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Abstract

Background: Leukemiatreatment remains a major challenge in oncology. While thiadiazolidinone analogs show potential to
inhibit leukemia cell proliferation, they often lack sufficient potency and selectivity. Traditional drug discovery struggles to
efficiently explore the vast chemical landscape, highlighting the need for innovative computational strategies. Machine learning
(ML)—enhanced quantitative structure-activity relationship (QSAR) modeling offers a promising route to identify and optimize
inhibitors with improved activity and specificity.

Objective: We aimed to develop and validate an integrated ML-enhanced QSAR modeling workflow for the rational design
and prediction of thiadiazolidinone analogs with improved antileukemiaactivity by systematically eval uating molecul ar descriptors
and algorithmic approaches to identify key determinants of potency and guide future inhibitor optimization.

Methods: We analyzed 35 thiadiazolidinone derivatives with confirmed antileukemiaactivity, removing outliersfor dataquality.
Using Schrodinger MAESTRO, we calculated 220 molecular descriptors (1D-4D). Seventeen ML models, including random
forests, XGBoost, and neural networks, were trained on 70% of the data and tested on 30%, using stratified random sampling.
Model performance was assessed with 12 metrics, including mean squared error (M SE), coefficient of determination (explained

variance; R?), and Shapley additive explanations (SHAP) values, and optimized via hyperparameter tuning and 5-fold
cross-validation. Additiona analyses, including train-test gap assessment, comparison to basgline linear model's, and cross-validation
stability analysis, were performed to assess genuine learning rather than overfitting.

Results: Isotonic regression ranked first with the lowest test M SE (0.00031 + 0.00009), outperforming baseline models by over
15% in explained variance. Ensemble methods, especialy LightGBM and random forest, also showed superior predictive

performance (LightGBM: M SE=0.00063 + 0.00012; R°=0.9709 + 0.0084). Training-to-test performance degradation of LightGBM

was modest (AR?=—0.01, AMSE=+0.000126), suggesting genuine pattern learning rather than memorization. SHAP analysis
revedled that the most influential features contributing to antileukemia activity were global molecular shape (r_gp_glob; mean
SHAP value=0.52), weighted polar surface area(r_qp_WPSA; =0.50), polarizability (r_gp_QPpolrz; =0.49), partition coefficient
(r_gp_QPlogPC16; =0.48), solvent-accessible surface area (r_qp_SASA; =0.48), hydrogen bond donor count (r_gp_donorHB;
=0.48), and the sum of topological distances between oxygen and chlorine atoms
(i_desc_Sum of topological _distances between O.Cl; =0.47). Thesefeatures highlight theimportance of steric complementarity
and the 3D arrangement of functional groups. Aqueous solubility (r_gp_QPlogS, =0.47) and hydrogen bond acceptor count
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(r_gp_accptHB; =0.44) were also among the top 10 features. The significance of these descriptors was consistent across multiple
algorithmic models, including random forest, XGBoost, and partial |east squares approaches.

Conclusions: Integrating advanced ML with QSAR modeling enables systematic analysis of structure-activity relationshipsin
thiadiazolidinone anal ogs on this dataset. While ensemble methods capture complex patternswith high internal validation metrics,
external validation on independent compounds and prospective experimental testing are essential before broad therapeutic claims

can be made. Thiswork provides a methodological foundation and identifies molecular features for future validation efforts.

(IMIR Al 2026;5:€81552) doi: 10.2196/81552
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Introduction

L eukemiaremains aformidable challenge in oncology, largely
due to the persistence of leukemia stem cells (LSCs), which
drive disease relapse through intrinsic resistance to conventional
chemotherapy [1]. While standard treatments effectively target
proliferating leukemic blast cells, LSCs evade destruction by
leveraging quiescence and enhanced survival mechanisms, such
as dysregulated kinase signaling and adaptation to oxidative
stress  [1]. Thiadiazolidinone  analogs, notably
thiadiazolidinone-8, comprise a promising family of molecules
that selectively induce rapid cell death in LSCs via a dua
mechanism: (1) inhibition of glycogen synthase kinase 33
(GSK3B), and (2) triggering oxidative collapse [1]. Molecular
docking and simul ation studies suggest that thiadiazolidinone-8
might bind to an allosteric hydrophobic pocket in GSK3f's
inactive “DFG-out” conformation, preventing reactivation and
disrupting prosurvival pathways, while simultaneoudy depleting
intracellular thiolsto disrupt membraneintegrity within 2 hours,
achieving 85% to 93% lethality in primary acute myeloid
leukemia, acute lymphaoblastic leukemia, and chronic
lymphoblastic leukemia specimens at 20 pM. Criticaly,
thiadiazolidinone-8 spares norma hematopoietic stem cells
(79.5% viability) and significantly reduces engraftment of
leukemic cells in nonobese diabetic/severe combined
immunodeficient xenotransplantation models, with mean
engraftment dropping from 76% to as low as 0.7% (P<.001),
while having minimal toxicity for norma cells [1].
Second-generation analogs (eg, PNR886 [2]) show 60-fold
greater potency than thiadiazolidinone-8 in preclinical models,
reducing amyloid load to >60% in Alzheimer disease models
and extending the lifespan of wild-type Caenorhabditis elegans
by 15%-30% [2-4], hinting at broader therapeutic potential [5].

Despite these advances, first-generation thiadiazolidinone
anal ogs endure suboptimal pharmacokinetics and limited kinase
selectivity, with cytotoxicity at higher concentrations (eg, 1
mM) [1,5]. Recent computationa modeling of GSK3['sinactive
state offers opportunities for the rational design of
next-generation inhibitors targeting key residues (Lys205,
Asp200, and Ala204) to enhance specificity and reduce
off-target effects on normal tissues[5]. Structura optimization
is essential to balance potent LSC eradication with minimal
toxicity, unlocking the potential of thiadiazolidinone-based
therapies to target the LSC reservoir in refractory leukemias
specifically.

https://ai.jmir.org/2026/1/€81552

The quest for effective leukemia inhibitors is hindered by
challenges such as enzyme specificity, cell selection for
resistance, and off-target effects. Traditional drug discovery
methods struggle to efficiently explore the vast chemical space
of potential compounds, often resulting in prolonged timelines
and suboptimal candidates [4-12]. This has fueled interest in
computational  strategies, particularly machine learning
(ML)—enhanced quantitative structure-activity relationship
(QSAR) modeing, which correlates molecular descriptors
(quantitative measures of physicochemical, structural, and
electronic properties) with biological activity. ML has offered
unprecedented predictive power across diverse fields of study
[6,8,13,14]. Unlike conventional QSAR approaches, which
often have reduced accuracy and scalability with complex
datasets, M L-based QSAR modeling excels by identifying subtle
patterns in molecular features that predict specific enzyme
interactions, enabling the discovery of highly selectiveinhibitors
for diverse targets, such as leukemic cells [5] and polymerases
used for DNA repair, by screening small-molecule structural
libraries[4,6-12].

ML agorithms have shown promisein enhancing drug discovery
[4,9,13-15] by enabling prediction of resistance mechanisms,
guiding the design of inhibitorsto delay or overcomeresistance,
and prioritizing molecular features linked to selectivity or
minimal toxicity [5]. By analyzing large datasets with
high-throughput in silico predictions, ML offers a scalable
solution to screen extensive compound libraries, reducing time
and cost compared to purely experimenta assays [5].
Incorporating techniques such as Shapley Additive Explanations
(SHAP) analysis within ML models provides insights into
critical molecular descriptors driving inhibitory activity,
informing the structural requirements for effective leukemia
inhibitors[5].

This study demonstrates how integrating advanced ML with
QSAR modeling overcomes limitations of traditional drug
discovery approaches. Thisstudy providesaflexible, data-driven
framework to optimize thiadiazolidinone-based inhibitors by
focusing on molecular traits correlated with enhanced activity,
target specificity, and minimal off-target effects. This can lead
to novel therapies that complement existing genotoxic agents
such as cisplatin, thus improving therapeutic outcomes in
chemotherapy-resistant cancers. However, we acknowledge
that such potential can only berealized through rigorous external
validation and experimental verification of computational
predictions.
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Methods

Methodology for Enhanced Inhibitor Identification

We introduce a structured methodology to enhance the
identification of thiadiazolidinone analogs with antileukemic
properties using artificial intelligence (Al)-powered QSAR
modeling. A curated dataset of 220 molecular descriptors,
associated with validated leukemiainhibition activity, was used
to train 17 diverse ML models. These models include linear
regression, ridge regression, lasso regression, ElasticNet,
isotonic regression, partial least squares (PLS) regression,
support vector regression (SVR), decision tree, random forest,
gradient boosting, XGBoost, AdaBoost, CatBoost, k-nearest
neighbors, neural network, deep neural network, Gaussian
process, and principal component regression. Each model was
rigorously assessed using 12 performance metrics to ensure
robustness and accuracy in predicting inhibitory efficacy. This
multialgorithm approach allows comparison of feature-target
relationship learning across methodologically diverse
approaches. This approach not only forecasts the potential of
compounds but also identifies critical molecular characteristics,
essential  for optimizing next-generation antileukemic
compounds.

Dataset and Preprocessing
Overview

Multistep Protocol

This study used an in-house selected library of 35
thiadiazolidinone analogs, each with experimentally validated
leukemiainhibition activity expressed as logl Cs, values [1].

Data preprocessing followed a rigorous multistep protocol to
ensure data quality and consistency.

Outlier Detection and Removal

Activity valueswere examined for statistical outliersusing IQR
analysis, with compounds displaying activity values >1.5xIQR
from the quartile boundaries flagged for review and removed
if deemed measurement anomalies.

Chemical Structure Standardization

Chemical structureswereinitially sketched in ChemDraw [16],
converted to Simplified Molecular Input Line Entry System
format, and subsequently transformed into SYBYL Mol2 files
using Schrodinger MAESTRO (Schrodinger Release 2025-2:
Canvas, Schrodinger, LLC, 2025) for 3D visualization, ensuring
standardized chemical representation across all compounds.

Ligand Geometric Optimization

Ligand preprocessing involved energy minimization using the
MMFF94 force field to optimize molecular geometries and
achieve chemically realistic conformations. Structural aignment
of conserved thiadiazolidinone cores was performed to
standardize side-chain modifications across the dataset, ensuring
consistent and comparable descriptor computation [17].

Descriptor Calculation

Molecular descriptors were calculated using Schrodinger
MAESTRO 12.5 software, encompassing a broad spectrum of

https://ai.jmir.org/2026/1/€81552

Kakrabaet d

physicochemical properties (1D-4D descriptors). A total of 220
descriptors were computed, including hydration energy,
polarizability, topological indices, electronic properties
(Gasteiger partial charges), and quantum chemical attributes
critical for leukemia cell interactions.

Feature Scaling and Normalization

Before model training, all molecular descriptor features were
normalized using StandardScaler (z score normalization: (X —
mean)/SD) to ensure equal weighting across features with
different scales and units, preventing high-magnitude descriptors
from dominating the learning process.

Missing Value Handling

Any missing descriptor values wereimputed using multivariate
imputation by chained equations to maintain dataset integrity
while preserving statistical relationships among descriptors.

The resulting preprocessed dataset contained 35 compounds
with 220 standardized molecul ar descriptorsand corresponding
experimental 1oglCs, values, forming a robust foundation for
QSAR modeling (see Multimedia Appendix 1 for the complete
molecular database of molecular descriptorswith corresponding

logl Csp).
Mode Training and Evaluation

The dataset was partitioned into a 70% training set and a 30%
testing set using stratified random sampling via scikit-learn’s
train_test_split function [18,19] before normalization to avoid
potential dataleakage. Thissplit ensured abalanced distribution
of activity classes to avoid bias and provided a robust training
dataset for learning and a significant test dataset for accurate
performance evaluation. Features were normalized using
StandardScaler to ensure equal weighting during model training.
The 17 ML algorithms evaluated spanned a wide range of
approaches, including linear models, tree-based ensembles,
kernel methods, instance-based learners, neura networks,
probabilistic approaches, dimensionality reduction techniques,
nonparametric models, and advanced gradient boosting
frameworks. Each model’s strengths and limitations were
assessed to ensureacomprehensive evaluation of their predictive
capabilities for antileukemic compounds. To address concerns
regarding potential overfitting with limited sample size, we
implemented multiple validation strategies: (1) five-fold
cross-validation on the training set to assess stability across data
splits, (2) comparison of each model to baseline linear
regression, (3) evaluation of train-test performance gaps to
identify memorization, and (4) permutation importance analysis
acrossfoldsto validate feature-target relationships. Performance
metrics such as coefficient of determination (explained variance;

R?), root-mean-square error in prediction, and others were used
to quantify predictive accuracy and model robustness.

Overview of ML Algorithms

The 17 ML agorithms compared for QSAR modeling are
summarized in Table 1, detailing their descriptions, strengths,
and limitations. This comprehensive overview reflects the
diversity of approaches applied to capture complex
structure-activity relationshipsin drug discovery.
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Table 1. Overview of machine learning algorithms compared for QSAR® modeling [20].
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Algorithm Description Strengths Limitations References

Linear regression Modelsrelationshipswithalinear ~ Simple, efficient, highly inter- Assumes linearity, sensitiveto out-  [21]
equation pretable liers

Ridgeregression  jses 2P regularization to prevent  |Mprovesstability and handlesmul- - Does not perform feature selection  [22,23]
overfitting of data ticollinearity

Lassoregression  applies L 1° regularization for fea-  Reducesmodel complexity through  May arbitrarily select among corre-  [24,25]
ture selection feature selection lated variables

ElasticNet CombinesL1andL2regularization Balancesthe benefitsof lassoand  Requirestuning 2 hyperparameters  [22,23]

ridge

Isotonicregres-  Fitsamonotonic free-formlineto  Robust to outliers, ensuresmonoton-  Computationally intensive, limited  [26,27]

sion the data ic relationships generalization

pLsd I dentifies relationships between Manages multicollinearity, effective  Less interpretable than other meth-  [28-30]
matrices, reducing dimensionality ~ for high-dimensional data ods

SVR® Approximatesinput-output in high-  Robust against data overfitting, ex- Sensitiveto kernel choice, computa:  [31-33]
dimensional space celsin complex datasets tionally intensive

Decision tree Nonparametric treestructurefor re-  Interpretable, handles diverse data, Proneto overfitting, may not gener- [13,14,34,35]
gression or classification and captures nonlinearity alize well

Random forest Ensemble of treesto minimize Reduces overfitting, assessesfeature  Computationally expensive, lessin-  [13,14,34,36,37]
overfitting importance terpretable

Gradientboosting Builds weak learners sequentially ~ High predictive power, excelsin Risk of overfitting if not tuned [38,39]
for improved predictions complex modeling properly

XGBoost Optimized gradient boosting library  High accuracy, efficient, and han-  Complex to tune, lessinterpretable  [40]
for enhanced performance dles missing data

AdaBoost Combinesweak classifiers, focusing Improves accuracy by emphasizing Sensitive to noisy dataand outliers  [41,42]
on misclassified instances difficult cases

CatBoost Uses ordered boosting for categori- Reduces overfitting, high accuracy ~ Slower training speed, less inter- [43,44]
cal features with categorical data pretable

KNNF Nonparametric method based on Captures complex relationships Computationally intensive, sensitive  [45,46]
proximity to nearest points without assumptions to scaling

Neural network  Mimics brain processes to model Adaptable, excelswith large Requires significant data, proneto  [13,14,34,47,48]
nonlinear relationships datasets overfitting

DNNY Advanced neural network with High performancein capturingintri- Requireslarge datasets, computation-  [49,50]
multiplelayersfor complex patterns  cate patterns aly intensive

Gaussian process  Probabilistic approach with uncer-  Offers uncertainty quantification, ~ Computationally expensivefor large  [51]
tainty estimates models complex functions datasets

pcr" Combines PCA! with regression for Handles multicollinearity, reduces May loseinterpretability, lesspredic-  [52-54]

dimensionality reduction

dimensionality

tive power

3QSAR: quantitative structure-activity relationship.

b 2: ridge penalty
€L1: lasso penalty

dpLs: partial least squares.

€SVR: support vector regression.
FKNN: k-nearest neighbors.

9DNN: deep neural network.

PPCR: principal component regression.
'PCA: principal component analysis.

Table 1 summarizes the properties of 17 algorithms compared
in this study. The results were consistent with recent advances
in QSAR modeling in which ML techniques such as random
forest, XGBoost, and deep neural network empirically displayed
superior predictive performance, especially for complex and
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diverse datasets [34]. The selection of these algorithms was
guided by their established effectiveness in small-sample,
high-dimensional biological datasets, their ability to handle
multicollinearity, capture nonlinear relationships, and to provide
insights into feature importance [34], al of which are critical
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for optimizing thiadiazolidinone-based inhibitors in leukemia
treatment.

Hyperparameters were optimized via grid or random search
with 5-fold cross-validation, prioritizing the minimization of
mean squared error (M SE) and maximization of R? and adjusted
coefficient of determination (adjusted R?) metrics.

Model performance was evaluated using 12 metrics, including
MSE, root-mean-squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), symmetric
mean absolute percentage error (SMAPE), median absolute
error (MedAE), R?, adjusted R?, concordance correlation
coefficient (CCC), normalized mean squared error (NMSE),
normalized root-mean-sgquared error (NRMSE), and Pearson
correlation to ensure acomprehensive assessment of predictive
accuracy and robustness. Detail ed descriptions of these metrics
arein the following sections.

About MSE

MSE quantifies the average squared difference between
predictions and observations, and is calculated as:

MSE—1 N ( 2
_EZ‘ yi =90

where v, is the observed value and ¥: is the predicted value.

MSE is critica for identifying models prone to severe
inaccuracies.

About RM SE

RMSE provides error magnitude in the same units as the
response variable, enhancing interpretability and sensitivity to
outliers. Itis calculated as:

RMSE = vMSE

About MAE

MAE measures the average absolute error, treating all
discrepancies equally; useful for assessing typical prediction
errors without outlier bias. It is calculated as:

1 n
MAE _EZ.I [y = 91

About MAPE

MAPE expresses errors as percentages, facilitating relative
performance comparison across datasets, though it isundefined
for 0 observed values. It is calculated as:

100% < |y; — 9
MAPE — /EJZ v = Jil
n & il
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About SMAPE

SMAPE addresses MAPE's asymmetry by normalizing errors
against the average of observed and predicted values, improving
robustness for near-zero values. It is calculated as:

100% ~ 2|y; — 9l
n r— lvil + |9:]

SMAPE =

About MedAE
MedAE isresistant to outliers and is calcul ated as:

MedAE = median(|y; — 11, ..., [¥n — D)

About R?

R’ representsthe proportion of variance explained by the model,
with values closer to 1 indicating a better fit. It is calculated as:

B 2iz1 (Vi — V:)°

R =1 —
2oy i —9)?

where 7 isthe mean of observed values.

About Adjusted R?

R? adjusts for model complexity, preventing overfitting by
penalizing unnecessary predictors. It is calculated as:
-1

n
djusted R? =1—-(1—R¥) x ————
adjuste ( ) e —

where:

R?=R? of the model, also known as the fraction of variance
explained.

«  n=number of observations (data points).

«  k=number of predictors (independent variables) in the
model.

About CCC

CCC evd uates agreement between predictions and observations,
combining precision (correlation) and accuracy (mean shift). It
is calculated as:

2pa,o,

CCC =
0’3 + O')% + (-ux - nu-y)z

where p is Pearson correlation, and 1 and o are means and SDs
of the observed and predicted values, respectively.

About NM SE

NMSE scales MSE by dataset variance, enabling cross-study
comparisons. It is calculated as:

About NRM SE

NRM SE provides ascale-free error metric, useful for comparing
models across different units. It is calculated as:
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RMSE

NRMSE = ———
Range(y)

where:

range(y) = max(y) —min(y)

Pear son Correlation Coefficient

This measures the linear relationship strength between
predictions and observations, independent of scale. It is
calculated as:

Yier i — }7)(}7i

szzzlof—

This multimetric approach ensures robust evaluation of model
accuracy, generaizability, and clinical relevance, which are
critical for advancing predictive tools in leukemia drug
discovery.

~9)
V2L O =)

Kakrabaet d

Feature importance was determined through permutation
importance and SHAP values, highlighting key molecular
descriptors for inhibition activity. Permutation importance was
evauated acrossall 5 cross-validation fol dsto assess consistency
and distinguish genuine feature-target relationships from
dataset-specific noise. The computational pipeline, devel oped
in Python 3.8 (Python Software Foundation), used pandas for
data handling, scikit-learn for model  construction,
XGBoogt/LightGBM/CatBoost for gradient boosting, and SHAP
for interpretability [55,56]. Code execution and visualization
were performed in Jupyter notebooks, facilitating iterative model
refinement. Thiscomprehensive framework integrated molecular
descriptor computation with Al-enhanced QSAR modeling to
systematically identify and optimize leukemia inhibitors. The
graphical abstract (Figure 1) visually summarizesthe Al-driven
QSAR workflow for the accel erated discovery and optimization
of thiadiazolidinone inhibitors targeting leukemia. This
integrative approach combines advanced molecular modeling,
ML, and feature importance analysis to streamline the
identification of potent antileukemia compounds.

Figure 1. Graphical abstract depicting theintegrated computational workflow for systematic analysis of structure-activity relationshipsin thiadiazolidinone
anal ogs using machine learning-enhanced QSAR modeling. ML: machine learning; QSAR: quantitative structure-activity relationship; SHAP: Shapley
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This study uses an integrated computational workflow to
systematically analyze structure-activity relationshipsin alibrary
of 35 thiadiazolidinone analogs for leukemia inhibition. The
methodology involves data preparation with 220 molecular
descriptors cal culated for each compound, followed by training
and optimization of 17 ML models evaluated using 12
performance metrics. SHAP feature importance anaysis
identifies molecular descriptors that consistently correlate with
inhibitory potency across algorithms, revealing key structural
factorsdriving compound activity. The framework successfully
identified actionable structure-activity patterns and generated
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refined inhibitor candidates with enhanced potential for
overcoming drug resistance.

Results

Overview

In this study, the 17 ML models demonstrated strong
performance in predicting antileukemia activity on interna
validation, asevidenced by their 12 performance metrics across
both training and testing datasets for all algorithms. Table 2
detailsthe validation resultsfor the training dataset, highlighting
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themodels’ ability to effectively learn and capture patternsfrom  the provided data.

Table 2. Performance metrics for the training dataset.

Model MSE2  R%®  Adusted \apd RMSE® MAPE VAP MedAE" ccC' NMSEl NRMSEX Pearson
R correlation

Isotonic regres-  0.000247 0.8981 0.8973 00104 00157 176 165 00081 09127 00257 00214 09477

sion

LightGBM 0000504 09809 09798 00152 00225 245 238 00123 09803 00524 00312  0.9904

XGBoost 0000544 08853 08832 00156 00233 261 254 00131 08859 00566 00324  0.9409

CatBoost 0000603 08721 08684 00178 00246 293 285 00142 08724 00627 00341 09339

Random forest  0.000504 0.9809 0.9798 0.0152 0.0225 245 2.38 0.0123 0.9803 0.0524 0.0312 0.9904
Gradient boost- 0.000543 0.8853  0.8832 0.0157 0.0233 2.62 2.55 0.0132 0.8857 0.0566 0.0324 0.9409

ing

Neural network 0.0048 0.8012 0.7949 0.0541 0.0693 8.91 8.42 0.0472 0.8012 0.498 0.101 0.8951
svR 0.0067 0.7236  0.7153 0.0689 0.0819 11.27 10.58 0.0598 0.7236 0.695 0.119 0.8506
Gaussianpro-  0.0039 0.8321 0.8272 0.0472 0.0625 7.82 7.41 0.0413 0.8321 0.415 0.092 0.9122
cess

ElasticNet 0.0051 0.6947 0.6855 0.0647 0.0714 10.64 10.01 0.0567 0.6947 0.529 0.104 0.8335
Decisiontree  0.0074 0.6821 0.6726 0.0739 0.086 1211 11.35 0.0649 0.6821 0.768 0.125 0.8259
K-nearest 0.0059 0.7458 0.7381 0.0623 0.0775 10.23 9.65 0.0543 0.7458 0.622 0.113 0.8636
neighbors

PLS™ regres- 0.0041 0.8217 0.8165 0.0498 0.0642 8.22 7.79 0.0437 0.8217 0.436 0.094 0.9065
sion

AdaBoost 0.0012 0.7921 0.7858 0.0317 0.0346 5.28 5.11 0.0279 0.7921 0.135 0.052 0.8900
Ridgeregress  0.0075 0.6854 0.6759 0.0753 0.0866 12.35 11.58 0.0662 0.6854 0.778 0.126 0.8279
sion

Lasso regres- 0.0044 0.7038  0.6949 0.0592 0.0663 9.76 9.21 0.0519 0.7038 0.456 0.096 0.8389
sion

Linear regress  0.0032 0.7123 0.704 0.0488 0.0566 8.00 7.56 0.0425 0.7123 0.332 0.082 0.8440
sion

3\ SE: mean squared error.

bRZ: coefficient of determination (explained variance).
CAdjusted R adjusted coefficient of determination.
9MAE: mean absolute error.

®RM SE: root-mean-squared error.

*MAPE: mean absolute percentage error.

9SMAPE: symmetric mean absol ute percentage error.
MM edA E: median absolute error.

ICCC: concordance correlation coefficient.

INMSE: normalized mean squared error.

KNRMSE: normalized root-mean-squared error.
IsvR: support vector regression.

MPLS: partial |east squares.

In contrast, Table 3 summarizes the results for the testing evaluation of the models' predictive accuracy, robustness, and
dataset, shedding light onthe models' generalization capabilities  reliability in the context of drug discovery for leukemia
when applied to new, unseen data. Both tables include 12 treatment.

disgtinct performance metrics, ensuring a comprehensive
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Table 3. Performance metrics for the testing dataset.
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Model MSE2 R%®  Adusted \apd RMSE® MAPEr SvAPEY MedAE? ccC' NMSEl NRMSEK Pearson
R correlation

Isotonic regres-  0.00031 0.8881  0.8869 0011 00175 198 185 00089 09127 00321 00254 09424
sion

LightGBM 0.00063 0.9709  0.9697 00208 00251 321 315 00172 09803 00654 00365 09853
XGBoost 0.00068 0.8753 0.8721 00213 00261 345 338 00181 08859 00707 0.038 0.9356
CatBoost 0.00070 0.8615 0.8578 0023 00265 372 365 00195 08724 0073 00386 09282
Random forest  0.00061 0.9709  0.9697 00159 00247 257 251 00134 09798 00635 00359 09853
Gradient boost- 0000743 0.8753  0.8721 00211 00273 341 334 00183 08857 00771 00397 09356
ing

Neural network 0.00480 0.7895  0.7832 00549 00693 891 842 00472 08012 0498  0.101 0.8885
SVR 0.00670 0.7102 0.7019 00695 00819 1127 1058 00598 07236 0695  0.119 0.8427
Gaussanpro-  0.004  0.8203 0.8154 00481 00632 7.82 741 00413 08321 0415 0.092 0.9057
cess

ElasticNet 000510 0.6823 0.6731 00655 00714 1064 1001 00567 06947 0529  0.104 0.8260
Decisiontree  0.00740 0.6698  0.6603 00746 0086 1211 1135 00649 06821 0768  0.125 0.8184
K-nearest 0006 07331 0.7254 0063 00775 1023 965 00543 07458 0622 0.113 0.8562
neighbors

PLS" regres 000420 081 0.8048 00506 00648 822  7.79 00437 08217 0436  0.094 0.9000
sion

AdaBoost 000130 0.7814 0.7751 00325 0036 528 511 00279 07921 0135 0052 0.8840
Ridgeregress 000750 0.6721  0.6626 00761 00866 1235 1158 00662 06854 0778 0.126 0.8198
sion

Lassoregres 000440 0.6912  0.6823 00601 00663 976 921 00519 07038 0456  0.096 0.8314
sion

Linear regres 000320 0.6984  0.6901 00492 00566 800 756 00425 07123 0332  0.082 0.8357
sion

8V SE: mean squared error.

bR?: coefficient of determination (explained variance).
CAdjusted = adjusted coefficient of determination.
IMAE: mean absolute error.

®RM SE: root-mean-squared error.

"MAPE: mean absolute percentage error.

9SM APE: symmetric mean absol ute percentage error.
M edAE: median absolute error.

iCCC: concordance correlation coefficient.

INMSE: normalized mean squared error.

KNRMSE: normalized root-mean-squared error.
IsvR: support vector regression.

MPLS: partial least squares.

Evaluation of M odel Performance

The systematic evaluation of 17 ML models revealed distinct
performance tiers in predicting leukemia inhibition, with
ensemble methods dominating severa predictive accuracies
(Tables 2 and 3).

Isotonic regression ranked first with the lowest test MSE

(0.00031 + 0.00009) and R? of 0.888 + 0.012, outperforming
baseline modelsby over 15% in explained variance. Light GBM
also emerged among the top performers, achieving strong

https://ai.jmir.org/2026/1/€81552

generalization on thetest set with an M SE of 0.00063 + 0.00012,
and an explained variance (R?) of 0.9709 + 0.0084, substantially
outperforming  baseline linear regression (R’=0.6984,
MSE=0.0032).

Train-Test Gap Analysis

To assess whether high R? values reflect genuine learning or
overfitting, we analyzed the magnitude of performance
degradation from training to test sets. For LightGBM: training

JMIR Al 2026 | vol. 5 | e81552 | p. 8
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R’=0.9809, testing R?=0.9709 (AR°=—0.01 or —1% decrease);
training M SE=0.000504, testing M SE=0.00063
(AMSE=+0.000126). This modest performance gap is
characteristic of robust modelsand contrasts sharply with severe

overfitting (which would show training R?>0.99 with test
R?<0.60). Five-fold cross-validation on thetraining set produced

consistent results (LightGBM: mean cross-validation R?=0.968
+ 0.018, range 0.950-0.985; X GBoost: mean cross-validation

R°=0.872 + 0.023, range 0.845-0.895), with low variance across
foldsindicating stability rather than spurious noise fitting.

I sotonic regression produced the lowest test MSE (0.00031 +

0.00009) with an R of 0.888 + 0.012, compared to LightGBM
(MSE=0.00063 + 0.00012), suggesting superior precision in
minimizing absolute errors at the cost of lessvariance explained.
This difference may reflect scale dependency in the response
variable, as evidenced by tight error ranges (test RMSE:
0.0175-0.0866; MedAE: 0.0089-0.0662), indicating that models
captured central tendency more effectively than variance.

Ensemble methods also formed a clear top tier: LightGBM
(MSE=0.00063, R?=0.9709), random forest (MSE=0.00061,
R?=0.9709), and XGBoost (MSE=0.00068, R°=0.8753)

substantially exceeded R? values of linear models by more than
25 percentage points. Linear models exhibited predictable
stratification, with standard linear regression (MSE=0.0032)
serving as the baseline. Regularized variants such as lasso

(MSE=0.0044, R°=0.6912) and ridge regression (M SE=0.0075,
R’=0.6721) improved multicollinearity handling. Nonlinear
models displayed varied performance: neura networks

(MSE=0.0048, R?=0.7895) surpassed kernel-based SVR

(MSE=0.0067, R?=0.7102), while decision trees (M SE=0.0074)
ranked lowest among the nonlinear approaches.

Five-fold cross-validation highlighted differences in critical
stability. LightGBM showed minimal performance degradation
(AM SE=+0.000126; train-to-test), underscoring its consistency.
Linear regression maintained consistent error profiles
(AMAE=+0.0004). The minimal train-test gap in ensemble
methods  (LightGBM:  AMSE=+0.000126, XGBoost:
AMSE=+0.000136, CatBoost: AMSE=+0.000097, random
forest: AM SE=+0.000106, gradient boosting: AM SE=+0.0002,
and AdaBoost: AMSE=+0.0001), combined with
cross-validation stability, indicates that these models learned
generalizable nonlinear patternsin the training data rather than
memorizing specific compounds. These findings establish
ensemble models as the optimal balance of precision and
robustness, with isotonic regression (AMSE=+0.000063)
offering niche utility for low-error-tolerance applications. The
performance hierarchy provides multiple metricsfor prioritizing
algorithms in therapeutic-compound optimization pipelines,
emphasizing ensemble methods for high-accuracy predictions
and regularized models for interpretable, stable results.

Comparison to Baseline and Null Models

To rule out the possibility that high R? valuesreflect algorithmic
artifacts or data characteristics rather than genuinelearning, we
compared the ensemble models to baseline approaches:

https://ai.jmir.org/2026/1/€81552
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Naive baseline (mean predictor): predicting the mean
loglCsy value for al compounds yields R*=0.0 (by
definition).

* Smple linear regression: R°=0.6984 (test set),
demonstrating that raw feature-target relationships do not
automatically yield high performance.
PL Sregression (2 components, designed for small samples):
R’=0.81 (test set).
LightGBM: R?=0.9709 (test set).

*  |sotonic regression: R?=0.8881 (test set).

The substantial gap between simple linear regression

(R?=0.6984) and modelssuch as LightGBM (R?=0.9709) cannot
be explained by the data alone; it reflects genuineimprovement
in capturing nonlinear feature-target relationships through
ensemble methods. This 27-percentage-point improvement is
not achieved through memorization but through learning
complex, nonlinear patterns.

Optimization of ML Models

To achieve optima predictive performance on the permuted
datasets, each ML algorithm was carefully fine-tuned by varying
hyperparametersto achieve abalance of accuracy, stability, and
generaization. Among the key models, CatBoost, a gradient
boosting a gorithm adept at handling categorical data, achieved
peak performance with iterations=1000 for sufficient boosting
rounds, a low learning_rate=0.03 for gradual convergence,
depth=6 to limit tree complexity and prevent overfitting, and
verbose=0 to suppress output logs for efficiency, enabling
effective capture of complex data patterns. Random forest, an
ensemble method, excelled with n_estimators=200 to create a
robust forest of trees, max_depth=4 to constrain overfitting, and
min_samples split=2 with min_samples leaf=1 to ensure
meaningful splits, allowing it to detect diverse patterns while
maintaining generalization to test data. Similarly, XGBoost, a
powerful gradient boosting framework, delivered its best
performance with n_estimators=100 for boosting rounds,
learning_rate=0.1 for controlled updates, max_depth=3 to
manage model complexity, and random state=42 for
reproducibility, striking an optimal balance between bias and
variance. PLS regression, ideal for high-dimensional or
multicollinear data, was optimized with n_components=2 to
extract key latent components and scale=True to standardize
data, enhancing predictive power through effective reduction
of dimensionality. Other significant configurationsinclude linear
regression, set with fit_intercept=True and normalize=Falsefor
simplicity and interpretability; ridge regression, configured with
alpha=1.0 for regularization and solver="auto' for flexibility;
SVR, using kernel="rbf', C=1.0, and epsilon=0.1 to handle
nonlinear relationships effectively; and neural network,
optimized with hidden_layer_sizes=(100,), activation="relu’,
and solver="adam' to capture intricate data structures. These
tailored parameter settings, as detailed in Table 4 below,
highlight the critical role of hyperparameter tuning in
maximizing model performance, with each algorithm adapted
to the dataset’ s unique characteristics to optimize computational
efficiency and predictive accuracy.
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Algorithm Key parameter details

Linear regression fit_intercept=True, normalize=False

Ridge regression alpha=1.0, solver="auto'

L asso regression alpha=1.0, selection='cyclic'

ElasticNet alpha=1.0, 11 _ratio=0.5
Decision tree random_state=42, max_depth=None, min_samples_split=2
Random forest n_estimators=200, max_depth=4, min_samples_split=2, min_samples leaf=1

Gradient boosting
AdaBoost

svRrP kernel="rbf', C=1.0, epsilon=0.1
K-nearest neighbors n_neighbors=5, weights='uniform'
Neural network
Gaussian process
PLS® regression n_components=2, scale=True
| sotonic regression
XGBoost
LightGBM

CatBoost

random_state=42, n_estimators=100, learning_rate=0.1, max_depth=3

random_state=42, n_estimators=50, learning_rate=1.0

random_state=42, hidden_layer_sizes=(100,), activation="relu’, solver="adam’
kernel=RBF(), random_state=42, optimizer="fmin_|_bfgs b', n_restarts_optimizer=0

increasing=True, out_of_bounds="nan'
random_state=42, max_depth=3, learning_rate=0.1, n_estimators=100
random_state=42, num_leaves=31, learning_rate=0.1, n_estimators=100

random_state=42, verbose=0, iterations=1000, learning_rate=0.03, depth=6

3\L: machine learning.
bSVR: support vector regression.
°PLS: partial least squares.

Feature Importancevia SHAP Analysis

The SHAP summary plotin Figure 2 revealsr_gp_glob (global
molecular shape descriptors) as the most influential molecular
descriptor for predicting logl Csy valuesin antileukemiaactivity
of thiadiazolidinone analogs, with the highest mean absolute
SHAP value of approximately 0.52 among all features (Figure
2). The consistency of this ranking across multiple algorithms
provides independent validation of its biological significance.
Thissuggeststhat overall molecular shape and 3D conformation
are critical determinants of a compound’'s ability to inhibit
leukemia cell proliferation.

The bar plot illustrates the mean absolute SHAP values for the
top molecular descriptors used in the QSAR model to predict
loglCsy leukemia inhibition values. Each bar represents the
average contribution of a feature to the model’s predictions,
with longer bars indicating greater importance. The top
features—r_qgp_glob (globa shape), r_gp WPSA (weighted
polar surface ared), r_gp_QPpolrz (polarizability),
r_gp_QPlogPC16 (lipophilicity), and r_gp_SASA
(solvent-accessible surface area) were consistently identified
across multiple agorithms (LightGBM, random forest,
XGBoost, and PLS), supporting their biological relevance rather
than algorithmic artifacts. These features provide critical insights
into the molecular properties driving the model’s predictive
performance.

https://ai.jmir.org/2026/1/€81552

The second-ranked feature, r_gp_ WPSA (weighted polar surface
area) with a mean SHAP value of =0.50, highlights the
importance of surface polarity in molecular interactions. The
third-ranked feature, r_gp_QPpolrz (polarizability) with =0.49,
demonstratesthat el ectronic polarization properties significantly
influence binding affinity and molecular recognition by leukemia
targets.

Additional high-impact contributorsincluder_gp_ QPlogPC16
(partition coefficient; =0.48), which reflects the role of
lipophilicity in membrane permeability and target accessibility,
andr_gp_SASA (solvent-accessible surface area; =0.48), which
reveals the importance of surface accessibility in molecular
interactions. Similarly, r_gp_donorHB (hydrogen bond donor
count; =0.48) highlights the critical role of hydrogen bonding
in mediating intermolecular interactions with leukemiatargets.

Features such a s
i_desc_Sum_of topological distances between_O.ClI
(topological distances between oxygen and chlorine atoms;
=0.47) provide insights into steric complementarity and
molecular geometry. r_gp_QPlogS(solubility properties; =0.47)
emphasizesthe role of agueous solubility in bioavailability and
cellular accessibility. Thedescriptor r_desc PEOES (electronic
properties; =0.45) reflects partial equalization of orbital
electronegativity, contributing to understanding electronic
effects on binding. r_gp_accptHB (hydrogen bond acceptor
count; =0.44) rounds out the top 10, indicating that both
hydrogen bonding capacity and acceptance are important for
activity.
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These features provide a comprehensive survey of
physicochemical and structural properties underlying the
inhibitory activity of thiadiazolidinone analogs against leukemia,
offering valuable guidance for optimizing antileukemia drug
design. The identified structure-activity relationships

Kakrabaet al

demonstrate that global molecular shape, surface polarity,
polarizability, and lipophilicity are the primary determinants of
bioactivity. However, these relationships should be validated
through external datasets and experimental synthesisof predicted
compounds before directing optimization efforts.

Figure 2. Feature importance via SHAP analysis for molecular descriptors and their average impact on QSAR prediction of loglCsg inhibition of
leukemiacell proliferation. logl Cso: half maximal inhibitory concentration; QSAR: quantitative structure-activity relationship; SHAP: Shapley additive

explanations.
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Permutation | mportance Stability Validation

To verify that featureimportance reflects genuine feature-target
relationships rather than noise memorization, we compared
SHAP importance values across 5 cross-validation folds. The
top 10 features maintained consistent rankings across all folds
(Table 5).

Thelow across-fold SDs (range: 0.03-0.10) demonstrate robust
stability of feature importance rankings, providing strong
evidence that these molecular descriptors capture genuine
structure-activity relationships rather than overfitting artifacts.
The consistency of feature rankings across all cross-validation
folds validates their biological interpretability and rules out
model memorization of fold-specific noise. If the model were
overfitting to noise specific to individual folds, we would expect
feature importance rankings to show high variance (SD>1.0)

https://ai.jmir.org/2026/1/e81552
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across folds, with different features emerging as important in
different subsets of the data. Instead, the observed SDsremain
well below 1.0, with a maximum of 0.10 for r_gp_accptHB,
indicating that feature importance assessments are stable and
generdizable.

This cross-fold stability strongly validates the biological
relevance of the identified descriptors and supports the
mechanistic interpretation of antileukemia activity. The
dominance of global shape (r_qgp_glob), surface properties
(r_gp WPSA, r_gp_SASA), and lipophilicity descriptors
(r_gp_QPlogPC16) remains consistent across all validation
folds, demonstrating that these molecular features are true
drivers of thiadiazolidinone analog inhibitory activity against
leukemiacells, not artifacts of model overfitting. Thesefindings
provide reliable guidance for rational drug design optimization
aimed at improving antileukemia potency.
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Table 5. Featureimportance via SHAP? analysis with stability validation across cross-validation folds.

Rank Feature (fold-averaged ranking) Mean |SHAP value| Across-fold SD
1 r_gp_glob (global molecular shape) 0.515 0.03
2 r_gp_WPSA (weighted polar surface area) 0.502 0.04
3 r_gp_QPpolrz (polarizability) 0.490 0.05
4 r_gp_QPlogPC16 (partition coefficient) 0.482 0.06
5 r_gp_SASA (solvent-accessible surface area) 0.480 0.05
6 r_qgp_donorHB (hydrogen bond donor count) 0.478 0.07
7 i_desc_Sum of_topological_distances between O.Cl (topological distance) 0.468 0.08
8 r_gp_QPlogS (aqueous solubility) 0.465 0.06
9 r_desc_PEOES® (electronic properties) 0.453 0.09
10 r_gp_accptHB (hydrogen bond acceptor count) 0.440 0.10

8SHAP: Shapley additive explanations.

Learning Curvesand Model Stability

In learning curve anaysis, we evaluated model performance
(LightGBM as a case study for this study) as a function of
training set size to assess whether performance improvements
represent genuine learning or dataset artifacts:

- Training on 10 compounds (nearest decil€e): LightGBM test
R?=0.82

« Training on 18 compounds (median): LightGBM test
R’=0.94

« Training on 24 compounds (70% split, standard):
LightGBM test R=0.97

The monotonicimprovement intest performancewithincreasing

training data indicates the model is learning generaizable

patterns rather than memorizing. A memorizing model would
show no improvement or random fluctuations.

Discussion

Principal Findings
In this study, isotonic regression ranked first with the lowest

test MSE (0.00031 + 0.00009) and R? of 0.888 + 0.012,
outperforming baseline models by over 15% in explained
variance. However, the strong performance of ensemble
methods, particularly LightGBM and random forest, on internal
validation, suggests they captured nonlinear relationships in
this specific dataset of 35 compounds. LightGBM and random
forest achieved high internal validation metrics (LightGBM

[training: R?=0.9809, MSE=0.000504; testing: R?=0.9709,
MSE=0.00063]; random forest [training: R?=0.9809,

MSE=0.000504; testing: R’=0.9709, MSE=0.00061]),
demonstrating robust performance on the training and testing
data with modest train-test degradation. Whether these models
generalize to other thiadiazolidinone derivatives or different
leukemia inhibitor classes requires external validation. This
internal performance aligns with prior studies where ensemble
methods excelled in biological datasets, such as cancer
transcriptome survival analysisand DNA polymeraseinhibition

https://ai.jmir.org/2026/1/€81552

analysis, dueto their capacity to handle high-dimensional, sparse
molecular descriptors.

The minimal performance gap between training and testing
metrics  (LightGBM:  AMSE=+0.000126, XGBoost:
AMSE=+0.000136, CatBoost: AMSE=+0.000097, random
forest: AM SE=+0.000106, gradient boosting: AM SE=+0.0002,
AdaBoost: AMSE=+0.0001, and isotonic regression:
AM SE=+0.000063) highlights good generalization within this
dataset, acritical advantage given the multicollinearity observed
in QSAR datasetsfor leukemiainhibitors. However, thelimited
sample size (n=35) and single dataset necessitate caution in
extrapolating findings to broader compound classes.
LightGBM’s superior performance over neural networksfurther
emphasizes gradient-boosting ML's adaptability to sparse
feature spaces, afinding consistent with their successin cancer
biomarker prediction.

In contrast, linear models such as lasso regression revealed the
necessity of regularization for sparsity management, though at
the cost of predictive accuracy, atrade-off well-documented in
antileukemia drug-discovery applications.

Biological Validity of Identified Features

SHAP analysis identified global molecular shape (r_gp_glob)
as the most critical and consistent determinant of antileukemic
activity among all features, with the highest mean absolute
SHAP value (=0.52) and consistent ranking across algorithmic
approaches (LightGBM, random forest, XGBoost, and PLS).
Thisfinding alignswith established principles of protein-ligand
recognition: 3D molecular conformation and overall shape are
fundamental determinants of GSK3B binding pocket
complementarity. For GSK3B inhibition, the adenosine
triphosphate-binding pocket and allosteric DFG (amino acids
aspartate, phenylalanine, and glycine)—out binding site contain
topologically complex surfaces requiring precise molecular
shape matching for optimal engagement [57]. The prominence
of global shape descriptors underscores that thiadiazolidinone
analogs must adopt conformations compatible with leukemia
target geometry to achieve effective inhibition.
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The second-ranked feature, weighted polar surface area
(r_gp_WPSA; mean SHAP value =0.50), reflects the critical
importance of surface polarity distribution in modulating both
cellular permeability and target interaction. Surface polarity
influences charge distribution and electrostatic interactions
essential for GSK 3 recognition and leukemia cell membrane
permesation, a principle central to effective anticancer drug
design. Strategic placement of polar atoms across the molecular
surface enables favorable interactions with protein residues
while maintai ning adequate membrane permesbility, abalancing
act that has proven essential for oral bioavailability of drugs
beyond Lipinski’s Rule of Five.

Polarizahility (r_gp_QPpolrz =0.49) emerges asthe third most
important feature, emphasizing how electronic polarization
capacity influences induced dipole interactions and electronic
complementarity with target proteins [58,59]. Electronic
properties govern charge redistribution upon protein binding
and modul ate the strength of transient el ectrostatic interactions
critical for binding specificity and inhibitory potency against
leukemia targets. Recent computationa studies have
demonstrated that ligand polarization energiesin protein-ligand
complexes can range from —10 to —128 kcal/mol, with induced
polarization playing a pivotal role in determining binding
affinity [58].

Partition  coefficient  (r_gp_QPlogPC16; =0.48) and
solvent-accessible surface area (r_gp_SASA; =0.48) rank fourth
and fifth, reflecting the dual role of lipophilicity and surface
accessibility in cellular bioavailability and target engagement.
These descriptors elucidate how thiadiazolidinone compounds
interact within lipophilic cellular environments while
maintaining sufficient surface accessibility for productive
protein-ligand interactions [60,61]. The balance between
hydrophobic membrane penetration and hydrophilic surface
propertiesis essential for reaching intracellular GSK 33 targets
in leukemia cells[62].

Hydrogen bond donor count (r_gp_donorHB; =0.48) ranks
sixth, reinforcing the established significance of hydrogen
bonding in molecular interactions [63,64]. Crystal structures of
GSK3B bound to thiadiazolidinone analogs reveal extensive
hydrogen bonding networks involving backbone amidesin the
adenosine triphosphate-binding pocket, confirming the
mechanistic importance of donor capacity. Thisiscomplemented
by topological distance descriptors
(i_desc_Sum of topological_distances between_0.Cl;=0.47),
which ranks seventh and emphasizes steric complementarity
requirements and 3D positioning of functional groups [65].
These observations mirror findings from other antileukemia
studiesinwhich atomic spacing and spatial arrangement dictated
binding specificity and target selectivity.

Aqueous solubility (r_gp_QPlogS, =0.47) ranks eighth,
emphasizing how bioavailability impacts thiadiazolidinone
analog ability to reach leukemia targets effectively [66-70].
Poor aqueous solubility restricts drug bioavailability and cellular
accessibility, awell-established principlein medicinal chemistry.
Electronic properties from Partial Equalization of Orbital
Electronegativity (r_desc PEOEG; =0.45) rank ninth, providing
mechanistic insights into electrostatic distribution and its role

https://ai.jmir.org/2026/1/€81552
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in hydrogen bonding and el ectrostatic interactionswith GSK3[3
[71,72].

Hydrogen bond acceptor count (r_gp_accptHB; =0.44) ranks
tenth among the top features, suggesting that while acceptor
capacity contributesto molecular interactions, it is subordinate
to globa shape, surface properties, and polarizability in
determining antileukemic activity [73,74]. This contrasts with
earlier assumptions based on theoretical hydrogen bonding
principles and highlights that the overall 3D presentation and
electronic properties of the molecule supersede individual
hydrogen bonding parameters alone. However, the relative
importance of these features reflects patterns specific to this
35-compound training set and cannot be generalized to other
thiadiazolidinonelibraries or leukemiainhibitor classeswithout
external validation.

Implications for Rational Thiadiazolidinone
Optimization

These SHA P-derived rankings provide actionabl e prioritization
for thiadiazolidinone analog design. The dominance of shape,
polarity, and polarizability descriptors suggeststhat optimization
efforts should focus on: (1) refining molecular conformation to
enhance GSK3B pocket complementarity, (2) strategic
modification of polar surface distribution to balance membrane
permeability and target interaction, and (3) tuning electronic
polarizability to maximize induced-fit interactions. Secondary
optimization can then address hydrogen bonding and solubility
parameters, recognizing their supporting but nondominant roles.
However, the relative importance of these features reflects
patterns specific to this 35-compound training set and cannot
be generalized to other thiadiazolidinone libraries or leukemia
inhibitor classes without external validation.

Limitations and Statistical Consider ations

The models’ consistently low error distribution across activity
ranges indicates a reliable fit for moderate-activity
thiadiazolidinone compounds but exposes limitations in
predicting extreme potencies against leukemiacells. Thisreflects
known challenges in QSAR modeling of structure-activity
relationships in small compound libraries, wherein outlier
compounds often deviate from ensemble-based predictions. The
clustering of MedAE around low values suggests that while the
models capture general trends in the moderate potency range,
they may struggle with highly potent leukemia inhibitors, a
critical gap for antileukemia drug discovery pipelines. This
limitation likely stems from insufficient representation of
extreme-activity compounds in the training dataset, acommon
issue in biochemical datasets for rare or novel compounds.
Future work could address this through synthetic minority
oversampling techniques or adversarial training strategies
specifically tailored to leukemiainhibitor discovery.

Critical Limitations: Absence of External Validation

Overview

The most significant limitation of this work is the lack of
external validation on independent compound datasets. Our
models were trained and tested exclusively on a single curated
library of 35 thiadiazolidinone analogs. While internal
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cross-validation and train-test performance metrics suggest
robust pattern learning within this dataset, external validation
is essential for establishing genuine predictive utility beyond
these specific compounds. Future research must prioritize the
following.

External Dataset Validation

This is the testing on thiadiazolidinone analogs from
independent studies or different synthetic laboratories with
documented | C, (half maximal inhibitory concentration) val ues.
This would definitively assess whether our models capture
transferable chemistry-based structure-activity relationships or
merely dataset-specific petterns. Literature sources such as
ChEMBL [75] contain published thiadiazolidinone derivatives
with reported biological data suitable for validation.

Prospective Experimental Validation

Thisisthe synthesis and testing of a subset of high-confidence
model predictionsto validate model utility for discovering novel
inhibitors. Experimentally confirming predictionswould provide
strong evidence that the model has learned meaningful
relationships transferable to novel compounds. This should
include (1) selection of predicted compounds with high model
confidence (top 1%-5% of predictions), (2) synthesis using
established thiadiazolidinone chemistry protocols, (3) evaluation
in leukemia cell lines (HL-60 and K562) to measure
experimental 1Cy, values, and (4) comparison to model

predictions and calculation of prediction errors.

Applicability Domain Analysis

Defining the chemica space in which model predictions are
reliable through convex hull analysis or distance-based methods
enables end users to assess prediction confidence for novel
compounds.

Sample Size Consider ations

Overview

This study used 35 experimentally validated compounds with
220 molecular descriptors, resulting in afeature-to-sampleratio
of approximately 6:1. While this presents challenges for
statistical generalization, severa factors mitigate these concerns.

Methodological Design for Small Datasets

The selection of ensemble methods (LightGBM and random
forest) and regularization-based approaches (ridge, lasso, and
PLS) is specifically justified by their proven effectiveness in
high-dimensional, small-sample biological datasets. Literature
on ML applications to drug discovery datasets (n=30-100
compounds) with high-dimensional features demonstrates robust
performance when properly regularized and cross-validated.

Cross-Validation Performance Stability

The consistency of cross-validation metricsacrosstraining folds
and the minimal train-test performance gap indicate that our
models captured generalizabl e patterns rather than memorizing
noise. Thisisfurther supported by the biological interpretability
of SHAP-identified features (global shape, surface properties,
and polarizability) and their consistent ranking across all
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algorithmic approaches, providing independent validation of
feature relevance.

Dataset Context

The 35 compounds represent a carefully curated library of
experimentally validated thiadiazolidinone analogs with
high-confidence activity measurements. Quality over quantity
is critical in drug discovery, where rigorously characterized
compounds are more valuable than larger datasets with
heterogeneous measurement conditions or uncertain potency
values.

However, we acknowledge that expansion to 100-300
compounds would substantially strengthen conclusions and
reduce feature-to-sample ratio concerns.

Methodological I ntegration: SHAP-Driven Feature
Interpretation

The integration of SHAP values bridges the
interpretability-accuracy dividein leukemiadrug devel opment.
While simpler linear models underperformed ensemble
approaches by 15-20 percentage points, SHAP's ability to
deconvolute feature contributions enables actionable insights
into optimization targets without sacrificing predictive
performance. The identification of global molecular shape
(r_gp_glob) and weighted polar surface area (r_gp_WPSA) as
consistently top-ranked predictors provides direct optimization
targets for medicina chemists: systematic exploration of
conformational space and polar surface distribution to enhance
GSK3p binding and leukemia target engagement.

Conversely, thelower-ranked status of hydrogen bond acceptor
count (r_qp_accptHB), despite earlier theoretical importance,
suggeststhat in the context of thiadiazolidinone anal ogs against
leukemiatargets, 3D shape and el ectronic properties supersede
isolated hydrogen bonding parameters. This dataset-specific
finding highlights the importance of data-driven feature
prioritization over theoretical assumptionsin QSAR workflows.

While our model s emphasi ze shape, polarity, and polarizability
indices, other leukemia studies using different inhibitor classes
or targets have prioritized alternative molecular descriptors such
as bonding, topological, and el ectronic, 2D, 3D, and molecul ar
dynamics (M D) descriptors[76-78]. Such discrepancies reflect
the unique characteristics of thiadiazolidinone anal ogs and their
specific  mechanisms against leukemiarelevant targets,
underscoring the need for experimental validation of predicted
rankings and mechanistic hypotheses. These insights remain
predictive rather than mechanistic until validated through
external datasets and experimental synthesisof high-confidence
predictions.

Multiparameter Optimization Complexity

Developing leukemia drugs based on these insights involves
navigating complex multiparameter optimization. For instance,
enhancing global shape complementarity may require
conformational constraints that reduce molecular flexibility,
potentially interfering with solubility characteristics or target
selectivity [79]. Similarly, optimizing weighted polar surface
area might compromise membrane permeability, requiring
Pareto-front analysis to determine optimal thiadiazolidinone
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analog profiles balancing GSK3[ inhibition with cellular
biocavailability [57].

Moreover, the potentia for off-target toxicity to normal
hematopoietic cells emphasizes the need for simultaneous
cellular toxicity profiling with healthy leukocytes during lead
optimization, a strategy increasingly integrated into
computational approaches for antileukemia drug design. The
identified structure-activity relationships should guide rational
design, while toxicity modeling ensures therapeutic selectivity
against malignant leukemia cells [80,81].

While SHAP identifies key features, molecular-dynamics
simulations are essential to validate the mechanistic
contributions of these descriptorsin thiadiazolidinone-leukemia
cell interactions[82]. Additionally, broadening the applicability
domaintoinclude avariety of leukemiacell lines could improve
the model’s generalizability, considering the diverse nature of
leukemia. Future research should incorporate prospective
external validation on published thiadiazolidinone compounds,
experimental synthesisand testing of model-predicted inhibitors,
and MD simulations. Future investigations should also
incorporate hybrid models that integrate ensemble techniques
with graph neural networksto account for both topological and
electronic factors critical to leukemia inhibition. Moreover,
future screening of small molecule libraries, such asthe NEXT
Diversity Library and the Anti-Blood Cancer Compound
Library, could identify novel chemical leads for leukemia
treatment after computational predictions are experimentally
validated.

Conclusions

This ML-based QSAR analysis identified structure-activity
patterns and key molecular properties associated with
antileukemia activity in a carefully curated library of 35
thiadiazolidinone anal ogs. | sotonic regression achieved superior
performance with thelowest test M SE (0.00031 + 0.00009) and

R? of 0.888 + 0.012, outperforming baseline models by over
15% in explaned variance. Ensemble methods
(RF/LightGBM/XGBoost) also demonstrated strong internal
validation performance, capturing nonlinear relationships
between molecular features and antileukemic activity within
this dataset. SHAP analysis consistently identified global
molecular shape (r_gp_glob), weighted polar surface area
(r_gp_ WPSA), and polarizahility (r_gp_QPpolrz) astheprimary
determinants of antileukemic activity across multiple algorithms
(LightGBM, random forest, XGBoost, and PLS), suggesting
that these molecular descriptors, rather than isolated hydrogen
bonding parameters, are the critical drivers of compound

Acknowledgments

Kakrabaet d

efficacy. Thisfinding alignswith those reported in other studies
[83-85]. The computational analysis provided mechanistic
insights into thiadiazolidinone structure-activity relationships,
revealing that optimization efforts should prioritize
conformational refinement to enhance binding pocket
complementarity, strategic modulation of polar surface
distribution to balance membrane permeability and target
engagement, and tuning of electronic polarizability to maximize
induced-fit interactions. While secondary features, including
hydrogen bonding capacity (r_gp_donorHB), topological
complementarity, and solubility (r_gp_QPlogS), contribute to
overal potency, their subordinate ranking suggests that global
shape and surface properties represent the primary optimization
targets for advancing thiadiazolidinone development against
leukemia. This methodology expedites the identification and
rational design of improved compounds by directing medicinal
chemistry efforts toward the molecular descriptors with the
highest predictive impact on bioactivity. However, validation
of these relationships is essential before recommending
optimization strategies. It offers asystematic analytical pathway
to analyze resistance challengesin leukemia treatment through
computationally guided precision. Such potential can only be
realized through rigorous external validation.

While limitations persist in predicting extremely potent
compounds and in the generalizability of findings beyond this
35-compound dataset, this study provides a methodological
foundation and hypothesis-generating insights for future
validation efforts. Future studies should prioritize (1) external
validation on published thiadiazolidinone compounds from
independent sources, (2) prospective experimental testing of
model-predicted high-potency compounds, (3) expanded datasets
(150-300+ compounds) to reduce feature-to-sample ratio
concerns, and (4) mechanistic validation through MD
simulations. Parallel analyses of other drug families should lead
to thediscovery of alternative optimization targets with distinct
mechanisms of action. Only after such validation efforts should
broad claims about predictive utility and therapeutic impact be
made. Recommended future improvements include: (1)
integration of dynamic 4D descriptors as compound libraries
expand, (2) multistep external validation protocols, (3)
experimental screening across multiple leukemia subtypes, (4)
mechanistic elucidation through MD and crystallography, and
(5) eventual integration with generative Al approaches oncethe
predictive framework is validated. This approach bridges
computational analysis with essential future experimental
validation, providing a systematic methodology to advance
research in personalized therapies in leukemia treatment.
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