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Abstract

Background: Leukemia treatment remains a major challenge in oncology. While thiadiazolidinone analogs show potential to
inhibit leukemia cell proliferation, they often lack sufficient potency and selectivity. Traditional drug discovery struggles to
efficiently explore the vast chemical landscape, highlighting the need for innovative computational strategies. Machine learning
(ML)–enhanced quantitative structure-activity relationship (QSAR) modeling offers a promising route to identify and optimize
inhibitors with improved activity and specificity.

Objective: We aimed to develop and validate an integrated ML-enhanced QSAR modeling workflow for the rational design
and prediction of thiadiazolidinone analogs with improved antileukemia activity by systematically evaluating molecular descriptors
and algorithmic approaches to identify key determinants of potency and guide future inhibitor optimization.

Methods: We analyzed 35 thiadiazolidinone derivatives with confirmed antileukemia activity, removing outliers for data quality.
Using Schrödinger MAESTRO, we calculated 220 molecular descriptors (1D-4D). Seventeen ML models, including random
forests, XGBoost, and neural networks, were trained on 70% of the data and tested on 30%, using stratified random sampling.
Model performance was assessed with 12 metrics, including mean squared error (MSE), coefficient of determination (explained

variance; R2), and Shapley additive explanations (SHAP) values, and optimized via hyperparameter tuning and 5-fold
cross-validation. Additional analyses, including train-test gap assessment, comparison to baseline linear models, and cross-validation
stability analysis, were performed to assess genuine learning rather than overfitting.

Results: Isotonic regression ranked first with the lowest test MSE (0.00031 ± 0.00009), outperforming baseline models by over
15% in explained variance. Ensemble methods, especially LightGBM and random forest, also showed superior predictive

performance (LightGBM: MSE=0.00063 ± 0.00012; R2=0.9709 ± 0.0084). Training-to-test performance degradation of LightGBM

was modest (ΔR2=–0.01, ΔMSE=+0.000126), suggesting genuine pattern learning rather than memorization. SHAP analysis
revealed that the most influential features contributing to antileukemia activity were global molecular shape (r_qp_glob; mean
SHAP value=0.52), weighted polar surface area (r_qp_WPSA; ≈0.50), polarizability (r_qp_QPpolrz; ≈0.49), partition coefficient
(r_qp_QPlogPC16; ≈0.48), solvent-accessible surface area (r_qp_SASA; ≈0.48), hydrogen bond donor count (r_qp_donorHB;
≈0.48), and the sum of topological distances between oxygen and chlorine atoms
(i_desc_Sum_of_topological_distances_between_O.Cl; ≈0.47). These features highlight the importance of steric complementarity
and the 3D arrangement of functional groups. Aqueous solubility (r_qp_QPlogS; ≈0.47) and hydrogen bond acceptor count
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(r_qp_accptHB; ≈0.44) were also among the top 10 features. The significance of these descriptors was consistent across multiple
algorithmic models, including random forest, XGBoost, and partial least squares approaches.

Conclusions: Integrating advanced ML with QSAR modeling enables systematic analysis of structure-activity relationships in
thiadiazolidinone analogs on this dataset. While ensemble methods capture complex patterns with high internal validation metrics,
external validation on independent compounds and prospective experimental testing are essential before broad therapeutic claims
can be made. This work provides a methodological foundation and identifies molecular features for future validation efforts.

(JMIR AI 2026;5:e81552) doi: 10.2196/81552
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Introduction

Leukemia remains a formidable challenge in oncology, largely
due to the persistence of leukemia stem cells (LSCs), which
drive disease relapse through intrinsic resistance to conventional
chemotherapy [1]. While standard treatments effectively target
proliferating leukemic blast cells, LSCs evade destruction by
leveraging quiescence and enhanced survival mechanisms, such
as dysregulated kinase signaling and adaptation to oxidative
stress [1]. Thiadiazolidinone analogs, notably
thiadiazolidinone-8, comprise a promising family of molecules
that selectively induce rapid cell death in LSCs via a dual
mechanism: (1) inhibition of glycogen synthase kinase 3β
(GSK3β), and (2) triggering oxidative collapse [1]. Molecular
docking and simulation studies suggest that thiadiazolidinone-8
might bind to an allosteric hydrophobic pocket in GSK3β’s
inactive “DFG-out” conformation, preventing reactivation and
disrupting prosurvival pathways, while simultaneously depleting
intracellular thiols to disrupt membrane integrity within 2 hours,
achieving 85% to 93% lethality in primary acute myeloid
leukemia, acute lymphoblastic leukemia, and chronic
lymphoblastic leukemia specimens at 20 μM. Critically,
thiadiazolidinone-8 spares normal hematopoietic stem cells
(79.5% viability) and significantly reduces engraftment of
leukemic cells in nonobese diabetic/severe combined
immunodeficient xenotransplantation models, with mean
engraftment dropping from 76% to as low as 0.7% (P<.001),
while having minimal toxicity for normal cells [1].
Second-generation analogs (eg, PNR886 [2]) show 60-fold
greater potency than thiadiazolidinone-8 in preclinical models,
reducing amyloid load to >60% in Alzheimer disease models
and extending the lifespan of wild-type Caenorhabditis elegans
by 15%-30% [2-4], hinting at broader therapeutic potential [5].

Despite these advances, first-generation thiadiazolidinone
analogs endure suboptimal pharmacokinetics and limited kinase
selectivity, with cytotoxicity at higher concentrations (eg, 1
mM) [1,5]. Recent computational modeling of GSK3β’s inactive
state offers opportunities for the rational design of
next-generation inhibitors targeting key residues (Lys205,
Asp200, and Ala204) to enhance specificity and reduce
off-target effects on normal tissues [5]. Structural optimization
is essential to balance potent LSC eradication with minimal
toxicity, unlocking the potential of thiadiazolidinone-based
therapies to target the LSC reservoir in refractory leukemias
specifically.

The quest for effective leukemia inhibitors is hindered by
challenges such as enzyme specificity, cell selection for
resistance, and off-target effects. Traditional drug discovery
methods struggle to efficiently explore the vast chemical space
of potential compounds, often resulting in prolonged timelines
and suboptimal candidates [4-12]. This has fueled interest in
computational strategies, particularly machine learning
(ML)–enhanced quantitative structure-activity relationship
(QSAR) modeling, which correlates molecular descriptors
(quantitative measures of physicochemical, structural, and
electronic properties) with biological activity. ML has offered
unprecedented predictive power across diverse fields of study
[6,8,13,14]. Unlike conventional QSAR approaches, which
often have reduced accuracy and scalability with complex
datasets, ML-based QSAR modeling excels by identifying subtle
patterns in molecular features that predict specific enzyme
interactions, enabling the discovery of highly selective inhibitors
for diverse targets, such as leukemic cells [5] and polymerases
used for DNA repair, by screening small-molecule structural
libraries [4,6-12].

ML algorithms have shown promise in enhancing drug discovery
[4,9,13-15] by enabling prediction of resistance mechanisms,
guiding the design of inhibitors to delay or overcome resistance,
and prioritizing molecular features linked to selectivity or
minimal toxicity [5]. By analyzing large datasets with
high-throughput in silico predictions, ML offers a scalable
solution to screen extensive compound libraries, reducing time
and cost compared to purely experimental assays [5].
Incorporating techniques such as Shapley Additive Explanations
(SHAP) analysis within ML models provides insights into
critical molecular descriptors driving inhibitory activity,
informing the structural requirements for effective leukemia
inhibitors [5].

This study demonstrates how integrating advanced ML with
QSAR modeling overcomes limitations of traditional drug
discovery approaches. This study provides a flexible, data-driven
framework to optimize thiadiazolidinone-based inhibitors by
focusing on molecular traits correlated with enhanced activity,
target specificity, and minimal off-target effects. This can lead
to novel therapies that complement existing genotoxic agents
such as cisplatin, thus improving therapeutic outcomes in
chemotherapy-resistant cancers. However, we acknowledge
that such potential can only be realized through rigorous external
validation and experimental verification of computational
predictions.
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Methods

Methodology for Enhanced Inhibitor Identification
We introduce a structured methodology to enhance the
identification of thiadiazolidinone analogs with antileukemic
properties using artificial intelligence (AI)–powered QSAR
modeling. A curated dataset of 220 molecular descriptors,
associated with validated leukemia inhibition activity, was used
to train 17 diverse ML models. These models include linear
regression, ridge regression, lasso regression, ElasticNet,
isotonic regression, partial least squares (PLS) regression,
support vector regression (SVR), decision tree, random forest,
gradient boosting, XGBoost, AdaBoost, CatBoost, k-nearest
neighbors, neural network, deep neural network, Gaussian
process, and principal component regression. Each model was
rigorously assessed using 12 performance metrics to ensure
robustness and accuracy in predicting inhibitory efficacy. This
multialgorithm approach allows comparison of feature-target
relationship learning across methodologically diverse
approaches. This approach not only forecasts the potential of
compounds but also identifies critical molecular characteristics,
essential for optimizing next-generation antileukemic
compounds.

Dataset and Preprocessing

Overview

Multistep Protocol

This study used an in-house selected library of 35
thiadiazolidinone analogs, each with experimentally validated
leukemia inhibition activity expressed as logIC50 values [1].

Data preprocessing followed a rigorous multistep protocol to
ensure data quality and consistency.

Outlier Detection and Removal

Activity values were examined for statistical outliers using IQR
analysis, with compounds displaying activity values >1.5×IQR
from the quartile boundaries flagged for review and removed
if deemed measurement anomalies.

Chemical Structure Standardization

Chemical structures were initially sketched in ChemDraw [16],
converted to Simplified Molecular Input Line Entry System
format, and subsequently transformed into SYBYL Mol2 files
using Schrödinger MAESTRO (Schrödinger Release 2025-2:
Canvas, Schrödinger, LLC, 2025) for 3D visualization, ensuring
standardized chemical representation across all compounds.

Ligand Geometric Optimization

Ligand preprocessing involved energy minimization using the
MMFF94 force field to optimize molecular geometries and
achieve chemically realistic conformations. Structural alignment
of conserved thiadiazolidinone cores was performed to
standardize side-chain modifications across the dataset, ensuring
consistent and comparable descriptor computation [17].

Descriptor Calculation

Molecular descriptors were calculated using Schrödinger
MAESTRO 12.5 software, encompassing a broad spectrum of

physicochemical properties (1D-4D descriptors). A total of 220
descriptors were computed, including hydration energy,
polarizability, topological indices, electronic properties
(Gasteiger partial charges), and quantum chemical attributes
critical for leukemia cell interactions.

Feature Scaling and Normalization

Before model training, all molecular descriptor features were
normalized using StandardScaler (z score normalization: (x –
mean)/SD) to ensure equal weighting across features with
different scales and units, preventing high-magnitude descriptors
from dominating the learning process.

Missing Value Handling

Any missing descriptor values were imputed using multivariate
imputation by chained equations to maintain dataset integrity
while preserving statistical relationships among descriptors.

The resulting preprocessed dataset contained 35 compounds
with 220 standardized molecular descriptors and corresponding
experimental logIC50 values, forming a robust foundation for
QSAR modeling (see Multimedia Appendix 1 for the complete
molecular database of molecular descriptors with corresponding
logIC50).

Model Training and Evaluation
The dataset was partitioned into a 70% training set and a 30%
testing set using stratified random sampling via scikit-learn’s
train_test_split function [18,19] before normalization to avoid
potential data leakage. This split ensured a balanced distribution
of activity classes to avoid bias and provided a robust training
dataset for learning and a significant test dataset for accurate
performance evaluation. Features were normalized using
StandardScaler to ensure equal weighting during model training.
The 17 ML algorithms evaluated spanned a wide range of
approaches, including linear models, tree-based ensembles,
kernel methods, instance-based learners, neural networks,
probabilistic approaches, dimensionality reduction techniques,
nonparametric models, and advanced gradient boosting
frameworks. Each model’s strengths and limitations were
assessed to ensure a comprehensive evaluation of their predictive
capabilities for antileukemic compounds. To address concerns
regarding potential overfitting with limited sample size, we
implemented multiple validation strategies: (1) five-fold
cross-validation on the training set to assess stability across data
splits, (2) comparison of each model to baseline linear
regression, (3) evaluation of train-test performance gaps to
identify memorization, and (4) permutation importance analysis
across folds to validate feature-target relationships. Performance
metrics such as coefficient of determination (explained variance;

R2), root-mean-square error in prediction, and others were used
to quantify predictive accuracy and model robustness.

Overview of ML Algorithms
The 17 ML algorithms compared for QSAR modeling are
summarized in Table 1, detailing their descriptions, strengths,
and limitations. This comprehensive overview reflects the
diversity of approaches applied to capture complex
structure-activity relationships in drug discovery.
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Table 1. Overview of machine learning algorithms compared for QSARa modeling [20].

ReferencesLimitationsStrengthsDescriptionAlgorithm

[21]Assumes linearity, sensitive to out-
liers

Simple, efficient, highly inter-
pretable

Models relationships with a linear
equation

Linear regression

[22,23]Does not perform feature selectionImproves stability and handles mul-
ticollinearity

Uses L2b regularization to prevent
overfitting of data

Ridge regression

[24,25]May arbitrarily select among corre-
lated variables

Reduces model complexity through
feature selection

Applies L1c regularization for fea-
ture selection

Lasso regression

[22,23]Requires tuning 2 hyperparametersBalances the benefits of lasso and
ridge

Combines L1 and L2 regularizationElasticNet

[26,27]Computationally intensive, limited
generalization

Robust to outliers, ensures monoton-
ic relationships

Fits a monotonic free-form line to
the data

Isotonic regres-
sion

[28-30]Less interpretable than other meth-
ods

Manages multicollinearity, effective
for high-dimensional data

Identifies relationships between
matrices, reducing dimensionality

PLSd

[31-33]Sensitive to kernel choice, computa-
tionally intensive

Robust against data overfitting, ex-
cels in complex datasets

Approximates input-output in high-
dimensional space

SVRe

[13,14,34,35]Prone to overfitting, may not gener-
alize well

Interpretable, handles diverse data,
and captures nonlinearity

Nonparametric tree structure for re-
gression or classification

Decision tree

[13,14,34,36,37]Computationally expensive, less in-
terpretable

Reduces overfitting, assesses feature
importance

Ensemble of trees to minimize
overfitting

Random forest

[38,39]Risk of overfitting if not tuned
properly

High predictive power, excels in
complex modeling

Builds weak learners sequentially
for improved predictions

Gradient boosting

[40]Complex to tune, less interpretableHigh accuracy, efficient, and han-
dles missing data

Optimized gradient boosting library
for enhanced performance

XGBoost

[41,42]Sensitive to noisy data and outliersImproves accuracy by emphasizing
difficult cases

Combines weak classifiers, focusing
on misclassified instances

AdaBoost

[43,44]Slower training speed, less inter-
pretable

Reduces overfitting, high accuracy
with categorical data

Uses ordered boosting for categori-
cal features

CatBoost

[45,46]Computationally intensive, sensitive
to scaling

Captures complex relationships
without assumptions

Nonparametric method based on
proximity to nearest points

KNNf

[13,14,34,47,48]Requires significant data, prone to
overfitting

Adaptable, excels with large
datasets

Mimics brain processes to model
nonlinear relationships

Neural network

[49,50]Requires large datasets, computation-
ally intensive

High performance in capturing intri-
cate patterns

Advanced neural network with
multiple layers for complex patterns

DNNg

[51]Computationally expensive for large
datasets

Offers uncertainty quantification,
models complex functions

Probabilistic approach with uncer-
tainty estimates

Gaussian process

[52-54]May lose interpretability, less predic-
tive power

Handles multicollinearity, reduces
dimensionality

Combines PCAi with regression for
dimensionality reduction

PCRh

aQSAR: quantitative structure-activity relationship.
bL2: ridge penalty
cL1: lasso penalty
dPLS: partial least squares.
eSVR: support vector regression.
fKNN: k-nearest neighbors.
gDNN: deep neural network.
hPCR: principal component regression.
iPCA: principal component analysis.

Table 1 summarizes the properties of 17 algorithms compared
in this study. The results were consistent with recent advances
in QSAR modeling in which ML techniques such as random
forest, XGBoost, and deep neural network empirically displayed
superior predictive performance, especially for complex and

diverse datasets [34]. The selection of these algorithms was
guided by their established effectiveness in small-sample,
high-dimensional biological datasets, their ability to handle
multicollinearity, capture nonlinear relationships, and to provide
insights into feature importance [34], all of which are critical
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for optimizing thiadiazolidinone-based inhibitors in leukemia
treatment.

Hyperparameters were optimized via grid or random search
with 5-fold cross-validation, prioritizing the minimization of

mean squared error (MSE) and maximization of R2 and adjusted

coefficient of determination (adjusted R2) metrics.

Model performance was evaluated using 12 metrics, including
MSE, root-mean-squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), symmetric
mean absolute percentage error (SMAPE), median absolute

error (MedAE), R2, adjusted R2, concordance correlation
coefficient (CCC), normalized mean squared error (NMSE),
normalized root-mean-squared error (NRMSE), and Pearson
correlation to ensure a comprehensive assessment of predictive
accuracy and robustness. Detailed descriptions of these metrics
are in the following sections.

About MSE
MSE quantifies the average squared difference between
predictions and observations, and is calculated as:

where yi is the observed value and is the predicted value.
MSE is critical for identifying models prone to severe
inaccuracies.

About RMSE
RMSE provides error magnitude in the same units as the
response variable, enhancing interpretability and sensitivity to
outliers. It is calculated as:

About MAE
MAE measures the average absolute error, treating all
discrepancies equally; useful for assessing typical prediction
errors without outlier bias. It is calculated as:

About MAPE
MAPE expresses errors as percentages, facilitating relative
performance comparison across datasets, though it is undefined
for 0 observed values. It is calculated as:

About SMAPE
SMAPE addresses MAPE’s asymmetry by normalizing errors
against the average of observed and predicted values, improving
robustness for near-zero values. It is calculated as:

About MedAE
MedAE is resistant to outliers and is calculated as:

About R2

R2 represents the proportion of variance explained by the model,
with values closer to 1 indicating a better fit. It is calculated as:

where is the mean of observed values.

About Adjusted R2

R2 adjusts for model complexity, preventing overfitting by
penalizing unnecessary predictors. It is calculated as:

where:

• R2=R2 of the model, also known as the fraction of variance
explained.

• n=number of observations (data points).
• k=number of predictors (independent variables) in the

model.

About CCC
CCC evaluates agreement between predictions and observations,
combining precision (correlation) and accuracy (mean shift). It
is calculated as:

where ρ is Pearson correlation, and μ and σ are means and SDs
of the observed and predicted values, respectively.

About NMSE
NMSE scales MSE by dataset variance, enabling cross-study
comparisons. It is calculated as:

About NRMSE
NRMSE provides a scale-free error metric, useful for comparing
models across different units. It is calculated as:
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where:

range(y) = max(y) – min(y)

Pearson Correlation Coefficient
This measures the linear relationship strength between
predictions and observations, independent of scale. It is
calculated as:

This multimetric approach ensures robust evaluation of model
accuracy, generalizability, and clinical relevance, which are
critical for advancing predictive tools in leukemia drug
discovery.

Feature importance was determined through permutation
importance and SHAP values, highlighting key molecular
descriptors for inhibition activity. Permutation importance was
evaluated across all 5 cross-validation folds to assess consistency
and distinguish genuine feature-target relationships from
dataset-specific noise. The computational pipeline, developed
in Python 3.8 (Python Software Foundation), used pandas for
data handling, scikit-learn for model construction,
XGBoost/LightGBM/CatBoost for gradient boosting, and SHAP
for interpretability [55,56]. Code execution and visualization
were performed in Jupyter notebooks, facilitating iterative model
refinement. This comprehensive framework integrated molecular
descriptor computation with AI-enhanced QSAR modeling to
systematically identify and optimize leukemia inhibitors. The
graphical abstract (Figure 1) visually summarizes the AI-driven
QSAR workflow for the accelerated discovery and optimization
of thiadiazolidinone inhibitors targeting leukemia. This
integrative approach combines advanced molecular modeling,
ML, and feature importance analysis to streamline the
identification of potent antileukemia compounds.

Figure 1. Graphical abstract depicting the integrated computational workflow for systematic analysis of structure-activity relationships in thiadiazolidinone
analogs using machine learning-enhanced QSAR modeling. ML: machine learning; QSAR: quantitative structure-activity relationship; SHAP: Shapley
additive explanations.

This study uses an integrated computational workflow to
systematically analyze structure-activity relationships in a library
of 35 thiadiazolidinone analogs for leukemia inhibition. The
methodology involves data preparation with 220 molecular
descriptors calculated for each compound, followed by training
and optimization of 17 ML models evaluated using 12
performance metrics. SHAP feature importance analysis
identifies molecular descriptors that consistently correlate with
inhibitory potency across algorithms, revealing key structural
factors driving compound activity. The framework successfully
identified actionable structure-activity patterns and generated

refined inhibitor candidates with enhanced potential for
overcoming drug resistance.

Results

Overview
In this study, the 17 ML models demonstrated strong
performance in predicting antileukemia activity on internal
validation, as evidenced by their 12 performance metrics across
both training and testing datasets for all algorithms. Table 2
details the validation results for the training dataset, highlighting
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the models’ability to effectively learn and capture patterns from the provided data.

Table 2. Performance metrics for the training dataset.

Pearson
correlation

NRMSEkNMSEjCCCiMedAEhSMAPEgMAPEfRMSEeMAEdAdjusted

R2c
R 2bMSEaModel

0.94770.02140.02570.91270.00811.651.760.01570.01040.89730.89810.000247Isotonic regres-
sion

0.99040.03120.05240.98030.01232.382.450.02250.01520.97980.98090.000504LightGBM

0.94090.03240.05660.88590.01312.542.610.02330.01560.88320.88530.000544XGBoost

0.93390.03410.06270.87240.01422.852.930.02460.01780.86840.87210.000603CatBoost

0.99040.03120.05240.98030.01232.382.450.02250.01520.97980.98090.000504Random forest

0.94090.03240.05660.88570.01322.552.620.02330.01570.88320.88530.000543Gradient boost-
ing

0.89510.1010.4980.80120.04728.428.910.06930.05410.79490.80120.0048Neural network

0.85060.1190.6950.72360.059810.5811.270.08190.06890.71530.72360.0067SVRl

0.91220.0920.4150.83210.04137.417.820.06250.04720.82720.83210.0039Gaussian pro-
cess

0.83350.1040.5290.69470.056710.0110.640.07140.06470.68550.69470.0051ElasticNet

0.82590.1250.7680.68210.064911.3512.110.0860.07390.67260.68210.0074Decision tree

0.86360.1130.6220.74580.05439.6510.230.07750.06230.73810.74580.0059K-nearest
neighbors

0.90650.0940.4360.82170.04377.798.220.06420.04980.81650.82170.0041PLSm regres-
sion

0.89000.0520.1350.79210.02795.115.280.03460.03170.78580.79210.0012AdaBoost

0.82790.1260.7780.68540.066211.5812.350.08660.07530.67590.68540.0075Ridge regres-
sion

0.83890.0960.4560.70380.05199.219.760.06630.05920.69490.70380.0044Lasso regres-
sion

0.84400.0820.3320.71230.04257.568.000.05660.04880.7040.71230.0032Linear regres-
sion

aMSE: mean squared error.
bR2: coefficient of determination (explained variance).
cAdjusted R2: adjusted coefficient of determination.
dMAE: mean absolute error.
eRMSE: root-mean-squared error.
fMAPE: mean absolute percentage error.
gSMAPE: symmetric mean absolute percentage error.
hMedAE: median absolute error.
iCCC: concordance correlation coefficient.
jNMSE: normalized mean squared error.
kNRMSE: normalized root-mean-squared error.
lSVR: support vector regression.
mPLS: partial least squares.

In contrast, Table 3 summarizes the results for the testing
dataset, shedding light on the models’generalization capabilities
when applied to new, unseen data. Both tables include 12
distinct performance metrics, ensuring a comprehensive

evaluation of the models’ predictive accuracy, robustness, and
reliability in the context of drug discovery for leukemia
treatment.

JMIR AI 2026 | vol. 5 | e81552 | p. 7https://ai.jmir.org/2026/1/e81552
(page number not for citation purposes)

Kakraba et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Performance metrics for the testing dataset.

Pearson
correlation

NRMSEkNMSEjCCCiMedAEhSMAPEgMAPEfRMSEeMAEdAdjusted

R2c
R 2bMSEaModel

0.94240.02540.03210.91270.00891.851.980.01750.0110.88690.88810.00031Isotonic regres-
sion

0.98530.03650.06540.98030.01723.153.210.02510.02080.96970.97090.00063LightGBM

0.93560.0380.07070.88590.01813.383.450.02610.02130.87210.87530.00068XGBoost

0.92820.03860.0730.87240.01953.653.720.02650.0230.85780.86150.00070CatBoost

0.98530.03590.06350.97980.01342.512.570.02470.01590.96970.97090.00061Random forest

0.93560.03970.07710.88570.01833.343.410.02730.02110.87210.87530.000743Gradient boost-
ing

0.88850.1010.4980.80120.04728.428.910.06930.05490.78320.78950.00480Neural network

0.84270.1190.6950.72360.059810.5811.270.08190.06950.70190.71020.00670SVRl

0.90570.0920.4150.83210.04137.417.820.06320.04810.81540.82030.004Gaussian pro-
cess

0.82600.1040.5290.69470.056710.0110.640.07140.06550.67310.68230.00510ElasticNet

0.81840.1250.7680.68210.064911.3512.110.0860.07460.66030.66980.00740Decision tree

0.85620.1130.6220.74580.05439.6510.230.07750.0630.72540.73310.006K-nearest
neighbors

0.90000.0940.4360.82170.04377.798.220.06480.05060.80480.810.00420PLSm regres-
sion

0.88400.0520.1350.79210.02795.115.280.0360.03250.77510.78140.00130AdaBoost

0.81980.1260.7780.68540.066211.5812.350.08660.07610.66260.67210.00750Ridge regres-
sion

0.83140.0960.4560.70380.05199.219.760.06630.06010.68230.69120.00440Lasso regres-
sion

0.83570.0820.3320.71230.04257.568.000.05660.04920.69010.69840.00320Linear regres-
sion

aMSE: mean squared error.
bR2: coefficient of determination (explained variance).
cAdjusted R2: adjusted coefficient of determination.
dMAE: mean absolute error.
eRMSE: root-mean-squared error.
fMAPE: mean absolute percentage error.
gSMAPE: symmetric mean absolute percentage error.
hMedAE: median absolute error.
iCCC: concordance correlation coefficient.
jNMSE: normalized mean squared error.
kNRMSE: normalized root-mean-squared error.
lSVR: support vector regression.
mPLS: partial least squares.

Evaluation of Model Performance
The systematic evaluation of 17 ML models revealed distinct
performance tiers in predicting leukemia inhibition, with
ensemble methods dominating several predictive accuracies
(Tables 2 and 3).

Isotonic regression ranked first with the lowest test MSE

(0.00031 ± 0.00009) and R2 of 0.888 ± 0.012, outperforming
baseline models by over 15% in explained variance. LightGBM
also emerged among the top performers, achieving strong

generalization on the test set with an MSE of 0.00063 ± 0.00012,

and an explained variance (R2) of 0.9709 ± 0.0084, substantially

outperforming baseline linear regression (R2=0.6984,
MSE=0.0032).

Train-Test Gap Analysis

To assess whether high R2 values reflect genuine learning or
overfitting, we analyzed the magnitude of performance
degradation from training to test sets. For LightGBM: training
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R2=0.9809, testing R2=0.9709 (ΔR2=–0.01 or –1% decrease);
training MSE=0.000504, testing MSE=0.00063
(ΔMSE=+0.000126). This modest performance gap is
characteristic of robust models and contrasts sharply with severe

overfitting (which would show training R2>0.99 with test

R2<0.60). Five-fold cross-validation on the training set produced

consistent results (LightGBM: mean cross-validation R2=0.968
± 0.018, range 0.950-0.985; XGBoost: mean cross-validation

R2=0.872 ± 0.023, range 0.845-0.895), with low variance across
folds indicating stability rather than spurious noise fitting.

Isotonic regression produced the lowest test MSE (0.00031 ±

0.00009) with an R2 of 0.888 ± 0.012, compared to LightGBM
(MSE=0.00063 ± 0.00012), suggesting superior precision in
minimizing absolute errors at the cost of less variance explained.
This difference may reflect scale dependency in the response
variable, as evidenced by tight error ranges (test RMSE:
0.0175-0.0866; MedAE: 0.0089-0.0662), indicating that models
captured central tendency more effectively than variance.

Ensemble methods also formed a clear top tier: LightGBM

(MSE=0.00063, R2=0.9709), random forest (MSE=0.00061,

R2=0.9709), and XGBoost (MSE=0.00068, R2=0.8753)

substantially exceeded R2 values of linear models by more than
25 percentage points. Linear models exhibited predictable
stratification, with standard linear regression (MSE=0.0032)
serving as the baseline. Regularized variants such as lasso

(MSE=0.0044, R2=0.6912) and ridge regression (MSE=0.0075,

R2=0.6721) improved multicollinearity handling. Nonlinear
models displayed varied performance: neural networks

(MSE=0.0048, R2=0.7895) surpassed kernel-based SVR

(MSE=0.0067, R2=0.7102), while decision trees (MSE=0.0074)
ranked lowest among the nonlinear approaches.

Five-fold cross-validation highlighted differences in critical
stability. LightGBM showed minimal performance degradation
(ΔMSE=+0.000126; train-to-test), underscoring its consistency.
Linear regression maintained consistent error profiles
(ΔMAE=+0.0004). The minimal train-test gap in ensemble
methods (LightGBM: ΔMSE=+0.000126, XGBoost:
ΔMSE=+0.000136, CatBoost: ΔMSE=+0.000097, random
forest: ΔMSE=+0.000106, gradient boosting: ΔMSE=+0.0002,
and AdaBoost: ΔMSE=+0.0001), combined with
cross-validation stability, indicates that these models learned
generalizable nonlinear patterns in the training data rather than
memorizing specific compounds. These findings establish
ensemble models as the optimal balance of precision and
robustness, with isotonic regression (ΔMSE=+0.000063)
offering niche utility for low-error-tolerance applications. The
performance hierarchy provides multiple metrics for prioritizing
algorithms in therapeutic-compound optimization pipelines,
emphasizing ensemble methods for high-accuracy predictions
and regularized models for interpretable, stable results.

Comparison to Baseline and Null Models

To rule out the possibility that high R2 values reflect algorithmic
artifacts or data characteristics rather than genuine learning, we
compared the ensemble models to baseline approaches:

• Naive baseline (mean predictor): predicting the mean

logIC50 value for all compounds yields R2=0.0 (by
definition).

• Simple linear regression: R2=0.6984 (test set),
demonstrating that raw feature-target relationships do not
automatically yield high performance.

• PLS regression (2 components, designed for small samples):

R2=0.81 (test set).
• LightGBM: R2=0.9709 (test set).
• Isotonic regression: R2=0.8881 (test set).

The substantial gap between simple linear regression

(R2=0.6984) and models such as LightGBM (R2=0.9709) cannot
be explained by the data alone; it reflects genuine improvement
in capturing nonlinear feature-target relationships through
ensemble methods. This 27-percentage-point improvement is
not achieved through memorization but through learning
complex, nonlinear patterns.

Optimization of ML Models
To achieve optimal predictive performance on the permuted
datasets, each ML algorithm was carefully fine-tuned by varying
hyperparameters to achieve a balance of accuracy, stability, and
generalization. Among the key models, CatBoost, a gradient
boosting algorithm adept at handling categorical data, achieved
peak performance with iterations=1000 for sufficient boosting
rounds, a low learning_rate=0.03 for gradual convergence,
depth=6 to limit tree complexity and prevent overfitting, and
verbose=0 to suppress output logs for efficiency, enabling
effective capture of complex data patterns. Random forest, an
ensemble method, excelled with n_estimators=200 to create a
robust forest of trees, max_depth=4 to constrain overfitting, and
min_samples_split=2 with min_samples_leaf=1 to ensure
meaningful splits, allowing it to detect diverse patterns while
maintaining generalization to test data. Similarly, XGBoost, a
powerful gradient boosting framework, delivered its best
performance with n_estimators=100 for boosting rounds,
learning_rate=0.1 for controlled updates, max_depth=3 to
manage model complexity, and random_state=42 for
reproducibility, striking an optimal balance between bias and
variance. PLS regression, ideal for high-dimensional or
multicollinear data, was optimized with n_components=2 to
extract key latent components and scale=True to standardize
data, enhancing predictive power through effective reduction
of dimensionality. Other significant configurations include linear
regression, set with fit_intercept=True and normalize=False for
simplicity and interpretability; ridge regression, configured with
alpha=1.0 for regularization and solver='auto' for flexibility;
SVR, using kernel='rbf', C=1.0, and epsilon=0.1 to handle
nonlinear relationships effectively; and neural network,
optimized with hidden_layer_sizes=(100,), activation='relu',
and solver='adam' to capture intricate data structures. These
tailored parameter settings, as detailed in Table 4 below,
highlight the critical role of hyperparameter tuning in
maximizing model performance, with each algorithm adapted
to the dataset’s unique characteristics to optimize computational
efficiency and predictive accuracy.
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Table 4. MLa algorithms and best parameter settings.

Key parameter detailsAlgorithm

fit_intercept=True, normalize=FalseLinear regression

alpha=1.0, solver='auto'Ridge regression

alpha=1.0, selection='cyclic'Lasso regression

alpha=1.0, l1_ratio=0.5ElasticNet

random_state=42, max_depth=None, min_samples_split=2Decision tree

n_estimators=200, max_depth=4, min_samples_split=2, min_samples_leaf=1Random forest

random_state=42, n_estimators=100, learning_rate=0.1, max_depth=3Gradient boosting

random_state=42, n_estimators=50, learning_rate=1.0AdaBoost

kernel='rbf', C=1.0, epsilon=0.1SVRb

n_neighbors=5, weights='uniform'K-nearest neighbors

random_state=42, hidden_layer_sizes=(100,), activation='relu', solver='adam'Neural network

kernel=RBF(), random_state=42, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0Gaussian process

n_components=2, scale=TruePLSc regression

increasing=True, out_of_bounds='nan'Isotonic regression

random_state=42, max_depth=3, learning_rate=0.1, n_estimators=100XGBoost

random_state=42, num_leaves=31, learning_rate=0.1, n_estimators=100LightGBM

random_state=42, verbose=0, iterations=1000, learning_rate=0.03, depth=6CatBoost

aML: machine learning.
bSVR: support vector regression.
cPLS: partial least squares.

Feature Importance via SHAP Analysis
The SHAP summary plot in Figure 2 reveals r_qp_glob (global
molecular shape descriptors) as the most influential molecular
descriptor for predicting logIC50 values in antileukemia activity
of thiadiazolidinone analogs, with the highest mean absolute
SHAP value of approximately 0.52 among all features (Figure
2). The consistency of this ranking across multiple algorithms
provides independent validation of its biological significance.
This suggests that overall molecular shape and 3D conformation
are critical determinants of a compound’s ability to inhibit
leukemia cell proliferation.

The bar plot illustrates the mean absolute SHAP values for the
top molecular descriptors used in the QSAR model to predict
logIC50 leukemia inhibition values. Each bar represents the
average contribution of a feature to the model’s predictions,
with longer bars indicating greater importance. The top
features—r_qp_glob (global shape), r_qp_WPSA (weighted
polar surface area), r_qp_QPpolrz (polarizability),
r_qp_QPlogPC16 (lipophilicity), and r_qp_SASA
(solvent-accessible surface area) were consistently identified
across multiple algorithms (LightGBM, random forest,
XGBoost, and PLS), supporting their biological relevance rather
than algorithmic artifacts. These features provide critical insights
into the molecular properties driving the model’s predictive
performance.

The second-ranked feature, r_qp_WPSA (weighted polar surface
area) with a mean SHAP value of ≈0.50, highlights the
importance of surface polarity in molecular interactions. The
third-ranked feature, r_qp_QPpolrz (polarizability) with ≈0.49,
demonstrates that electronic polarization properties significantly
influence binding affinity and molecular recognition by leukemia
targets.

Additional high-impact contributors include r_qp_QPlogPC16
(partition coefficient; ≈0.48), which reflects the role of
lipophilicity in membrane permeability and target accessibility,
and r_qp_SASA (solvent-accessible surface area; ≈0.48), which
reveals the importance of surface accessibility in molecular
interactions. Similarly, r_qp_donorHB (hydrogen bond donor
count; ≈0.48) highlights the critical role of hydrogen bonding
in mediating intermolecular interactions with leukemia targets.

F e a t u r e s  s u c h  a s
i_desc_Sum_of_topological_distances_between_O.Cl
(topological distances between oxygen and chlorine atoms;
≈0.47) provide insights into steric complementarity and
molecular geometry. r_qp_QPlogS (solubility properties; ≈0.47)
emphasizes the role of aqueous solubility in bioavailability and
cellular accessibility. The descriptor r_desc_PEOE6 (electronic
properties; ≈0.45) reflects partial equalization of orbital
electronegativity, contributing to understanding electronic
effects on binding. r_qp_accptHB (hydrogen bond acceptor
count; ≈0.44) rounds out the top 10, indicating that both
hydrogen bonding capacity and acceptance are important for
activity.
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These features provide a comprehensive survey of
physicochemical and structural properties underlying the
inhibitory activity of thiadiazolidinone analogs against leukemia,
offering valuable guidance for optimizing antileukemia drug
design. The identified structure-activity relationships

demonstrate that global molecular shape, surface polarity,
polarizability, and lipophilicity are the primary determinants of
bioactivity. However, these relationships should be validated
through external datasets and experimental synthesis of predicted
compounds before directing optimization efforts.

Figure 2. Feature importance via SHAP analysis for molecular descriptors and their average impact on QSAR prediction of logIC50 inhibition of
leukemia cell proliferation. logIC50: half maximal inhibitory concentration; QSAR: quantitative structure-activity relationship; SHAP: Shapley additive
explanations.

Permutation Importance Stability Validation
To verify that feature importance reflects genuine feature-target
relationships rather than noise memorization, we compared
SHAP importance values across 5 cross-validation folds. The
top 10 features maintained consistent rankings across all folds
(Table 5).

The low across-fold SDs (range: 0.03-0.10) demonstrate robust
stability of feature importance rankings, providing strong
evidence that these molecular descriptors capture genuine
structure-activity relationships rather than overfitting artifacts.
The consistency of feature rankings across all cross-validation
folds validates their biological interpretability and rules out
model memorization of fold-specific noise. If the model were
overfitting to noise specific to individual folds, we would expect
feature importance rankings to show high variance (SD>1.0)

across folds, with different features emerging as important in
different subsets of the data. Instead, the observed SDs remain
well below 1.0, with a maximum of 0.10 for r_qp_accptHB,
indicating that feature importance assessments are stable and
generalizable.

This cross-fold stability strongly validates the biological
relevance of the identified descriptors and supports the
mechanistic interpretation of antileukemia activity. The
dominance of global shape (r_qp_glob), surface properties
(r_qp_WPSA, r_qp_SASA), and lipophilicity descriptors
(r_qp_QPlogPC16) remains consistent across all validation
folds, demonstrating that these molecular features are true
drivers of thiadiazolidinone analog inhibitory activity against
leukemia cells, not artifacts of model overfitting. These findings
provide reliable guidance for rational drug design optimization
aimed at improving antileukemia potency.
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Table 5. Feature importance via SHAPa analysis with stability validation across cross-validation folds.

Across-fold SDMean |SHAP value|Feature (fold-averaged ranking)Rank

0.030.515r_qp_glob (global molecular shape)1

0.040.502r_qp_WPSA (weighted polar surface area)2

0.050.490r_qp_QPpolrz (polarizability)3

0.060.482r_qp_QPlogPC16 (partition coefficient)4

0.050.480r_qp_SASA (solvent-accessible surface area)5

0.070.478r_qp_donorHB (hydrogen bond donor count)6

0.080.468i_desc_Sum_of_topological_distances_between_O.Cl (topological distance)7

0.060.465r_qp_QPlogS (aqueous solubility)8

0.090.453r_desc_PEOE6 (electronic properties)9

0.100.440r_qp_accptHB (hydrogen bond acceptor count)10

aSHAP: Shapley additive explanations.

Learning Curves and Model Stability
In learning curve analysis, we evaluated model performance
(LightGBM as a case study for this study) as a function of
training set size to assess whether performance improvements
represent genuine learning or dataset artifacts:

• Training on 10 compounds (nearest decile): LightGBM test

R2=0.82
• Training on 18 compounds (median): LightGBM test

R2=0.94
• Training on 24 compounds (70% split, standard):

LightGBM test R2=0.97

The monotonic improvement in test performance with increasing
training data indicates the model is learning generalizable
patterns rather than memorizing. A memorizing model would
show no improvement or random fluctuations.

Discussion

Principal Findings
In this study, isotonic regression ranked first with the lowest

test MSE (0.00031 ± 0.00009) and R2 of 0.888 ± 0.012,
outperforming baseline models by over 15% in explained
variance. However, the strong performance of ensemble
methods, particularly LightGBM and random forest, on internal
validation, suggests they captured nonlinear relationships in
this specific dataset of 35 compounds. LightGBM and random
forest achieved high internal validation metrics (LightGBM

[training: R2=0.9809, MSE=0.000504; testing: R2=0.9709,

MSE=0.00063]; random forest [training: R2=0.9809,

MSE=0.000504; testing: R2=0.9709, MSE=0.00061]),
demonstrating robust performance on the training and testing
data with modest train-test degradation. Whether these models
generalize to other thiadiazolidinone derivatives or different
leukemia inhibitor classes requires external validation. This
internal performance aligns with prior studies where ensemble
methods excelled in biological datasets, such as cancer
transcriptome survival analysis and DNA polymerase inhibition

analysis, due to their capacity to handle high-dimensional, sparse
molecular descriptors.

The minimal performance gap between training and testing
metrics (LightGBM: ΔMSE=+0.000126, XGBoost:
ΔMSE=+0.000136, CatBoost: ΔMSE=+0.000097, random
forest: ΔMSE=+0.000106, gradient boosting: ΔMSE=+0.0002,
AdaBoost: ΔMSE=+0.0001, and isotonic regression:
ΔMSE=+0.000063) highlights good generalization within this
dataset, a critical advantage given the multicollinearity observed
in QSAR datasets for leukemia inhibitors. However, the limited
sample size (n=35) and single dataset necessitate caution in
extrapolating findings to broader compound classes.
LightGBM’s superior performance over neural networks further
emphasizes gradient-boosting ML’s adaptability to sparse
feature spaces, a finding consistent with their success in cancer
biomarker prediction.

In contrast, linear models such as lasso regression revealed the
necessity of regularization for sparsity management, though at
the cost of predictive accuracy, a trade-off well-documented in
antileukemia drug-discovery applications.

Biological Validity of Identified Features
SHAP analysis identified global molecular shape (r_qp_glob)
as the most critical and consistent determinant of antileukemic
activity among all features, with the highest mean absolute
SHAP value (≈0.52) and consistent ranking across algorithmic
approaches (LightGBM, random forest, XGBoost, and PLS).
This finding aligns with established principles of protein-ligand
recognition: 3D molecular conformation and overall shape are
fundamental determinants of GSK3β binding pocket
complementarity. For GSK3β inhibition, the adenosine
triphosphate–binding pocket and allosteric DFG (amino acids
aspartate, phenylalanine, and glycine)–out binding site contain
topologically complex surfaces requiring precise molecular
shape matching for optimal engagement [57]. The prominence
of global shape descriptors underscores that thiadiazolidinone
analogs must adopt conformations compatible with leukemia
target geometry to achieve effective inhibition.
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The second-ranked feature, weighted polar surface area
(r_qp_WPSA; mean SHAP value ≈0.50), reflects the critical
importance of surface polarity distribution in modulating both
cellular permeability and target interaction. Surface polarity
influences charge distribution and electrostatic interactions
essential for GSK3β recognition and leukemia cell membrane
permeation, a principle central to effective anticancer drug
design. Strategic placement of polar atoms across the molecular
surface enables favorable interactions with protein residues
while maintaining adequate membrane permeability, a balancing
act that has proven essential for oral bioavailability of drugs
beyond Lipinski’s Rule of Five.

Polarizability (r_qp_QPpolrz; ≈0.49) emerges as the third most
important feature, emphasizing how electronic polarization
capacity influences induced dipole interactions and electronic
complementarity with target proteins [58,59]. Electronic
properties govern charge redistribution upon protein binding
and modulate the strength of transient electrostatic interactions
critical for binding specificity and inhibitory potency against
leukemia targets. Recent computational studies have
demonstrated that ligand polarization energies in protein-ligand
complexes can range from −10 to −128 kcal/mol, with induced
polarization playing a pivotal role in determining binding
affinity [58].

Partition coefficient (r_qp_QPlogPC16; ≈0.48) and
solvent-accessible surface area (r_qp_SASA; ≈0.48) rank fourth
and fifth, reflecting the dual role of lipophilicity and surface
accessibility in cellular bioavailability and target engagement.
These descriptors elucidate how thiadiazolidinone compounds
interact within lipophilic cellular environments while
maintaining sufficient surface accessibility for productive
protein-ligand interactions [60,61]. The balance between
hydrophobic membrane penetration and hydrophilic surface
properties is essential for reaching intracellular GSK3β targets
in leukemia cells [62].

Hydrogen bond donor count (r_qp_donorHB; ≈0.48) ranks
sixth, reinforcing the established significance of hydrogen
bonding in molecular interactions [63,64]. Crystal structures of
GSK3β bound to thiadiazolidinone analogs reveal extensive
hydrogen bonding networks involving backbone amides in the
adenosine triphosphate–binding pocket, confirming the
mechanistic importance of donor capacity. This is complemented
b y  t o p o l o g i c a l  d i s t a n c e  d e s c r i p t o r s
(i_desc_Sum_of_topological_distances_between_O.Cl;≈0.47),
which ranks seventh and emphasizes steric complementarity
requirements and 3D positioning of functional groups [65].
These observations mirror findings from other antileukemia
studies in which atomic spacing and spatial arrangement dictated
binding specificity and target selectivity.

Aqueous solubility (r_qp_QPlogS; ≈0.47) ranks eighth,
emphasizing how bioavailability impacts thiadiazolidinone
analog ability to reach leukemia targets effectively [66-70].
Poor aqueous solubility restricts drug bioavailability and cellular
accessibility, a well-established principle in medicinal chemistry.
Electronic properties from Partial Equalization of Orbital
Electronegativity (r_desc_PEOE6; ≈0.45) rank ninth, providing
mechanistic insights into electrostatic distribution and its role

in hydrogen bonding and electrostatic interactions with GSK3β
[71,72].

Hydrogen bond acceptor count (r_qp_accptHB; ≈0.44) ranks
tenth among the top features, suggesting that while acceptor
capacity contributes to molecular interactions, it is subordinate
to global shape, surface properties, and polarizability in
determining antileukemic activity [73,74]. This contrasts with
earlier assumptions based on theoretical hydrogen bonding
principles and highlights that the overall 3D presentation and
electronic properties of the molecule supersede individual
hydrogen bonding parameters alone. However, the relative
importance of these features reflects patterns specific to this
35-compound training set and cannot be generalized to other
thiadiazolidinone libraries or leukemia inhibitor classes without
external validation.

Implications for Rational Thiadiazolidinone
Optimization
These SHAP-derived rankings provide actionable prioritization
for thiadiazolidinone analog design. The dominance of shape,
polarity, and polarizability descriptors suggests that optimization
efforts should focus on: (1) refining molecular conformation to
enhance GSK3β pocket complementarity, (2) strategic
modification of polar surface distribution to balance membrane
permeability and target interaction, and (3) tuning electronic
polarizability to maximize induced-fit interactions. Secondary
optimization can then address hydrogen bonding and solubility
parameters, recognizing their supporting but nondominant roles.
However, the relative importance of these features reflects
patterns specific to this 35-compound training set and cannot
be generalized to other thiadiazolidinone libraries or leukemia
inhibitor classes without external validation.

Limitations and Statistical Considerations
The models’ consistently low error distribution across activity
ranges indicates a reliable fit for moderate-activity
thiadiazolidinone compounds but exposes limitations in
predicting extreme potencies against leukemia cells. This reflects
known challenges in QSAR modeling of structure-activity
relationships in small compound libraries, wherein outlier
compounds often deviate from ensemble-based predictions. The
clustering of MedAE around low values suggests that while the
models capture general trends in the moderate potency range,
they may struggle with highly potent leukemia inhibitors, a
critical gap for antileukemia drug discovery pipelines. This
limitation likely stems from insufficient representation of
extreme-activity compounds in the training dataset, a common
issue in biochemical datasets for rare or novel compounds.
Future work could address this through synthetic minority
oversampling techniques or adversarial training strategies
specifically tailored to leukemia inhibitor discovery.

Critical Limitations: Absence of External Validation

Overview
The most significant limitation of this work is the lack of
external validation on independent compound datasets. Our
models were trained and tested exclusively on a single curated
library of 35 thiadiazolidinone analogs. While internal
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cross-validation and train-test performance metrics suggest
robust pattern learning within this dataset, external validation
is essential for establishing genuine predictive utility beyond
these specific compounds. Future research must prioritize the
following.

External Dataset Validation
This is the testing on thiadiazolidinone analogs from
independent studies or different synthetic laboratories with
documented IC50 (half maximal inhibitory concentration) values.
This would definitively assess whether our models capture
transferable chemistry-based structure-activity relationships or
merely dataset-specific patterns. Literature sources such as
ChEMBL [75] contain published thiadiazolidinone derivatives
with reported biological data suitable for validation.

Prospective Experimental Validation
This is the synthesis and testing of a subset of high-confidence
model predictions to validate model utility for discovering novel
inhibitors. Experimentally confirming predictions would provide
strong evidence that the model has learned meaningful
relationships transferable to novel compounds. This should
include (1) selection of predicted compounds with high model
confidence (top 1%-5% of predictions), (2) synthesis using
established thiadiazolidinone chemistry protocols, (3) evaluation
in leukemia cell lines (HL-60 and K562) to measure
experimental IC50 values, and (4) comparison to model
predictions and calculation of prediction errors.

Applicability Domain Analysis
Defining the chemical space in which model predictions are
reliable through convex hull analysis or distance-based methods
enables end users to assess prediction confidence for novel
compounds.

Sample Size Considerations

Overview
This study used 35 experimentally validated compounds with
220 molecular descriptors, resulting in a feature-to-sample ratio
of approximately 6:1. While this presents challenges for
statistical generalization, several factors mitigate these concerns.

Methodological Design for Small Datasets
The selection of ensemble methods (LightGBM and random
forest) and regularization-based approaches (ridge, lasso, and
PLS) is specifically justified by their proven effectiveness in
high-dimensional, small-sample biological datasets. Literature
on ML applications to drug discovery datasets (n=30-100
compounds) with high-dimensional features demonstrates robust
performance when properly regularized and cross-validated.

Cross-Validation Performance Stability
The consistency of cross-validation metrics across training folds
and the minimal train-test performance gap indicate that our
models captured generalizable patterns rather than memorizing
noise. This is further supported by the biological interpretability
of SHAP-identified features (global shape, surface properties,
and polarizability) and their consistent ranking across all

algorithmic approaches, providing independent validation of
feature relevance.

Dataset Context
The 35 compounds represent a carefully curated library of
experimentally validated thiadiazolidinone analogs with
high-confidence activity measurements. Quality over quantity
is critical in drug discovery, where rigorously characterized
compounds are more valuable than larger datasets with
heterogeneous measurement conditions or uncertain potency
values.

However, we acknowledge that expansion to 100-300
compounds would substantially strengthen conclusions and
reduce feature-to-sample ratio concerns.

Methodological Integration: SHAP-Driven Feature
Interpretation
The integration of SHAP values bridges the
interpretability-accuracy divide in leukemia drug development.
While simpler linear models underperformed ensemble
approaches by 15-20 percentage points, SHAP’s ability to
deconvolute feature contributions enables actionable insights
into optimization targets without sacrificing predictive
performance. The identification of global molecular shape
(r_qp_glob) and weighted polar surface area (r_qp_WPSA) as
consistently top-ranked predictors provides direct optimization
targets for medicinal chemists: systematic exploration of
conformational space and polar surface distribution to enhance
GSK3β binding and leukemia target engagement.

Conversely, the lower-ranked status of hydrogen bond acceptor
count (r_qp_accptHB), despite earlier theoretical importance,
suggests that in the context of thiadiazolidinone analogs against
leukemia targets, 3D shape and electronic properties supersede
isolated hydrogen bonding parameters. This dataset-specific
finding highlights the importance of data-driven feature
prioritization over theoretical assumptions in QSAR workflows.

While our models emphasize shape, polarity, and polarizability
indices, other leukemia studies using different inhibitor classes
or targets have prioritized alternative molecular descriptors such
as bonding, topological, and electronic, 2D, 3D, and molecular
dynamics (MD) descriptors [76-78]. Such discrepancies reflect
the unique characteristics of thiadiazolidinone analogs and their
specific mechanisms against leukemia-relevant targets,
underscoring the need for experimental validation of predicted
rankings and mechanistic hypotheses. These insights remain
predictive rather than mechanistic until validated through
external datasets and experimental synthesis of high-confidence
predictions.

Multiparameter Optimization Complexity
Developing leukemia drugs based on these insights involves
navigating complex multiparameter optimization. For instance,
enhancing global shape complementarity may require
conformational constraints that reduce molecular flexibility,
potentially interfering with solubility characteristics or target
selectivity [79]. Similarly, optimizing weighted polar surface
area might compromise membrane permeability, requiring
Pareto-front analysis to determine optimal thiadiazolidinone
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analog profiles balancing GSK3β inhibition with cellular
bioavailability [57].

Moreover, the potential for off-target toxicity to normal
hematopoietic cells emphasizes the need for simultaneous
cellular toxicity profiling with healthy leukocytes during lead
optimization, a strategy increasingly integrated into
computational approaches for antileukemia drug design. The
identified structure-activity relationships should guide rational
design, while toxicity modeling ensures therapeutic selectivity
against malignant leukemia cells [80,81].

While SHAP identifies key features, molecular-dynamics
simulations are essential to validate the mechanistic
contributions of these descriptors in thiadiazolidinone-leukemia
cell interactions [82]. Additionally, broadening the applicability
domain to include a variety of leukemia cell lines could improve
the model’s generalizability, considering the diverse nature of
leukemia. Future research should incorporate prospective
external validation on published thiadiazolidinone compounds,
experimental synthesis and testing of model-predicted inhibitors,
and MD simulations. Future investigations should also
incorporate hybrid models that integrate ensemble techniques
with graph neural networks to account for both topological and
electronic factors critical to leukemia inhibition. Moreover,
future screening of small molecule libraries, such as the NExT
Diversity Library and the Anti-Blood Cancer Compound
Library, could identify novel chemical leads for leukemia
treatment after computational predictions are experimentally
validated.

Conclusions
This ML-based QSAR analysis identified structure-activity
patterns and key molecular properties associated with
antileukemia activity in a carefully curated library of 35
thiadiazolidinone analogs. Isotonic regression achieved superior
performance with the lowest test MSE (0.00031 ± 0.00009) and

R2 of 0.888 ± 0.012, outperforming baseline models by over
15% in explained variance. Ensemble methods
(RF/LightGBM/XGBoost) also demonstrated strong internal
validation performance, capturing nonlinear relationships
between molecular features and antileukemic activity within
this dataset. SHAP analysis consistently identified global
molecular shape (r_qp_glob), weighted polar surface area
(r_qp_WPSA), and polarizability (r_qp_QPpolrz) as the primary
determinants of antileukemic activity across multiple algorithms
(LightGBM, random forest, XGBoost, and PLS), suggesting
that these molecular descriptors, rather than isolated hydrogen
bonding parameters, are the critical drivers of compound

efficacy. This finding aligns with those reported in other studies
[83-85]. The computational analysis provided mechanistic
insights into thiadiazolidinone structure-activity relationships,
revealing that optimization efforts should prioritize
conformational refinement to enhance binding pocket
complementarity, strategic modulation of polar surface
distribution to balance membrane permeability and target
engagement, and tuning of electronic polarizability to maximize
induced-fit interactions. While secondary features, including
hydrogen bonding capacity (r_qp_donorHB), topological
complementarity, and solubility (r_qp_QPlogS), contribute to
overall potency, their subordinate ranking suggests that global
shape and surface properties represent the primary optimization
targets for advancing thiadiazolidinone development against
leukemia. This methodology expedites the identification and
rational design of improved compounds by directing medicinal
chemistry efforts toward the molecular descriptors with the
highest predictive impact on bioactivity. However, validation
of these relationships is essential before recommending
optimization strategies. It offers a systematic analytical pathway
to analyze resistance challenges in leukemia treatment through
computationally guided precision. Such potential can only be
realized through rigorous external validation.

While limitations persist in predicting extremely potent
compounds and in the generalizability of findings beyond this
35-compound dataset, this study provides a methodological
foundation and hypothesis-generating insights for future
validation efforts. Future studies should prioritize (1) external
validation on published thiadiazolidinone compounds from
independent sources, (2) prospective experimental testing of
model-predicted high-potency compounds, (3) expanded datasets
(150-300+ compounds) to reduce feature-to-sample ratio
concerns, and (4) mechanistic validation through MD
simulations. Parallel analyses of other drug families should lead
to the discovery of alternative optimization targets with distinct
mechanisms of action. Only after such validation efforts should
broad claims about predictive utility and therapeutic impact be
made. Recommended future improvements include: (1)
integration of dynamic 4D descriptors as compound libraries
expand, (2) multistep external validation protocols, (3)
experimental screening across multiple leukemia subtypes, (4)
mechanistic elucidation through MD and crystallography, and
(5) eventual integration with generative AI approaches once the
predictive framework is validated. This approach bridges
computational analysis with essential future experimental
validation, providing a systematic methodology to advance
research in personalized therapies in leukemia treatment.
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