layer. This is a model-agnostic post hoc
explainer that works with different classes of convolutional
neural networks. It is a visualization technique that generates
heat mapsthat highlight the important regions of theimage that
contribute to the model’s prediction.

RuleFit

The RuleFit algorithm is a method to generate a model that
combinesrulesand linear regression. First posited by Friedman
and Popescu [64] in 2008, RuleFit devel opsinterpretable models
that can predict an outcome based on various features. A set of
rulesis generated from adataset and then fit into amodel using
the L1-regularized (least absolute shrinkage and selection
operator) regression. Thesimpler linear modelsareinterpretable
like “normal” linear models [65].

Partial Dependence Plot

Partial dependence plot (PDP) [66] is an explainer that shows
the marginal effect of 1 or 2 features on the predicted outcome
of an ML model. It isapost hoc model-agnostic explainer. One
or 2 features are selected, and their changes are mapped by
changing the values to see their impact on the predicted
outcome. The PDP highlightsthe rel ationship between the target
and the feature as linear, monotonic, or more complex [65]. A
newer variant of PDP is called incremental PDP [67], which
expands the working of PDP by considering time-dependent
effects in nonstationary learning environments. This newer
approach considers how the model’s reasoning changes over
time while considering the effects of concept drift.

Integrated Gradients

Integrated gradients [68] is an axiomatic-based local explainer
that attributes the importance value of each input feature of an
ML model based on the gradients of the model outputs with
reference to the input.

Causal Models

Causal models[69] use counterfactual reasoning to explain the
cause-effect explanations of aparticular model. A counterfactual

https:/ai jmir.org/2026/1/e69985
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explanation for a prediction is a description of the smallest
change to an input feature that will alter the prediction to a
predefined output [65]. Counterfactual explanations describe
the causes in the form of “if X had not occurred, then Y would
not be the result” The computation of counterfactual
explanationsis done by comparing the causal chain paths of the
actions not taken by the model [62].

Anchors

Anchors [70] are a model-agnostic way of explaining the
workings of complex (black-box) models through the use of
high-precision rules. Anchors use perturbations to generate the
local explanations, but instead of using surrogate models, the
explanations are provided using if-then rules that are easy to
understand. The if-then rules are caled anchors. A rule
“anchors’ the prediction if changes in the other feature values
do not ater the prediction made [65].

Deep Taylor Decomposition

Deep Taylor decomposition [71] is an approach for explaining
neural networks by decomposing the output of a model into
contributionsfrom individual input features. It redistributesthe
output to theinput variableslayer by layer. The approach relies
on Taylor expansion to determine the relative contributions of
the layers. The final relevance scores at the input layer reveal
which input featureswere the most influential in the prediction.

L ayerwise Relevance Propagation

Layerwise relevance propagation (LRP) [72] is atechnique for
explaining predictions made by neural network models. LRP
identifies the input features that contributed the most to the
decision made by the model. LRP relies on deep Taylor
decomposition and works by tracing the prediction backward
through the network using backward propagation while
assigning relevance scores to each input feature [62].

Prediction Difference Analysis

Prediction difference analysis [73] generates explanations for
neural networks by comparing the model’s prediction when a
specific featureis present with the prediction of the model when
that feature is absent. The comparison allows for measurement
of the feature's impact on the final model’s prediction. Each
feature is removed (knocked out), and a relevance score is
assigned to them based on their impact [62].

Testing With Concept Activation Vectors

Testing with concept activation vectors [74] is an approach to
generate global explanations for neural networks based on the
idea of concept activation vectors. It measures the importance
of aconcept to a prediction based on the directional sensitivity
of a concept in the neural network layers. The concept can be
anything from color and objectsto ideas [65].

Explainable Graph Neural Networks

Explainable graph neural networks [75] are model-level
explainersthat show how graph neural networks make decisions.
Explainable graph neural networks use reinforcement learning
to build a new graph stepwise, which the origina graph neural
network can classify as a certain label, for example, “spam.”
The new (generated) graph acts as an example for what the
model has|earned.
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Explainable FL

XAl can beapplied to FL environmentsto explain theworkings
of ML models.

Explainable FL Techniques Used

This study aimed to explore the types of XAl models used in
FL (first question in RQ category 3) and their classification
(second question in RQ category 3). Most studies (19/26, 73%)
applied existing XAl techniques, especially those originally
developed for centralized ML suchasLIME[7] and SHAP[§].

https:/ai jmir.org/2026/1/e69985
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A few novel methods such as vertical decision tree ensembles
[20] were specifically developed for federated settings. Most
reviewed studies (23/26, 89%) used post hoc explainability
methods, followed by intrinsically explainable models (5/26,
19%). Intotal, 8% (2/26) of the studies could not be categorized.
Most of the techniques were model agnostic, highlighting the
adaptability and widespread use of tools such as LIME in FL
environments. Table 2 summarizes the various categorizations
of XAl approaches as applied in FL.
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Table 2. Summary of categorization of explainable artificial intelligence approaches in federated learning, application areas, and performance metrics

used.
Approach and model or  Type (model agnostic ~ Studies Application area Performance metrics
agorithm or model specific)
Post hoc
Grad-CAM® Model agnostic [36,37,39,51,56] Health care [36,37,39], Accuracy (all studies), precision [36], re-
manufacturing [51], and call [36,39], and F1-score [36,39]
generic [56]
Falcon-INP° Model agnostic (53] Generic Accuracy, precision, and MSES
RuleFit Model agnostic [43,46] Networking Accuracy, F1-score [43], and PDPY and
percentage of feature impact [46]
SHAP® Model agnostic [43,46-50,52,54] Networking [50], fault detec-  Accuracy [43,47,49,50,52,54], F1-score
tion [47], agriculture [48],  [43,47,50], PDP [46], precision [47,50],
urban planning [49], socidl ) 147 50, RMSE' [48], MAEY [48
media[50], and energy [52] and IO[SS [’49]]’ [48l. (48,
LIMED Model agnostic [38,40,46,49,51] Heelth care[38,40], ne_twork- Accuracy [38,40,49,51], F1-score[38,40],
ing [46], urban planning precision [38,40], recall [38,40], and PDP
[49], and manufacturing[51]  [46]
PDP Model agnostic [46] Networking i
Causal models Model agnostic [41] Health care Accuracy
cPal Net Model specific [42] Space exploration Maximum input sensitivity analysis
Random decision Model agnostic [45] Networking Accuracy
forest
Rule based Unspecified [44] Networking MSE and R?
Ante hoc
Vertical decision Mode! specific [20] Finance AUCK and KS curve analysis
tree ensembles
Decision trees Mode! specific [33,39] Networking [33] andfinance \se MAE and R? [33], and accuracy
[33] [35]
Integrated gradients Model agnostic [32,34] Health care [32] and net- AUROC™ [32], AUPRC" [32], and MSE
working [34] [34]
Unspecified
Gradient-based Unspecified [55] Finance ROC® and KS curve analysis
method
Interpretable adap-  Unspecified [54] Fault detection Accuracy
tive sparse-depth
networks

8Grad-CAM: Gradient-Weighted Class Activation Mapping.
BFalcon-INP: Falcon | nterpretability Framework.

°MSE: mean squared error.

dpDP: partial dependence plot.

€SHAP: Shapley Additive Explanations.

'RMSE: root mean square error.

9MAE: mean absolute error.

PLIME: linear interpretable model-agnostic explanations.
'Not applicable.

IcPA: Cascadi ng Pyramid Attention.

KAUC: areaunder the curve.

IKS: Kol mogorov-Smirnov.

MAUROC: area under the receiver operating characteristic curve.

"AUPRC: area under the precision-recall curve.
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®ROC: receiver operating characteristic.

Challenges Faced in Explainable FL

Explaining ML modelsin an FL environment presents unique
challenges typically not encountered in centralized setups,
especialy in real-world scenarios. The challengesinclude data
heterogeneity, security and privacy, communication costs and
resource constraints, and scalability.

Data Heterogeneity

In centralized ML, data from multiple sources are combined
into asingle dataset, allowing explainability modelsto analyze
aunified, consistent data distribution. In contrast, FL involves
data from different, often heterogenous sources that follow
different distributions, resulting in non-independently and
identically distributed (11D) data[76]. Non-11D dataare common
in FL and are characterized by skewed class distributions and
varying data volumes across clients [76]. This variability
challenges explainability as the explainer model must handle
randomly polled clients with diverse and uneven data,
complicating interpretation.

Security and Privacy

FL wasdeveloped to enable ML model training while preserving
dataprivacy, addressing strict data protection regulations. Unlike
centralized ML, where XAl techniquesrisk dataleaksor reverse
engineering by requiring accessto training data, FL introduces
new challenges such as vulnerability to model poisoning [77].
Moreover, applying explainability in federated environments
can raise privacy concerns as explanation methods might
inadvertently reveal some attributes of the client data.

Communication Costs and Resource Constraints

FL involves clients sharing model updates via either a
centralized or decentralized approach, necessitating continuous
and efficient communication. Additionaly, the use of
perturbation-based explainers such as SHAP adds overheads
on client devices due to complex estimation of Shapley values
as well as communication costs when sharing the learned
perturbations to the central aggregator [78].

Scalability

In non-IID FL setups, randomly polling clients is often
ineffective, necessitating smarter client selection strategies that
prioritize clients with valuable data for improving the global
model [79]. Moreover, increasing the number of clientscan lead
to communication bottlenecks and strain the aggregation server’s
resources due to the growing volume of model updates.

Discussion

Summary of Findings

This study aimed to understand the current situation in the XAl
field and how it has been applied to the field of FL. This was
done through a comprehensive review process of the existing
openly accessible primary studies on XAl approaches in
federated ML. The role of privacy in the choice of ML model
was evident in the studies analyzed. FL has proven to be robust
and useful in mitigating privacy concernsto comply with privacy
legislation and ensure data integrity within the devices[22].

https:/ai jmir.org/2026/1/e69985
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It is noteworthy that most of the studies (10/26, 39%) did not
originate from highly sensitive fields such as health and security,
which are arguably fields that could benefit most from
explainable federated Al approaches. These fields are
traditionally conservative, heavily regulated (eg, HIPAA) [11],
and still suffer from trust issues dueto thelack of explainability
of themodels. Thesefieldsare highly impactful asthe problems
defined require complex solutions, which necessitate the use of
black-box models. Areas such as health, cybersecurity, finance,
education, and autonomous vehicles could invariably benefit
from explainable FL asthey are heavily reliant on privacy and
security. Federated XAl could aso be applied in edge devices
as this would bring the computation closer to the data source
while at the same time enhancing privacy and security [80].

The FTL approach, which can help alleviate the challenge of
limited training data [81]—the second reported reason for the
use of FL—has also not been used fully. Despite the use of
real-world datasets, the implementations assessed largely used
the HFL approach, which did not fully account for data
heterogeneity [82]. Real-world implementations of these
approaches might suffer due to the data and environment not
being representative. It would be important for more research
to be conducted addressing these challenges.

Implications

There has been asteady increase in the number of studiesinthe
field of FL and XAl. Thisincrease can be mapped from 2016,
when FL was first introduced. However, there is still alot of
room for more research to be conducted. The development of
explainable FL models can help unlock great potentia in the
fields of health and security [2], but caution needs to be taken
to ensure that the development is not concentrated in specific
regions.

Model explainability using state-of -the-art techniques, whether
post hoc or intrinsic in nature, has been proven to work well.
Several novel explainability techniques that can work well in
FL environments, such as those in the studies by Corcuera
Barcena et a [44] and Wang and Zhang [54], highlight the
potential for improvement of existing explainability techniques
and approaches and development of more robust novel
techniquesthat can perform better in the federated environments.
This also offers fertile research potential for experimentation
with more real-world data and techniques such as TL.

More research needsto be conducted to mitigate the challenges
faced by explainable FL. Thereisaneed to develop modelsthat
are scalable and can operate in real-world FL settings where
data are non-11D. There is also a need for robust systems that
can operate more efficiently when generating the explanations
to make them useful for personalized explainable FL. This
would help unlock an even greater potential for trustworthy Al.

Limitations

This review was limited to 26 studies. The novelty of the 2
areas—XAl and FL—meant that alot of studies (including most
studiesfromtheinitial total of 1933 identified in the databases)
were not eligible for review. Moreover, the strict requirement
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for primary research and not review papers, coupled with the
need for accessible documents, meant that the papers reviewed
were limited in nature.

Conclusions

This study attempted to analyze the existing landscape and
provide an overview of the approaches that could be used in
implementing XAl in FL. Thisreview was conducted based on
the RQsposited, and 26 studiesthat fit the criteriawere assessed.
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