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Abstract

Background: Artificial intelligence (AI) has, in the recent past, experienced a rebirth with the growth of generative AI systems
such as ChatGPT and Bard. These systems are trained with billions of parameters and have enabled widespread accessibility and
understanding of AI among different user groups. Widespread adoption of AI has led to the need for understanding how machine
learning (ML) models operate to build trust in them. An understanding of how these models generate their results remains a huge
challenge that explainable AI seeks to solve. Federated learning (FL) grew out of the need to have privacy-preserving AI by
having ML models that are decentralized but still share model parameters with a global model.

Objective: This study sought to examine the extent of development of the explainable AI field within the FL environment in
relation to the main contributions made, the types of FL, the sectors it is applied to, the models used, the methods applied by each
study, and the databases from which sources are obtained.

Methods: A systematic search in 8 electronic databases, namely, Web of Science Core Collection, Scopus, PubMed, ACM
Digital Library, IEEE Xplore, Mendeley, BASE, and Google Scholar, was undertaken.

Results: A review of 26 studies revealed that research on explainable FL is steadily growing despite being concentrated in
Europe and Asia. The key determinants of FL use were data privacy and limited training data. Horizontal FL remains the preferred
approach for federated ML, whereas post hoc explainability techniques were preferred.

Conclusions: There is potential for development of novel approaches and improvement of existing approaches in the explainable
FL field, especially for critical areas.

Trial Registration: OSF Registries 10.17605/OSF.IO/Y85WA; https://osf.io/y85wa

(JMIR AI 2026;5:e69985) doi: 10.2196/69985
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Introduction

Background
Machine learning (ML) has become increasingly prevalent in
critical sectors such as health care and security [1,2] driven by
the need to process copious amounts of edge device data [3].
However, highly performant ML algorithms often operate as
“black boxes” [4,5], creating a need for ML explainability to
build trust. This has led to increased research in the field of

explainable artificial intelligence (XAI) [2,4,6]. How a ML
model works is important in building trust and reliability in its
prediction or classification results, especially in critical areas.
XAI approaches such as linear interpretable model-agnostic
explanations (LIME) [7] and Shapley Additive Explanations
(SHAP) [8] perform well with centralized models, although
challenges remain [9]. Growing data privacy legislation such
as the General Data Protection Regulation [10], HIPAA (Health
Insurance Portability and Accountability Act) [11], and Kenya’s
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Data Protection Act [12] have further complicated centralized
ML development.

Federated learning (FL), introduced by McMahan et al [13] in
2016, enables privacy-preserving training on decentralized data
stored on edge devices [13,14]. A central server distributes a
global model to clients, who train it locally and send updates

(learned parameters) back, ensuring that data never leave the
device. The federated ML process is outlined in Figure 1. These
updates are aggregated from selected clients (polling) typically
using the federated average algorithm [13] to refine the global
model. This process is repeated over several rounds, preserving
privacy while improving model performance [15]. The federated
averaging algorithm is outlined in Textbox 1.

Figure 1. Federated machine learning process showing global model distribution and update of the global model on the federated learning (FL)
aggregation server.

Textbox 1. Federated averaging algorithm showing its mechanism.

Instructions

Initialize global model weights w0

For each communication round t= 1, 2,..., T do

Server sends current model weights wt to a subset of clients

Each selected client k trains on local data for E epochs with learning rate η:

, where ξ is a batch of local data

Clients send updated weights wt+1
k back to the server

Server aggregates client updates:

(weighted by client data size)

End For

Return final global model weights w*

FL has demonstrated its potential as a privacy-preserving
technique suitable for real-world applications despite its
challenges [16,17]. However, its deployment in sensitive
domains such as patient-embedded devices requires a high level
of trust. This opens up significant research opportunities in
integrating XAI techniques in FL environments. By enabling
explanations on model generalizations at the data source while
maintaining privacy, XAI can offer real-time benefits and
enhance trust in artificial intelligence (AI)–driven embedded
systems. FL can be categorized based on communication

architecture or data partitioning. By communication architecture,
FL models can be categorized as centralized or decentralized.
By data partitioning, FL models can be categorized as horizontal,
vertical, or transfer learning (TL) [18].

Centralized FL
In centralized FL (CFL), a global model is shared with various
clients, who train it locally and send back the learned
parameters. The server aggregates these updated parameters
using algorithms such as federated averaging to improve the
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global model. Clients are selected through polling, and
differential privacy can be applied by adding noise to the
updates. CFL faces challenges such as client heterogeneity,

limited communication and computing resources, fairness,
security, and trust [19]. The structure of CFL is shown in Figure
2A.

Figure 2. Centralized and decentralized federated learning (FL) in action.

Decentralized FL
Decentralized FL—also known as distributed FL—eliminates
the need for a central server. Each client trains a local model
and shares the parameters with their peers using protocols such
as pointing, gossip, and broadcast. Clients act as both learners
and aggregators while refining their model based on peer
updates. Therefore, the global model is developed from peer to
peer [20,21]. The structure of decentralized FL is shown in
Figure 2B.

Horizontal FL
Horizontal FL (HFL) involves clients that share the same data
features but have different data samples. Each client holds
instances with similar attributes (eg, name, gender, date of birth,
and salary), but the individual records (samples and rows) differ.
This setup is ideal when datasets have high feature overlap
across clients but differ in the entities they contain [22]. Figure
3A depicts the structure of HFL.
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Figure 3. Federated learning (FL) types, showing horizontal FL, vertical FL, and federated transfer learning.

Vertical FL
Vertical FL (VFL) is where clients share the same data samples
but have different feature sets. Each client holds part of the
information for the same users; for example, one client may
have demographic data, whereas another may have financial
data. VFL is ideal when full data sharing is not possible, such
as in health care settings with multiple institutions holding
complementary patient data [23]. Figure 3B shows the structure
of VFL.

Federated TL
Federated TL (FTL) merges the concepts of FL and TL. In FTL,
a pretrained model from a related task is distributed to all the
clients. Each client fine-tunes (adapts) the pretrained model
using their local data. FTL is useful when training data are
limited or privacy sensitive, such as in health care, allowing
clients to benefit from existing models while preserving data
privacy. FTL structured is showcased in Figure 3C.

Contributions
This study makes contributions to the field of explainable FL
in the following ways: it offers original insights into the

explainability of FL models, including the methods used to
explain the models, whether novel or existing, and how they
have been used. This study also delves into the deployment
contexts for FL models, including the types of FL used. Unlike
prior works such as the study by Singh et al [24], which broadly
examines FL applications, and the study by Aggarwal et al [25],
which explores general FL use cases, this study also focused
on the application areas for explainable FL models and their
associated challenges, as well as providing the direction of the
trends.

Methods

Overview
This study followed established guidelines for systematic
literature review studies [26] and adhered to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) reporting standards (Figure 4) [27]. Its main
objective was to assess the development of XAI within FL. To
achieve this, the following review questions were formulated.
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Figure 4. PRISMA flowchart for selection of systematic review literature. FL: federated learning.

Research Questions
To understand the explainable approaches in FL, research
questions (RQs) were raised and grouped under 1 of 3
categories.

RQ 1: Trends and Contributions
To understand the contributions of the existing literature, three
questions were raised: (1) when were the explainable FL studies
published? (2) In which countries or regions are the studies or
study applications located, or which countries or regions are
the authors of the studies affiliated with? (3) What are the main
contributions of the studies identified?

RQ 2: Application Areas
The application areas for FL, coupled with the application areas
for explainability, were explored based on the following
questions: (1) what are the application areas of explainable FL
models? (2) What types of FL have been applied in the studies?
(3) Why was FL adopted in the studies?

RQ 3: Model Explainability
The XAI models and their categories were reviewed based on
the following questions: (1) which XAI algorithms or models

have been applied or used in the studies? (2) What category of
XAI do the models or algorithms used in the studies fall under?
(3) What data sources or datasets (if available) were used in the
development of the models used in the studies?

Search Strategy
The reported results followed the population, intervention,
comparison, and outcome guidelines [28]. The search string
generation process is outlined in Multimedia Appendix 1. The
generated search string was adapted to the 8 different databases,
as outlined in Multimedia Appendix 2.

Eligibility Criteria
Of the 1933 initial search results, 26 (1.3%) peer-reviewed
studies published between 2016 and 2024 were selected.
Inclusion was based on relevance to XAI within any FL context.
Exclusion criteria included non–English-language papers,
non–peer-reviewed studies, and inaccessible full texts and gray
literature as they are not easily retrievable [29].

Screening
Screening was conducted by 2 independent reviewers using the
CADIMA software [30]. Initial screening was based on the titles
and abstracts, followed by a blind full-text review. Conflicts
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were resolved through discussion, and a third party was involved
when there was lack of consensus. A strong interrater reliability
was achieved, with a κ value of 0.74.

Data Extraction and Synthesis
Key details from the selected studies, such as title, authorship,
affiliation, publication year, data used, and answers to the RQs,
were extracted and synthesized using Google Sheets. This
process was undertaken by 2 reviewers to minimize bias.
Multimedia Appendix 3 contains all the data used for analysis
and synthesis.

Quality Assessment

Overview
Quality assessment was undertaken by the 2 researchers (TT
and BS) as recommended by Xiao and Watson [26]. The criteria
used included handling of overfits, missing data, and use of
multiple datasets and validation techniques. The evaluation was
based on the PRISMA guidelines [27].

Risk-of-Bias Analysis: Individual Studies
The risk of bias of the individual studies focused on potential
biases of data selection and model training. The criteria used
included handling of overfit and underfit, missing data treatment,
use of multiple datasets, and ML evaluation metrics. A total of
69% (18/26) of the studies reported clear mechanisms for
mitigating against overfitting and underfitting. In total, 31 (8/26)
of the studies lacked evidence of such mitigation. A total of
77% (20/26) of the studies did not address missing data
treatment, increasing the risk of data and selection biases [31],
especially as most of the studies used preexisting datasets.

Figure 5 [20,32-56] shows the risk of bias per study, highlighting
how each implemented underfitting and overfitting, missing
data treatment, use of multiple datasets, and internal and external
validation. Missing data treatment was not clearly identified in
most studies (19/26, 73%), with only 27% (7/26) reporting any
treatment done. Internal and external validation was conducted
in most of the studies (19/26, 73%).

Figure 5. Heat map showing risk mitigation by study for the selected studies.

All studies used ML evaluation techniques such as precision,
recall, accuracy, F1-score, mean squared error, mean absolute

error, R2, area under the receiver operating characteristic curve,
and the Kolmogorov-Smirnov test. A total of 69% (18/26) of
the studies used internal validation techniques (train-test
validation split or k-fold cross-validation), with 31% (8/26) of
the studies reporting no clear internal validation. Most of the

studies (15/26, 58%) had a low risk of bias for their model
training, although the lack of missing data training was a key
concern.

Risk-of-Bias Analysis Across Studies
The risk of bias across studies was evaluated on the use of
multiple datasets and the use of external ML validation
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techniques such as benchmarking against state-of-the-art models.
A total of 73% (19/26) of the studies performed external
validation. In total, 27% (7/26) of the studies lacked external

validation. Only 42% (11/26) of the studies used multiple
datasets, increasing the risk of bias (Figure 6).

Figure 6. Risk-of-bias analysis showing different bias evaluation methods.

Results

The selection of the articles is illustrated in Figure 4. The results
regarding the RQs are presented in the following sections
(Multimedia Appendix 4).

RQ Category 1: Trends and Contributions
We analyzed the publication trends in explainable FL. While
FL emerged in 2016, the first article on XAI for FL was

published in 2020(1 publication). The number of articles showed
consistent annual growth, culminating in 11 studies in 2024
(Figure 7), which represents the current peak and nearly half
(11/26, 42%) of the included studies. The trajectory showed
increased interest in this research area despite the low number
of total publications (N=26 studies), indicating significant
opportunities for future research.
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Figure 7. Publication trends for the selected studies by year.

Our analysis of author affiliation revealed a pronounced
geographical imbalance, with Asian and European institutions
dominating. In contrast, African and South American institutions
remained significantly underrepresented, a critical gap given

Africa’s potential to benefit from privacy-preserving ML
solutions amidst resource constraints. Figure 8 shows the authors
affiliation by continent were Asia (23), Europe (11), Australia
(4), North America (1), South America (1) and Africa (1).

Figure 8. Author affiliation by country for the selected studies (created using the Bing Maps integration in Microsoft Excel [57], which is published
under limited license per the Microsoft Bing Maps Terms of Use [58]).

Despite the African continent having huge potential for rich,
diverse, and high-volume data that can be used in ML research,
collating and accessing the distributed data (stored in

geographically sparse locations or in different institutions, and
also in different formats) still poses a challenge. Lack of a
computing backbone—including internet connectivity and cloud
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computing—further leads to data being sourced from
high-income countries [59]. Moreover, data scarcity and the
lack of proper infrastructure have been highlighted by Fabila
et al [60] and Nieto-Mora et al [61] as limiting the research in
data-rich diverse areas such as Africa.

Two dominant approaches for achieving explainability in FL
systems emerged: those that are intrinsically explainable (ante
hoc) [20,32-35] and those that use a surrogate model for
explainability (post hoc) [36-53]. In total, 8% (2/26) of the
studies [54,55] could not be properly categorized and were
classified as “Unspecified.”

RQ Category 2: Application Areas

Overview
The motivations for adoption of FL were analyzed. They were
categorized into model security, computation and
communication challenges, data quality and availability, data
management and sharing, and data protection and safety. The
results are shown in Figure 9. The main motivation was data
management and sharing, followed by data quality and
availability.

Figure 9. Frequency of federated learning adoption motivations.

Application Area and Type of FL Used
The application area and type of FL applied were assessed, and
the results are summarized in Table 1. The application area with
the highest number of studies was health with 27% (7/26).

Networking and finance followed closely with 23% (6/26) and
15% (4/26) of the studies, respectively. Fault detection
encompassed 8% (2/26) of the studies, and agriculture, space
exploration, urban planning, and social media encompassed 4%
(1/26) of the studies each.
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Table 1. Summary of the studies based on application area, type, and category of federated learning (FL).

StudiesCentralized FLApplication area and type of FL

Health

[36,37]YesTransfer learning

[32,38-40]YesHorizontal FL

[41]YesVertical FL

Space exploration

[42]—aHorizontal FL

Networking

[33,43-46]YesHorizontal FL

[34]YesVertical FL

Finance

[20,42,55]YesVertical FL

[35]YesHorizontal FL

Fault detection

[47,54]YesHorizontal FL

Agriculture

[48]YesHorizontal FL

Urban planning

[49]YesVertical FL

Social media

[50]NoHorizontal FL

Manufacturing

[51]YesHorizontal FL

Energy

[52]YesHorizontal FL

Generic

[53,56]YesVertical FL

aNot applicable.

HFL (17/26, 65% of the studies) was the major type of FL used,
with VFL and TL reported in 31% (8/26) and 8% (2/26) of the
studies, respectively.

RQ Category 3: Model Explainability
The selected studies were reviewed for their approach to model
explainability, which is essential to building trust in predictions.
In FL, understanding model outputs helps assess their reliability
and identify the need for adjustments or improvements.

XAI Techniques

Overview

XAI, first introduced by the Defense Advanced Research
Projects Agency in 2015, helps experts understand how ML
models arrive at their decisions, thereby increasing trust in the
outputs. XAI techniques can be categorized as either global or
local depending on the level of explainability. Global XAI
techniques offer a broad view of the model’s behavior by

highlighting important features. Local XAI techniques focus
on explaining individual predictions.

XAI techniques also differ based on whether they are intrinsic
to the model (ante hoc or white box), such as decision trees, or
applied after training (post hoc), such as LIME [7], which uses
simpler models to explain complex ones.

Additionally, some model explainers are model agnostic and
can be applied to a wide group of ML models, whereas others
are model specific and tailored to particular algorithms, offering
deeper insights but requiring more expertise. We provide a brief
overview of the techniques in the following sections.

LIME Technique

LIME [7] is a popular model-agnostic explainer that uses a
simple surrogate model, typically a sparse linear model, trained
on locally perturbed data to approximate and explain the
individual predictions of a complex model. While it is widely
adopted, LIME’s effectiveness depends on the quality of the
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surrogate fit, and its sampling process introduces uncertainty,
resulting in nondeterministic and potentially inconsistent
explanations for the same input [62].

SHAP Technique

SHAP [8] is a local and global explainer that is based on game
theory. SHAP explains a prediction of each instance by
computing the contribution of each feature to the prediction.
SHAP uses additive contribution to compute a fair value for
each feature by computing the contribution of each feature to
the final model outcome to understand the importance of each
feature. The SHAP explanation is shown in the following
equation, where g is the explanation model, x’ is the coalition
vector, M is the maximum coalition size, and is the feature
attribution for feature i:

Gradient-Weighted Class Activation Mapping

Gradient-Weighted Class Activation Mapping [63] is an
explainer that uses the spatial information naturally retained in
the last convolutional layer. This is a model-agnostic post hoc
explainer that works with different classes of convolutional
neural networks. It is a visualization technique that generates
heat maps that highlight the important regions of the image that
contribute to the model’s prediction.

RuleFit

The RuleFit algorithm is a method to generate a model that
combines rules and linear regression. First posited by Friedman
and Popescu [64] in 2008, RuleFit develops interpretable models
that can predict an outcome based on various features. A set of
rules is generated from a dataset and then fit into a model using
the L1-regularized (least absolute shrinkage and selection
operator) regression. The simpler linear models are interpretable
like “normal” linear models [65].

Partial Dependence Plot

Partial dependence plot (PDP) [66] is an explainer that shows
the marginal effect of 1 or 2 features on the predicted outcome
of an ML model. It is a post hoc model-agnostic explainer. One
or 2 features are selected, and their changes are mapped by
changing the values to see their impact on the predicted
outcome. The PDP highlights the relationship between the target
and the feature as linear, monotonic, or more complex [65]. A
newer variant of PDP is called incremental PDP [67], which
expands the working of PDP by considering time-dependent
effects in nonstationary learning environments. This newer
approach considers how the model’s reasoning changes over
time while considering the effects of concept drift.

Integrated Gradients

Integrated gradients [68] is an axiomatic-based local explainer
that attributes the importance value of each input feature of an
ML model based on the gradients of the model outputs with
reference to the input.

Causal Models

Causal models [69] use counterfactual reasoning to explain the
cause-effect explanations of a particular model. A counterfactual

explanation for a prediction is a description of the smallest
change to an input feature that will alter the prediction to a
predefined output [65]. Counterfactual explanations describe
the causes in the form of “if X had not occurred, then Y would
not be the result.” The computation of counterfactual
explanations is done by comparing the causal chain paths of the
actions not taken by the model [62].

Anchors

Anchors [70] are a model-agnostic way of explaining the
workings of complex (black-box) models through the use of
high-precision rules. Anchors use perturbations to generate the
local explanations, but instead of using surrogate models, the
explanations are provided using if-then rules that are easy to
understand. The if-then rules are called anchors. A rule
“anchors” the prediction if changes in the other feature values
do not alter the prediction made [65].

Deep Taylor Decomposition

Deep Taylor decomposition [71] is an approach for explaining
neural networks by decomposing the output of a model into
contributions from individual input features. It redistributes the
output to the input variables layer by layer. The approach relies
on Taylor expansion to determine the relative contributions of
the layers. The final relevance scores at the input layer reveal
which input features were the most influential in the prediction.

Layerwise Relevance Propagation

Layerwise relevance propagation (LRP) [72] is a technique for
explaining predictions made by neural network models. LRP
identifies the input features that contributed the most to the
decision made by the model. LRP relies on deep Taylor
decomposition and works by tracing the prediction backward
through the network using backward propagation while
assigning relevance scores to each input feature [62].

Prediction Difference Analysis

Prediction difference analysis [73] generates explanations for
neural networks by comparing the model’s prediction when a
specific feature is present with the prediction of the model when
that feature is absent. The comparison allows for measurement
of the feature’s impact on the final model’s prediction. Each
feature is removed (knocked out), and a relevance score is
assigned to them based on their impact [62].

Testing With Concept Activation Vectors

Testing with concept activation vectors [74] is an approach to
generate global explanations for neural networks based on the
idea of concept activation vectors. It measures the importance
of a concept to a prediction based on the directional sensitivity
of a concept in the neural network layers. The concept can be
anything from color and objects to ideas [65].

Explainable Graph Neural Networks

Explainable graph neural networks [75] are model-level
explainers that show how graph neural networks make decisions.
Explainable graph neural networks use reinforcement learning
to build a new graph stepwise, which the original graph neural
network can classify as a certain label, for example, “spam.”
The new (generated) graph acts as an example for what the
model has learned.
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Explainable FL
XAI can be applied to FL environments to explain the workings
of ML models.

Explainable FL Techniques Used

This study aimed to explore the types of XAI models used in
FL (first question in RQ category 3) and their classification
(second question in RQ category 3). Most studies (19/26, 73%)
applied existing XAI techniques, especially those originally
developed for centralized ML such as LIME [7] and SHAP [8].

A few novel methods such as vertical decision tree ensembles
[20] were specifically developed for federated settings. Most
reviewed studies (23/26, 89%) used post hoc explainability
methods, followed by intrinsically explainable models (5/26,
19%). In total, 8% (2/26) of the studies could not be categorized.
Most of the techniques were model agnostic, highlighting the
adaptability and widespread use of tools such as LIME in FL
environments. Table 2 summarizes the various categorizations
of XAI approaches as applied in FL.
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Table 2. Summary of categorization of explainable artificial intelligence approaches in federated learning, application areas, and performance metrics
used.

Performance metricsApplication areaStudiesType (model agnostic
or model specific)

Approach and model or
algorithm

Post hoc

Accuracy (all studies), precision [36], re-
call [36,39], and F1-score [36,39]

Health care [36,37,39],
manufacturing [51], and
generic [56]

[36,37,39,51,56]Model agnosticGrad-CAMa

Accuracy, precision, and MSEcGeneric[53]Model agnosticFalcon-INPb

Accuracy, F1-score [43], and PDPd and
percentage of feature impact [46]

Networking[43,46]Model agnosticRuleFit

Accuracy [43,47,49,50,52,54], F1-score
[43,47,50], PDP [46], precision [47,50],

Networking [50], fault detec-
tion [47], agriculture [48],
urban planning [49], social
media [50], and energy [52]

[43,46-50,52,54]Model agnosticSHAPe

recall [47,50], RMSEf [48], MAEg [48],
and loss [49]

Accuracy [38,40,49,51], F1-score [38,40],
precision [38,40], recall [38,40], and PDP
[46]

Health care [38,40], network-
ing [46], urban planning
[49], and manufacturing [51]

[38,40,46,49,51]Model agnosticLIMEh

—iNetworking[46]Model agnosticPDP

AccuracyHealth care[41]Model agnosticCausal models

Maximum input sensitivity analysisSpace exploration[42]Model specificCPAj Net

AccuracyNetworking[45]Model agnosticRandom decision
forest

MSE and R2Networking[44]UnspecifiedRule based

Ante hoc

AUCk and KSl curve analysisFinance[20]Model specificVertical decision
tree ensembles

MSE, MAE and R2 [33], and accuracy
[35]

Networking [33] and finance
[35]

[33,35]Model specificDecision trees

AUROCm [32], AUPRCn [32], and MSE
[34]

Health care [32] and net-
working [34]

[32,34]Model agnosticIntegrated gradients

Unspecified

ROCo and KS curve analysisFinance[55]UnspecifiedGradient-based
method

AccuracyFault detection[54]UnspecifiedInterpretable adap-
tive sparse-depth
networks

aGrad-CAM: Gradient-Weighted Class Activation Mapping.
bFalcon-INP: Falcon Interpretability Framework.
cMSE: mean squared error.
dPDP: partial dependence plot.
eSHAP: Shapley Additive Explanations.
fRMSE: root mean square error.
gMAE: mean absolute error.
hLIME: linear interpretable model-agnostic explanations.
iNot applicable.
jCPA: Cascading Pyramid Attention.
kAUC: area under the curve.
lKS: Kolmogorov-Smirnov.
mAUROC: area under the receiver operating characteristic curve.
nAUPRC: area under the precision-recall curve.
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oROC: receiver operating characteristic.

Challenges Faced in Explainable FL

Explaining ML models in an FL environment presents unique
challenges typically not encountered in centralized setups,
especially in real-world scenarios. The challenges include data
heterogeneity, security and privacy, communication costs and
resource constraints, and scalability.

Data Heterogeneity

In centralized ML, data from multiple sources are combined
into a single dataset, allowing explainability models to analyze
a unified, consistent data distribution. In contrast, FL involves
data from different, often heterogenous sources that follow
different distributions, resulting in non–independently and
identically distributed (IID) data [76]. Non-IID data are common
in FL and are characterized by skewed class distributions and
varying data volumes across clients [76]. This variability
challenges explainability as the explainer model must handle
randomly polled clients with diverse and uneven data,
complicating interpretation.

Security and Privacy

FL was developed to enable ML model training while preserving
data privacy, addressing strict data protection regulations. Unlike
centralized ML, where XAI techniques risk data leaks or reverse
engineering by requiring access to training data, FL introduces
new challenges such as vulnerability to model poisoning [77].
Moreover, applying explainability in federated environments
can raise privacy concerns as explanation methods might
inadvertently reveal some attributes of the client data.

Communication Costs and Resource Constraints

FL involves clients sharing model updates via either a
centralized or decentralized approach, necessitating continuous
and efficient communication. Additionally, the use of
perturbation-based explainers such as SHAP adds overheads
on client devices due to complex estimation of Shapley values
as well as communication costs when sharing the learned
perturbations to the central aggregator [78].

Scalability

In non-IID FL setups, randomly polling clients is often
ineffective, necessitating smarter client selection strategies that
prioritize clients with valuable data for improving the global
model [79]. Moreover, increasing the number of clients can lead
to communication bottlenecks and strain the aggregation server’s
resources due to the growing volume of model updates.

Discussion

Summary of Findings
This study aimed to understand the current situation in the XAI
field and how it has been applied to the field of FL. This was
done through a comprehensive review process of the existing
openly accessible primary studies on XAI approaches in
federated ML. The role of privacy in the choice of ML model
was evident in the studies analyzed. FL has proven to be robust
and useful in mitigating privacy concerns to comply with privacy
legislation and ensure data integrity within the devices [22].

It is noteworthy that most of the studies (10/26, 39%) did not
originate from highly sensitive fields such as health and security,
which are arguably fields that could benefit most from
explainable federated AI approaches. These fields are
traditionally conservative, heavily regulated (eg, HIPAA) [11],
and still suffer from trust issues due to the lack of explainability
of the models. These fields are highly impactful as the problems
defined require complex solutions, which necessitate the use of
black-box models. Areas such as health, cybersecurity, finance,
education, and autonomous vehicles could invariably benefit
from explainable FL as they are heavily reliant on privacy and
security. Federated XAI could also be applied in edge devices
as this would bring the computation closer to the data source
while at the same time enhancing privacy and security [80].

The FTL approach, which can help alleviate the challenge of
limited training data [81]—the second reported reason for the
use of FL—has also not been used fully. Despite the use of
real-world datasets, the implementations assessed largely used
the HFL approach, which did not fully account for data
heterogeneity [82]. Real-world implementations of these
approaches might suffer due to the data and environment not
being representative. It would be important for more research
to be conducted addressing these challenges.

Implications
There has been a steady increase in the number of studies in the
field of FL and XAI. This increase can be mapped from 2016,
when FL was first introduced. However, there is still a lot of
room for more research to be conducted. The development of
explainable FL models can help unlock great potential in the
fields of health and security [2], but caution needs to be taken
to ensure that the development is not concentrated in specific
regions.

Model explainability using state-of-the-art techniques, whether
post hoc or intrinsic in nature, has been proven to work well.
Several novel explainability techniques that can work well in
FL environments, such as those in the studies by Corcuera
Bárcena et al [44] and Wang and Zhang [54], highlight the
potential for improvement of existing explainability techniques
and approaches and development of more robust novel
techniques that can perform better in the federated environments.
This also offers fertile research potential for experimentation
with more real-world data and techniques such as TL.

More research needs to be conducted to mitigate the challenges
faced by explainable FL. There is a need to develop models that
are scalable and can operate in real-world FL settings where
data are non-IID. There is also a need for robust systems that
can operate more efficiently when generating the explanations
to make them useful for personalized explainable FL. This
would help unlock an even greater potential for trustworthy AI.

Limitations
This review was limited to 26 studies. The novelty of the 2
areas—XAI and FL—meant that a lot of studies (including most
studies from the initial total of 1933 identified in the databases)
were not eligible for review. Moreover, the strict requirement
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for primary research and not review papers, coupled with the
need for accessible documents, meant that the papers reviewed
were limited in nature.

Conclusions
This study attempted to analyze the existing landscape and
provide an overview of the approaches that could be used in
implementing XAI in FL. This review was conducted based on
the RQs posited, and 26 studies that fit the criteria were assessed.

One of the key findings was that, despite the need for
explainability in critical areas, there is limited research that has
been conducted. More research in these critical areas needs to
be conducted to develop more novel approaches that mitigate
the challenges. FL remains a useful approach to model
development in cases in which privacy is important and limited
data exist. This study highlights the potential areas that can be
explored by future researchers.
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