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Abstract
Background: The impact of surgical complications is substantial and multifaceted, affecting patients and their families,
surgeons, and health care systems. Despite the remarkable progress in artificial intelligence (AI), there remains a notable gap
in the prospective implementation of AI models in surgery that use real-time data to support decision-making and enable
proactive intervention to reduce the risk of surgical complications.
Objective: This scoping review aims to assess and analyze the adoption and use of AI models for preventing surgical
complications. Furthermore, this review aims to identify barriers and facilitators for implementation at the bedside.
Methods: Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews) guidelines, we conducted a literature search using IEEE Xplore, Scopus, Web of Science, MEDLINE,
ProQuest, PubMed, ABI, Embase, Epistemonikos, CINAHL, and Cochrane registries. The inclusion criteria included
empirical, peer-reviewed studies published in English between January 2013 and January 2025, involving AI models for
preventing surgical complications (surgical site infections, and heart and lung complications or stroke) in real-world settings.
Exclusions included retrospective algorithm-only validations, nonempirical research (eg, editorials or protocols), and non-Eng-
lish studies. Study characteristics and AI model development details were extracted, along with performance statistics (eg,
sensitivity and area under the receiver operating characteristic curve). We then used thematic analysis to synthesize findings
related to AI models, prediction outputs, and validation methods. Studies were grouped into three main themes: (1) duration of
hypotension, (2) risk for complications, and (3) decision support tool.
Results: Of the 275 identified records, 19 were included. The included models frequently demonstrated strong technical
accuracy with high sensitivity and area under the receiver operating characteristic curve, particularly among studies evaluating
decision support tools. However, only a few models were adopted routinely in clinical practice. Two studies evaluated the
clinicians’ perceptions regarding the use of AI models, reporting predominantly positive assessments of their usefulness.
Conclusions: Overall, AI models hold potential to predict and prevent surgical complications as the validation studies
demonstrated high accuracy. However, implementation in routine practice remains limited by usability barriers, workflow
misalignment, trust concerns, and financial and ethical constraints. The evidence included in this scoping review was limited
by the heterogeneity in study design and the predominance of small-scale feasibility studies, particularly for hypotension
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prediction. Future research should prioritize prospectively validated models that use other physiologic features and address
clinicians’ concerns regarding generalizability and adoption.
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predictive modeling; risk prediction; surgery outcomes; perioperative care; clinical decision support

Introduction
With more than 320 million surgical procedures performed
worldwide annually, there is a global responsibility to
enhance the quality of surgical care [1]. Complications
such as surgical site infections and stroke or heart and
lung complications, whether minor or severe, often lead to
reoperations, morbidity, and prolonged hospital stay [2,3].
Death following surgery approaches 5% and every tenth
patient experiences preventable surgical complications [1].
Adverse events also impact surgeons as a second victim [4],
and health care resource use rises notably [5]. The added
cost of surgical complications ranges from US $3.5 to $10
billion yearly and is associated with an average increase in
hospital stay of 11 days [6]. Despite attempts to optimize
adherence to clinical pathways to reduce the frequency of
surgical complications, complications persist [7,8].

Artificial intelligence (AI) is transforming the field of
surgery, offering unprecedented advancements in precision,
efficiency, and patient outcomes that could possibly reduce
surgical complications [9]. For example, AI-assisted frame
reviews in neuroscience demonstrate that AI can help both
junior and senior clinicians perform better [10]. In edu-
cational platforms, AI is outpacing traditional coaching
programs as demonstrated by a gallbladder surgery pro-
gram [11]. By leveraging the power of machine learning,
natural language processing, and computer vision, AI can
enhance various aspects of surgical practice from preopera-
tive planning to intraoperative guidance to reduce surgical
complications [12].

During preoperative discussions, the surgeon and patient
must weigh the benefits of surgery against the risks. AI can
rapidly process large amounts of health data, unburdening
health personnel and allowing them to better inform their
patients [13]. These AI models analyze patterns and their
relationship to determine complex combinations that can
indicate the patient’s risk for surgical complications. There
is a gap in studies focusing on the adoption and clinical
validation of these AI models [14-21]. Existing literature is
focused on the retrospective development of models aimed
at preventing surgical complications [9]. There are several
reasons why these models have not been widely adopted
in actual clinical use, including the lack of validation, lack
of supporting data, differences in culture and behavior, and
organizational structure [22,23]. Most common problems are
regulatory and ethical constraints given that AI in surgery
is considered high risk, time-consuming, and expensive.
Randomized controlled trials (RCTs) are generally needed,
which do not exist [24]. Also, there is currently a gap in the
literature regarding the evaluation of AI models in clinical

practice. This review aims to provide an overview of the
published studies. Previous reviews have focused exclusively
on studies involving the development and validation of
models conducted using retrospective data [25-27]. Our
focus is to uncover AI models that have been prospectively
tested with real-time data at the bedside and to pinpoint the
barriers and facilitators to implementing these models for the
prevention of surgical complications.

Methods
The review was conducted in accordance with the PRISMA-
ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews) guidelines
(Checklist 1) [28]. We used a scoping review protocol
that addressed key concepts and types of evidence. The
aim was to map the existing literature by systematically
searching, selecting, and synthesizing current evidence on
AI models designed to prevent surgical complications using
real-time data [29]. In this review, our definition of AI
models also encompasses traditional statistical models, such
as the National Surgical Quality Improvement Program
(NSQIP), as these were tested prospectively. We relied on
the five-stage framework proposed by Pollock et al [30]: (1)
developing the review objective, (2) applying the eligibility
criteria, (3) selecting the articles, (4) extracting and analyz-
ing the data, and (5) reporting the results. The inclusion
criteria were implemented using the population-concept-con-
text framework, where population represents the patients
undergoing surgery, concept includes the use of AI mod-
els to prevent surgical complications, and context includes
studies that are conducted pre-, peri-, and intraoperative with
both real-time and retrospective data excluding retrospec-
tive validation studies without prospective evaluation. The
research team comprised both surgeons and machine learning
engineers. The primary research question was “Which AI
models have been clinically tested for the prediction of
surgical complications?” The secondary research question
was “For AI models not yet implemented in routine clini-
cal practice, what barriers hinder their implementation, and
are there any models on the horizon that could readily
be adopted? ” We included prospective, observational, and
interventional peer-reviewed studies in English that inclu-
ded model development, validation, and implementation.
A comprehensive search strategy was developed in collab-
oration with a medical librarian to identify peer-reviewed
original studies. We searched the following databases from
October 2024 to January 2025: Scopus, CINAHL, the
Cochrane Library, PubMed, MEDLINE, Web of Science,
Embase, Epistemonikos, and IEEE Xplore [28]. The search
strategy combined controlled vocabulary (eg, Medical Subject
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Headings and Emtree) and natural language keywords using
Boolean operators and truncation to capture variations in
terminology. The specific search terms and keywords were
defined following iterative literature searches and several
rounds of discussion among the authors.

The search query was structured around 3 key concepts:
• AI Methodology: (“Artificial intelligence” OR

“Machine learning” OR “AI tool*” OR “AI model*”
OR “Validated algorithm*”);

• Function: (“Predict*” OR “Prediction tool*” OR
“Prediction index” OR “Clinical decision support
tool”);

• Outcome: (“Postoperative complication*” OR “Surgical
adverse event*” OR “Adverse surgical outcome*”).

The search was restricted to articles published in English.
Studies were included if they described prospective model
validation or clinical implementation.

A reference list of selected articles was used to extract
additional articles to get a complete overview of the field.
Detailed information on the search strategy can be found
in Multimedia Appendix 1. The librarian vetted the initial
search, using Mendeley (version 2.129.0; Elsevier). Eligibil-
ity assessment and screening were independently conducted
by the primary investigator (KM) and co-investigator (ELJ)
based on the established inclusion and exclusion criteria.
After the initial screening, a full-text assessment was carried

out. Disagreements were arbitrated by a third reviewer
(CT-O). The reporting quality of the included studies was
assessed by using the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis
or Diagnosis) with the AI statement [31,32]. The check-
list includes 22 items (27 for the AI statement) with the
potential answer options: “yes,” “no,” and “not applicable.”
The 2 reviewers assessed the included studies for compli-
ance with the items described in the TRIPOD+AI check-
list. Furthermore, the following information was extracted:
bibliographic details, study design and setting, surgical
specialty and procedure type, AI model and technical details,
predicted outcome or complications, stage of implementa-
tion, validation, and reported barriers and facilitators to
clinical implementation. Quantitative characteristics derived
from the included studies were summarized using tables
and figures. Thematic analysis was performed on qualitative
data related to barriers and facilitators. For this scoping
review, we developed an analytical categorization framework
to systematically classify the included studies according to
the primary applications of the AI models they used (Table
1). This framework served to structure the evidence by
grouping studies into conceptually coherent domains, thereby
facilitating a clearer understanding of the thematic focus,
methodological approaches, and applied contexts represented
across the studies.

Table 1. Thematic classification of 19 included studies in the scoping review.
Theme Studies (N=19), n (%) AI model
Duration of hypotension 11 (58) HPIa

Risk for complications 4 (21) POTTERb, Periop ORACLEc, MuscleSound, and PPC -score
Decision support tool 4 (21) My Surgery Risk, ACSe NSQIPf, SURPASg, and MyRISK

aHPI: Hypotension Prediction Index.
bPOTTER: Predictive Optimal Trees in Emergency Surgery Risk.
cORACLE: Outcome Risk Assessment with Computer Learning Enhancement.
dPPC: postoperative pulmonary complications.
eACS: American College of Surgeons.
fNSQIP: National Surgical Quality Improvement Program.
gSURPAS: Surgical Risk Preoperative Assessment System.

Results
A PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
[33] flow diagram, as shown in Figure 1, illustrates the study
selection process. The initial search yielded 199 articles, and
76 additional articles were gleaned from reference lists, for
a total of 275 records screened. Of these 275 records, 19
studies met the inclusion criteria for this scoping review. The
majority of studies were conducted in high-income countries,

with the United States (n=7) being the most frequent
contributor. The studies used a prospective study design,
including RCTs, pilot interventional studies, and prospective
cohorts. There were 8 RCTs and 11 prospective studies with
a strong trend toward pilot-scale prospective studies. Large-
scale validation or postdeployment studies were lacking. Few
studies were evaluated outside of controlled research settings.
External validation of the AI models was infrequent and
adherence to TRIPOD+AI was poor. No study fully met the
criteria for transparent reporting (Table 2).
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Figure 1. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) flowchart
(reproduced from Haddaway et al [34] and is covered by Creative Commons license). AI: artificial intelligence.

Table 2. Summary of adherence to TRIPOD+AI (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis +
Artificial Intelligence) guidelines.

Study (year) Model type

TRIPOD:
outcome
defined

TRIPOD:
missing data

TRIPOD:
internal
validation

TRIPOD:
external
validation

TRIPOD‑AI:
algorithm
description

TRIPOD‑AI:
explainability

TRIPOD‑AI:
bias assessment

Wijnberge et al
(2020) [35]

MLa-derived
HPIb

✓ ✓
Lorente et al
(2023) [36]

HPI protocol ✓ ✓
Schneck et al
(2020) [37]

HPI system ✓ ✓
Bao et al (2024)
[38]

Acumen HPI ✓ ✓ ✓
Tsoumpa et al
(2021) [39]

HPI algorithm ✓ ✓
Cylwik et al
(2024) [40]

HPI software ✓ ✓
Murabito et al
(2022) [41]

ML proactive
HPI

✓ ✓
Šribar et al
(2023) [42]

HPI-guided
therapy

✓ ✓
Maheshwari et
al (2020) [43]

ML-HPI tool ✓ ✓
Andrzejewska et
al (2023) [44]

HPI prediction ✓ ✓
Kouz et al
(2023) [45]

HPI registry ✓ ✓
Ren et al (2022)
[46]

ML
postoperative

✓ ✓ ✓ ✓ ✓
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Study (year) Model type

TRIPOD:
outcome
defined

TRIPOD:
missing data

TRIPOD:
internal
validation

TRIPOD:
external
validation

TRIPOD‑AI:
algorithm
description

TRIPOD‑AI:
explainability

TRIPOD‑AI:
bias assessment

Bilimoria et al
(2013) [15]

ACS NSQIP
Surgical Risk
Calculator

✓ ✓ ✓ ✓ ✓ ✓

Bronsert et al
(2020) [47]

SURPASc pilot ✓ ✓ ✓ ✓ ✓
El Moheb et al
(2023) [48]

Surgeon's AI
risk

✓ ✓ ✓
Ferré et al
(2023) [49]

MyRISK score ✓ ✓ ✓ ✓
Fritz et al (2024)
[50]

ORACLEd ML
model

✓ ✓ ✓ ✓ ✓
Yik et al (2024)
[51]

US sarcopenia
AI

✓ ✓ ✓ ✓ ✓ ✓
Li et al (2024)
[52]

ML pulmonary
outcome

✓ ✓ ✓ ✓ ✓ ✓
aML: Machine Learning.
bHPI: Hypotension Prediction Index.
cSURPAS: Surgical Risk Preoperative Assessment System.
dORACLE: Outcome Risk Assessment with Computer Learning Enhancement.

To organize the heterogeneous literature, we developed a
thematic categorization framework based on the primary
intended function of each model as described in the origi-
nal publications. The categorization was not based on the
underlying statistical methodology, but on how the model
output was framed and intended to be used in the clini-
cal setting. Models categorized as “risk for complications”
primarily focused on estimating the probability of specific
postoperative outcomes, with performance evaluation as
the main objective and limited emphasis on downstream
clinical use. In contrast, models categorized as “decision
support tools” were explicitly presented as supporting clinical
decision-making processes, such as preoperative planning,
shared decision-making, or patient counseling. We acknowl-
edge that these categories are not mutually exclusive and that
several models could reasonably fit more than one theme.
In such cases, classification was based on the dominant
emphasis in the study objectives and presentation (Table 1).

Study demographics and their respective funding are
presented in Table 3. A total of 11 studies tested intraoper-
ative hemodynamic monitoring and complication predic-
tion using the Hypotension Prediction Index (HPI), while
the remaining studies included AI models that addressed
predicting general complications (n=7) and image analy-
sis (n=1). While this review identified diversity of AI
model applications, the majority of studies evaluated HPI,

potentially skewing the findings through over-representation
of intraoperative hemodynamic monitoring as the primary
area of AI use in surgery. As such, the generalizability of
results across surgical domains is narrowed. The predomi-
nance of HPI-related research may reflect a commercially
available and well-integrated AI model, with greater funding
and dissemination of pathways than other early-phase AI
models. This may introduce publication and funding biases,
where more rigorously tested, industry-supported models
are over-represented compared to academic, noncommercial
exploratory models. However, most of the studies testing the
HPI had funding from the manufacturer Edwards Lifescien-
ces. The authors stated that manufacturers were not involved
in the conduct of the studies and did not approve or disap-
prove of the manuscript. Moreover, the clinical end points
targeted by HPI are relatively narrow compared to the diverse
risks associated with surgery. This limits the scope of AI
use in surgery in terms of complication prediction, workflow
optimization, and personalized surgical planning. Few studies
evaluated AI models for long-term surgical complications,
and the under-representation of other AI models narrows
applicability. The main population studied was high-risk
patients in 4 studies, with a subspecialty lens of noncardiac
surgical patients. Table 4 delineated performance metrics of
the AI models.
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Table 3. Characteristics of the included articles.
Author (year) of
publication Country of origin Clinical domain

Enrolled or planned
participants Type of study Funding

Wijnberge et al (2020)
[35]

The Netherlands Noncardiac surgery 60 Unblinded randomized
clinical trial: (1) early
warning system with
HPIa and (2) standard
care

Edwards Lifesciences

Lorente et al (2023)
[36]

Spain High-risk surgical
patients for elective
major abdominal
surgery

80 Parallel-arm double-
blinded multicenter
randomized trial: (1) HPI
protocol and (2) standard
care

Edwards Lifesciences

Schneck et al (2020)
[37]

Germany Patients undergoing
primary hip
arthroplasty.

99 Single center randomized
blinded prospective trial:
(1) therapy algorithm
HPI, (2) standard care,
and (3) historic control
group

Edwards Lifesciences

Bao et al (2024) [38] The United States Patients with ASAb 3
or 4 moderate or high-
risk noncardiac surgery
>3 hours.

Prospective: 425 and
post hoc analysis:
457 verss 15,796

Prospective single-arm
multicenter (n=11) trial
study: (1) continuous
blood pressure
measurements from study
monitors compared to
historical cohort with
standard care study and
(2) subset of trial
participants versus a
propensity score-
weighted
contemporaneous
comparison group

Edwards Lifesciences

Tsoumpa et al (2021)
[39]

Greece Moderate or high-risk
noncardiac surgery

99 Single-center prospective
randomized trial: (1) HPI
with hemodynamic
treatment protocol and (2)
standard care

None

Cylwik et al (2024)
[40]

Poland Patients undergoing
oncological
gastrointestinal surgery
with ASA 3 or 4

46 Prospective single-center
where HPI was used for
50 patients

None

Murabito et al (2022)
[41]

Italy Patients for elective
major general surgery

40 Single-center pilot
randomized clinical trial:
(1) early warning system
and (2) standard care

Edwards Lifesciences
and the University of
Catania

Šribar et al (2023) [42] Croatia Patients for elective
major thoracic surgery
with single lung
ventilation

34 Prospective randomized
single-center blinded
trial: (1) “machine
learning algorithm”
(AcumenIQ) and (2)
“conventional pulse
contour analysis”
(Flotrac)

None

Maheshwari et al
(2020) [43]

The United States Patients with ASA 3 or
4 for moderate or high-
risk noncardiac surgery

214 Randomized multicenter
controlled trial (n=2): (1)
HPI guided group and (2)
standard care

Edwards Lifesciences

Andrzejewska et al
(2023) [44]

Poland Patients undergoing
posterior fusion for
adolescent idiopathic
scoliosis

59 adolescents Prospective single-center,
non-randomized, case-
control study: (1) goal-
directed therapy with HPI
and (2) standard care

None
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Author (year) of
publication Country of origin Clinical domain

Enrolled or planned
participants Type of study Funding

Ren et al (2022) [46] The United States Preoperative 67 surgeons testing
the tool on 100 cases

Prospective University of Florida,
NIBIBc, NIDDKd,
NIGMSe, and the
National Science
Foundation

Bilimoria et al (2013)
[15]

The United States Preoperative 80 surgeons testing
the tool on 10 cases

Prospective Agency for Healthcare
Research and Quality

Bronsert et al (2020)
[47]

The United States Preoperative 197 patients assessed
by 9 surgeons, but
166 were assessed by
the tool

Convergent prospective
mixed methods with both
quantitative and
qualitative data.

Agency for Healthcare
Research and Quality

El Moheb et al (2023)
[48]

The United States Emergency surgery 150 patients, 15
surgeons in each
group

Prospective, nonblinded,
single-center: (1)
prediction with use of
POTTERf and (2)
standard prediction.

CRICOg or RMFh
grant

Ferre et al (2023) [49] France Preoperative 389 Single-center prospective
observational study

None

Kouz et al (2023) [45] France, Germany,
Italy, Spain, and the
United Kingdom

Elective major
noncardiac surgery

702 European multicenter
(n=12) prospective
observational trial

Edwards Lifescience

Fritz et al (2024) [50] The United States Patients for elective
surgery during daytime
weekdays

5071 Single-center prospective
randomized clinical trial:
(1) AlertWatch + MLi
display and (2) standard
care

National Institute of
Nursing Research, the
Foundation for
Anesthesia Education
and Research, and the
Washington University
School of Medicine

Yik et al (2024) [51] Singapore Elective major
gastrointestinal surgery

36 Prospective cohort study SingHealth Medical
Student Talent
Development Award

Li et al (2024) [52] China Patient underwent
surgical procedure
with general anesthesia
and mechanical
ventilation

307 Prospective cohort in a
single-center

The National Natural
Science Foundation of
China, Technology
Project of Sichuan,
Postdoctoral Science
Foundation, Postdoc-
toral Program of
Sichuan University, the
Postdoctoral Program
of West China
Hospital, Sichuan, the
1$3$5 Project for
Disciplines of
excellence, West China
Hospital, the Sichuan
Province Natural
Science Foundation of
China, and the CAMSj
Innovation Fund for
Medical Sciences

aHPI: Hypotension Prediction Index.
bASA: American Society of Anesthesiologist Physical Status Classification System
cNIBIB: National Institutes of Health
dNIDDK: National Institute of Diabetes and Digestive and Kidney Diseases
eNIGMS: National Institute of General Medical Sciences
fPOTTER: Predictive Optimal Trees in Emergency Surgery Risk.
gCRICO: Controlled Risk Insurance Company.
hRMF: Risk Management Foundation.
iML: machine learning.
jCAMS: Chinese Academy of Medical Sciences
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Table 4. Features and performance of the included artificial intelligence (AI) models.

Predicted
outcome

Author (year) of
publication Features

Name of AI
models Performance metrics or clinical end points

Web-based
calculators
available

Duration of
hypoten-
sion

Wijnberge et
(2020) [35]

Arterial pressure waveform (28
variables)

HPIa • Median average hypotension:
0.10 mmHg versus 0.44
mmHg

• Median time of hypotension:
8 minutes and 33 minutes
but no differences in adverse
events

• The algorithm (HPI) tested
with AUC=0.89 of 5-minute
prediction time

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Lorente et al
(2023) [36]

Intraoperative time-weighted
average of MAPc <65 mm Hg,
number of hypotension
episodes, total time of
hypotension, biomarkers of
acute kidney distress, and tissue
oxygenation

HPI • Median average hypotension:
0.06 mmHg versus 0 mmHg

• Median time of hypotension:
5 minutes and 0 minutes

• No differences in oxygen
saturation and acute kidney
injury

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Schneck et al
(2020) [37]

— HPI • Duration of hypotension
episodes: 0, 640, and 660
seconds

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Bao et al (2024)
[38]

Arterial pressure waveform and
demographics, comorbidity,
procedures, and acute kidney
injury for post hoc analysis

HPI • 58% reduction of MAP < 65
mmHg. In post hoc analysis,
35% reduction in minutes of
hypotension

• Median time of hypotension:
9 minutes versus 15 minutes

• No difference in AKId 13.8%
versus 15.8%

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Tsoumpa et al
(2021) [39]

Intraoperative time-weighted
average of MAP <65 mm Hg,
number and time of
hypotension, amount of
medicines, IV fluid, transfusion,
morbidity, and complications

HPI • Median average hypotension:
0.16 mmHg and 0.50 mmHg

• Median time of hypotension:
9 minutes and 24 minutes

• No differences in
complications or LOSe or use
of medicine or IV

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Cylwik et al
(2024) [40]

Pre- and postoperatively
proBNPf and troponin and acute
kidney injury

HPI • Median average hypotension:
0.085 mmHg

• Median time of hypotension:
2 minutes

• Hypotension associated with
acute kidney injury but not
with myocardial injury

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Murabito et al
(2022) [41]

Time-weighted average of
hypotension and biomarkers

HPI • Median average of
hypotension: 0.12 mmHg and
0.37 mmHg

• Median time of hypotension:
4.3 minutes and 21.3 minutes

• Use of HPI reduced the
intraoperative hypotension
and biomarker for brain and
oxidative stress

Algorithm
derivation only
[53]
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Predicted
outcome

Author (year) of
publication Features

Name of AI
models Performance metrics or clinical end points

Web-based
calculators
available

Duration of
hypotensio
n

Šribar et al
(2023) [42]

Time-weighted average of
hypotension, intravenous fluids,
medicines, ICU stay, length of
stay, acute kidney injury,
coronary syndrome, or
cerebrovascular infarction

HPI • Median average of
hypotension: 0.01 mmHg and
0.08 mmHg

• Median time of hypotension:
0 and 3.7 minutes

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Maheshwari et al
(2020) [43]

Arterial pressure waveform HPI • Median average hypotension:
0.14 mmHg and 0.14 mmHg

• Median time of hypotension:
2 minutes and 2 minutes

Algorithm
derivation only
[53]

Duration of
hypotensio
n

Andrzejewska et
al (2023) [44]

Surgical time, intravenous
fluids, blood values, length of
stay, and cardiac and
neurological complications

HPI • Median hypotension time: 8
minutes and 40 minutes

• Less time to extubation time
for the HPI group (median 5
vs 27.5 min)

• Noncardiac and neurological
complications in the HPI
group, while they were 4 in
the control group

None

Duration of
hypotensio
n

Kouz et al (2023)
[45]

Acute myocardial injury, acute
kidney injury, death within 30
days after surgery, and hospital
readmission within 30 days after
surgery

HPI • Median time of hypotension:
2 minutes. Median average
hypotension: 0.03 mm Hg

• 3% had acute myocardial
injury, 9% had acute kidney
injury

• Postoperative mortality
within 30 days after surgery
was observed in 2%

Algorithm
derivation only
[53]

Decision
support tool

Ren et al (2022)
[46]

285 inputs and 8 outcomes:
complications and death

My Surgery
Risk

• Models with 135 features had
AUC 0.80 to 0.92 for the
different outcomes compared
to lower AUC for models
with 55 and 101 features

• Surgeon predictive
performance did not change
significantly after viewing
predictions generated by the
algorithm

Algorithm
development [54,
55]

Decision
support tool

Bilimoria et al
(2013) [15]

21 preoperative factors, 8
outcomes: mortality, morbidity,
and 6 others

ACSg NSQIPh
Surgical Risk
Calculator

• Brier score for mortality:
0.011 and morbidity: 0.069

• Surgeons' agreement ranging
from 80% to 100%

Algorithm
development [56,
57]

Decision
support tool

Bronsert et al
(2020) [47]

Mortality, overall morbidity,
unplanned readmission, and 19
preoperative variables

SURPASi • 98.8% reported they
understood their surgical risks
very or quite well after
exposure to SURPAS; 92.7%
reported SURPAS was very
helpful or helpful. Providers
shared that 83.4% of the time
they reported SURPAS was
very or somewhat helpful;
44.7% of the time the
providers reported it changed
their interaction with the

None, but the
algorithm can be
found [58]
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Predicted
outcome

Author (year) of
publication Features

Name of AI
models Performance metrics or clinical end points

Web-based
calculators
available

patient and this change was
beneficial 94.3% of the time

Risk for
complicatio
n

El Moheb et al
(2023) [48]

8 variables POTTERj • POTTER outperformed
surgeons in predicting
mortality—AUC: 0.880
versus 0.841; ventilator
dependence—AUC: 0.928
versus 0.833; bleeding—
AUC: 0.832 versus 0.735;
pneumonia—AUC: 0.837
versus 0.753

None, but the
algorithm can be
found [17]

Decision
support tool

Ferre et al (2023)
[49]

25 variables MyRISK • AUC 0.71, sensitivity 94%,
NPVk 99%, specificity 49%,
and PPVl 7%

• Patient satisfaction 8/10 and
usability 90/100

None, but
validated in the
same study.

Risk for
complicatio
ns

Fritz et al (2024)
[50]

Variables within comorbidity,
preoperative vital sign,
preoperative laboratories,
intraoperative time series, and
medication and fluids

Periop
ORACLEm • AUC for AKI: 0.73 and 0.69

• Death: 0.79 and 0.78
• No significant difference in

prediction with the use of the
model

None, but the
algorithm can be
found [59]

Risk for
complicatio
ns

Yik et al (2024)
[51]

Intramuscular adipose tissue as a
proxy for muscle quality
obtained by ultrasound

MuscleSound • AUC 0.73
• Clinicians using the tool can

have a robust diagnostic tool
to help predict surgical risk
and outcomes

None

Risk for
complica-
tions

Li et al (2024)
[52]

20 variables PPCn score • AUC 0.88, simplified model
AUC 0.86

• Real-time identification
of surgical patients'
risk of postoperative
pulmonary complications
could help personalize
intraoperative ventilatory
strategies and reduce
postoperative pulmonary
complications

[60]

aHPI: Hypotension Prediction Index.
bAUC: area under the curve.
cMAP: mean arterial pressure
dAKI: acute kidney injury.
eLOS: length of stay.
fproBNP: pro-B-type natriuretic peptide.
gACS: American College of Surgeons.
hNSQIP: National Surgical Quality Improvement Program.
iSURPAS: Surgical Risk Preoperative Assessment System.
jPOTTER: Predictive Optimal Trees in Emergency Surgery Risk.
kNPV: negative predictive value.
lPPV: positive predictive value.
mORACLE: Outcome Risk Assessment with Computer Learning Enhancement.
nPPC: postoperative pulmonary complications.

The American College of Surgeons (ACS) NSQIP Surgical
Risk calculator is a widely adopted quality improvement
tool used globally, and the HPI is a commercially available,
regulatory-approved medical device (Acumen IQ) deployed
in operating rooms. However, few of the other tools are

deployed in surgical practice. In this regard, some of the
common barriers included lack of external validation, limited
generalizability, and black box model opacity (Table 5).
Clinicians reported low trust in AI models (AI illiteracy and
workflow issues as barriers) but noted real-time performance
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benefits (integration with existing platforms and clinical
support as facilitators). Most of the AI models required high
implementation costs, and together with the lack of financial

incentives and reimbursement structures, these represented
the greatest challenges to implementation.

Table 5. The most frequently cited barriers and facilitators in each of the studies.
Author (year of
publication) Barriers Facilitators
Wijnberge et al (2020)
[35]

Early warning system software needed (Flotrac IQ
pressure transducer connected to the HemoSphere
monitor)

No facilitator identified

Lorente et al (2023) [36] Defining the correct range for normal blood pressure.
FloTrac sensor (GDHTa protocol) and AcumenIQ
sensor (HPIb protocol) needed.

No facilitator identified

Schneck et al (2020) [37] Not mentioned Implementation of HPI was considered uncomplicated
providing a high user compliance

Bao et al (2024) [38] FloTrac IQ sensor and EV1000 platform needed No facilitator identified
Tsoumpa et al (2021) [39] Acumen Flo-Traq transducer and EV1000 platform

needed
No facilitator identified

Cylwik et al (2024) [40] Need the HemoSphere monitoring platform,
equipped with the AcumenTM IQ sensor

Anesthesiologists need training in the use of HPI software

Kouz et al (2023) [45] Acumen IQ sensor (Edwards Lifesciences) and the
HemoSphere monitoring platform are needed

Each center needs a clinical routine for hypotension procedures

Murabito et al (2022) [41] FloTrac IQ sensor with EWSc software needed No facilitator identified
Šribar et al (2023) [42] Hemosphere monitoring platform using either

AcumenIQ or Flotrac sensors is needed
No facilitator identified

Maheshwari et al (2020)
[43]

EV1000 is needed The waveform needs to be acceptable using a fast flush test

Andrzejewska et al (2023)
[44]

Acumen sensor and Hemosphere monitor are needed Fast flush test was needed

Ren et al (2022) [46] Fully automated data entry and mobile device
outputs require a system architecture as a scalable
real-time platform

Model outputs were provided to mobile device apps

Bilimoria et al (2013) [15] Variables are manually added in the calculator Allows clinicians to decrease the risk of surgery within the
confidence interval for the predicted risk

Bronsert et al (2020) [47] Variables are manually added in the calculator Increase the interaction between the patient and the surgeon and
make the patients able to understand the procedure and risk of
the surgery.

El Moheb et al (2023) [48] Variables are manually added in the calculator Improved the surgeons' prediction
Ferre et al (2023) [49] A digital questionnaire had to be filled out by the

patients
The risks were visually illustrated with green (low), orange
(intermediate), and red (high)

Fritz et al (2024) [50] Variables are manually added in the calculator No facilitator identified
Yik et al (2024) [51] Need an ultrasound and the software Musclesound Bedside and easy to use
Li et al (2024) [52] Data developed on an older adult demographic Easy to use and available online

aGDHT: goal-directed hemodynamic therapy
bHPI: Hypotension Prediction Index.
cEWS: early warning system

Discussion
Principal Findings
This scoping review highlights that only a small number of
AI-based models have progressed to clinical use. Notably,
ACS NSQIP is widely implemented as a quality improvement
and risk stratification tool, whereas the HPI represents one
of the few regulatory-approved AI-based medical devices
that is ready for integration into routine clinical practice.
The review identified several promising AI models that

could help clinicians improve outcomes for surgical patients
[61]. Although the models have demonstrated usefulness,
important limitations remain regarding clinical use. Most of
the studies reported a lack of widespread adoption. Although
this review uses the umbrella term “AI-based models,” it is
important to acknowledge the methodological heterogeneity
of the included tools. Several widely used systems, such as
ACS NSQIP, are based on traditional statistical approaches,
primarily logistic regression, rather than modern machine-
learning techniques. These models were included in accord-
ance with our predefined search strategy, which intentionally
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captured both established statistical risk calculators and
newer machine learning–based models used for surgical
risk prediction and decision support. Importantly, traditional
statistical models and machine learning algorithms differ in
terms of model development, interpretability, data require-
ments, and generalizability. While logistic regression–based
tools such as ACS NSQIP remain highly influential due to
their transparency, validation history, and clinical accept-
ance, newer machine learning approaches offer potential
advantages in handling complex, high-dimensional data but
often face greater challenges related to interpretability,
external validation, and clinical implementation. Distinguish-
ing between these methodological paradigms is essential
when interpreting the maturity and clinical readiness of
AI-based tools in surgery.

Among the included models, HPI stood out as the most
clinically mature and widely tested model, supported by
multiple RCTs and integrated into well-known platforms.
Its performance consistency and real-time application make
it the most implementation-ready model in the surgical
field. In contrast, the ACS NSQIP and ORACLE (Outcome
Risk Assessment with Computer Learning Enhancement)
demonstrated strong interpretability and user engagement but
are designed exclusively for a preoperative decision support
context, not intraoperative intervention. We observed that
regulatory and ethical uncertainty is the most common reason
why these models are not adopted into clinical practice. The
lack of financial incentives to deploy AI is another barrier,
elucidating why AI model development is progressing rapidly
while translational science and implementation research lag
behind [62]. A mixed method study suggested that barri-
ers to implementing AI in clinical practice could be over-
come by identifying and preparing champions, conducting
educational meetings, promoting adaptability, and developing
and disseminating educational materials on the AI model
[63].

MySurgeryRisk, a tool developed by researchers at the
University of Florida, uses machine learning to process vast
amounts of patient data and clinical metrics and represents
a promising predictive AI model with a high degree of
accuracy. It is designed to provide real-time, actionable
insights to surgeons, leading to better patient outcomes
and optimized resource allocation [46,54]. A limitation of
this model is that the predictions are mostly linear and
do not account for combinations of variables that should
be given greater weight when calculating risk. The aug-
mentOR Portal developed by Asensus Surgical specifically
evaluates the surgeon’s performance and identifies areas
for improvement. This could reduce surgical complications
by enhancing technical surgical skills but has yet to be
trialed clinically [64]. The implementation of AI in predict-
ing surgical complications is marked by these innovative
approaches and promising results, yet its integration into
routine clinical practice faces barriers [12,65].

Barriers that impede the widespread adoption of poten-
tially transformative AI models in health care are several
[66,67]. First, the quality and comprehensiveness of the data
used to train these models are critical. AI models require

extensive, well-annotated clinical data to learn effectively,
and this data must be continually updated to reflect con-
temporary medical knowledge and practice [66]. Integrating
AI models into existing health care IT infrastructures can
be technically challenging and costly, necessitating signifi-
cant upfront investment and ongoing maintenance, as well
as extensive training of health care providers [68]. There
are also substantial regulatory hurdles. AI models require
rigorous testing and approval processes to ensure they meet
clinical safety and efficacy standards. Ethical considerations,
such as protecting patient privacy and avoiding biases in AI
models, must be carefully managed to prevent disparities in
health care outcomes [69]. For instance, the review by de
Keijzer et al [70] highlighted that despite the potential of
AI to transform clinical decision-making, there is a nota-
ble translational gap from proof-of-concept to clinical use.
This gap is often due to regulatory uncertainties, organiza-
tional challenges, and attitudinal barriers among health care
professionals. These barriers slow the uptake and adoption
of AI models, even in cases where they have proved
to significantly benefit patient care, such as in managing
stroke complications [71]. Another reason for resistance to
the implementation of AI is the skepticism of health care
professionals towards AI models. Clinicians are cautious
about relying on AI for decision-making, concerned that
it may overlook individual patient nuances or erode their
clinical autonomy [72,73]. Additionally, economic impli-
cations cannot be overlooked. The development, testing,
and deployment of AI models require substantial financial
resources, which can be a barrier for less well-funded
health care institutions [74]. Finally, there is a worry that
AI could become a substitute rather than a support for
clinical decision-making, potentially leading to an erosion
of clinicians’ professional skills [73]. Moreover, research
exploring clinicians’ perceptions of AI underscores concerns
regarding workload, risk, trust, and the integration of AI into
clinical settings. Many clinicians fear that AI may increase
their workload or change their workflow in ways that could
compromise patient care. They also voice concerns about
relying too heavily on technology that may not always
account for the complex realities of medical practice [75].
Manual data entry is not feasible when the number of
features is even moderately high. There would ideally be a
bridge between AI models and the electronic health records,
minimizing the effort for the clinicians to use the models.
The integration should be a seamless solution, preferably
as automated data pipelines that would facilitate implementa-
tions.

This review also reveals less explored but potentially
transformative opportunities for advancing AI in surgery.
For instance, embedding AI models into surgical train-
ing programs may foster early adoption and familiarity
among new clinicians. Training curricula that include model
interpretation and ethical consideration could empower the
next generation of clinicians to embrace AI. Another often
overlooked area is adaptive interface design. Many AI models
fail because of poor integration into surgical workflows.
Designing interfaces that adapt in real-time to the clinicians’
needs could make adoption more intuitive. Collaboration
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between data scientists and clinicians could advance in that
direction. Moreover, the implementation of AI models in
surgery still faces challenges in regulatory requirements,
with a lack of alignment with existing clinical guidelines.
A potential solution is the creation of sandbox-controlled
environments where AI models can be evaluated and tested
under close clinical and ethical oversight. Such frameworks,
already explored in Fintech and digital health, could allow
iterative deployment without compromising patient safety
[76].

Regarding hypotension specifically, there have been
several evaluations of HPI [77,78], including an RCT
showing the efficacy of the HPI [70]. Retrospective studies
have demonstrated that HPI reduces hypotension [79] which
is associated with acute kidney injury and myocardial injury
[80,81], and decreases mechanical ventilation time and length
of intensive care unit stay [82]. To monitor the effect of
HPI, a European registry has been established [83]. HPI is
also used in a protocol to measure oxygen saturation and
predict free flap survival [84]. HPI is ready for broader
adoption, which may pave the way for more AI models in
surgery. However, when it comes to decision support tools,
once surgery is planned, the tool may not alter clinicians’
decisions due to the complexity of the inputs into existing
prediction models. One concern with using AI for surgical
decisions is the difficulty of integrating complex AI predic-
tions into the nuanced and highly individualized process of
surgical planning. AI models must accurately interpret and

analyze medical images, the patient’s history, and other data
to suggest surgical interventions. Currently, clinical judgment
that is required for surgical decisions involves factors beyond
what AI can predict, such as patient preferences, surgeon
experience, and intraoperative findings. Thus, while AI can
support decision-making and enhance specific tasks, it cannot
replace the expert judgment of experienced surgeons [85].
Conclusions
In conclusion, this scoping review demonstrates that despite
substantial research activity, only a limited number of
predictive models have been adopted into routine surgical
practice. Most clinically implemented systems are based on
traditional statistical models, such as ACS NSQIP, whereas
only a few machine learning–based models, including the
regulatory-approved HPI, have progressed toward clinical
deployment. While these technologies show promise in
improving perioperative risk prediction and physiological
monitoring, current evidence does not consistently dem-
onstrate downstream improvements in surgical outcomes.
Continued technological advancements that can be deployed
prospectively in controlled environments are important
next steps. Such efforts are essential to safeguard patient
safety, support the development of AI-specific reimbursement
pathways within hospital budgets, and facilitate the integra-
tion of AI concepts into medical education to prepare future
clinicians for AI-assisted clinical practice.
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