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Abstract

Background: Clinical deterioration in general ward patients is associated with increased morbidity and mortality. Early and
appropriate treatments can improve outcomes for such patients. While machine learning (ML) tools have proven successful
in the early identification of clinical deterioration risk, little work has explored their effectiveness in providing data-driven
treatment recommendations to clinicians for high-risk patients.

Objective: This study established ML performance benchmarks for predicting the need for 10 common clinical deterioration
interventions. This study also compared the performance of various ML models to inform which types of approaches are
well-suited to these prediction tasks.

Methods: We relied on a chart-reviewed, multicenter dataset of general ward patients experiencing clinical deterioration
(n=2480 encounters), who were identified as high risk using a Food and Drug Administration—cleared early warning score
(electronic Cardiac Arrest Risk Triage score). Manual chart review labeled each encounter with gold-standard lifesaving
treatment labels. We trained elastic net logistic regression, gradient boosted machines, long short-term memory, and stacking
ensemble models to predict the need for 10 common deterioration interventions at the time of the deterioration elevated risk
score. Models were trained on encounters from 3 health systems and externally validated on encounters from a fourth health
system. Discriminative performance, assessed by the area under the receiver operating characteristic curve (AUROC), was the
primary evaluation metric.

Results: Discriminative performance varied widely by model and prediction task, with AUROC:S typically ranging from 0.7 to
0.9. Across all models, antiarrhythmics were the easiest treatment to predict (mean AUROC 0.866, SD 0.012) while anticoa-
gulants were the hardest to predict (mean AUROC 0.660, SD 0.065). While no individual modeling approach outperformed
the others across all tasks, the gradient boosted machines tended to show the best individual performance. Additionally,
the stacking ensemble, which combined predictions from all models, typically matched or outperformed the best-performing
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individual model for each task. We also demonstrated that a sizable fraction of patients in our evaluation cohort were untreated
at the time of the deterioration elevated risk score, highlighting an opportunity to leverage ML tools to decrease treatment
latency.

Conclusions: We found variability in the discrimination of ML models across tasks and model approaches for predicting
lifesaving treatments in patients with clinical deterioration. Overall performance was high, and these models could be paired
with early warning scores to provide clinicians with timely and actionable treatment recommendations to improve patient care.

JMIR AI 2026,5:e81642; doi: 10.2196/81642
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Introduction

Background

Previous studies have demonstrated that clinical deterioration
on the hospital wards is associated with increased morbidity
and mortality [1-5]. Deteriorating ward patients who require
intensive care unit (ICU) transfer account for a dispropor-
tionate fraction of ICU deaths, with their mortality rates
exceeding those of patients admitted directly to the ICU [3,
6]. Early and appropriate interventions are associated with
improved outcomes for patients experiencing acute physio-
logical deterioration [7-11]. Despite this knowledge, delays
in care are common and associated with increased mortality
[12-16], motivating the development of new approaches to
improve care for this high-risk population.

Efforts to improve interventions for patients with clinical
deterioration can be divided into 2 domains: identification
(ie, earlier detection of high-risk patients) and response
(ie, the actions taken to address deterioration), also called
the afferent and efferent limbs of a rapid response system
[17]. Much existing work has focused on identification,
as earlier detection of high-risk patients naturally supports
earlier interventions; we refer to the study by Mann et al [18]
for a recent survey of approaches related to early warning
scores for early identification. Broadly, these approaches
identify physiological changes, such as changes in vital
signs, that tend to precede deterioration [5,19,20]. Methodol-
ogies vary widely, although much recent work has focused
on integrating advanced machine learning (ML) approaches
with electronic health records (EHRs) to process risk scores
automatically [19,21,22]. Single- and multicenter studies
implementing these types of early warning systems have
demonstrated promising improvements to patient outcomes
[21,23-25].

Despite the progress in the identification arm of the
system, there is far less work analyzing how automated ML
approaches can be applied to similarly improve the response
arm. Identification is a necessary condition for initiating
treatment, but it is not sufficient to ensure that a patient
receives the most appropriate treatment (or treatments) in
a timely fashion. This is particularly important because
early warning systems often focus on nonspecific deterio-
ration risk instead of monitoring for a specific syndrome
like sepsis [26]. Ideally, early warning systems that flag
high-risk patients would additionally supply data-driven
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treatment recommendations. A recommendation could serve
as a clinical decision support tool, either to reinforce clinician
intuition or to prompt treatments that the clinician might not
have initially considered. Clinicians using similar artificial
intelligence (AI) clinical decision support tools in related
fields have been shown to outperform both the supporting Al
model and clinician judgment individually (eg, in pathology
[27] and radiology [28]).

However, treatment recommendation ML models that are
tied to clinical deterioration early warning scores have not
yet been developed, in large part, because such models
cannot be properly trained on EHR data without significant
additional clinician input. Although EHR data can provide
information regarding what treatments a patient received,
expert manual chart review is required to assess which
treatments they received (or did not receive) were appropri-
ate and directed at the underlying cause of deterioration.
Without chart review, models can only learn to mimic
the status quo, rather than provide gold-standard treatment
recommendations. Chart-reviewed datasets of this kind are
rare and typically limited in size or to single centers [29].
As a result, it is currently unclear what level of perform-
ance clinicians can expect from treatment recommendation
algorithms for general ward clinical deterioration. Further-
more, it is unknown which types of ML modeling approaches
will perform best in this context.

Contribution

In this study, we train a collection of ML models to predict
lifesaving treatments for general ward patients with clinical
deterioration. These models are designed to supplement a
generalized early warning system by providing treatment
suggestions for clinician decision support. We rely on a large,
multicenter dataset with gold-standard treatment recommen-
dations established by manual chart review [30]. These
models set benchmark performance standards for different
types of treatment recommendations, and we discuss the
advantages and disadvantages of the various ML model types
under study.

Methods
Study Cohort

We used a study cohort built from 4000 chart-reviewed
patient encounters, originally introduced by Churpek et al
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[30]; we reiterate key aspects of the cohort’s construction
here.

Encounters were sampled from 4 health systems:
University of Chicago Medicine, the University of
Wisconsin-Madison Hospital, the Loyola University Medical
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Center, and 4 hospitals within Endeavor Health. These
samples were drawn from the population of each health
system’s encounters that met the inclusion criteria established
in Textbox 1. Collectively, the encounters occurred between
2007 and 2020.

Textbox 1. All encounters satisfying the following criteria at the 4 noted health systems were eligible to be sampled as part of

the study cohort.

* The patient was at least 18 years of age;

care unit) ward.

* Clinician provider notes (eg, admission history and physical discharge summary) were available for the encounter;
* During their encounter, the patient was admitted to the hospital and spent time on a medical-surgical (non—intensive

Across the 4 health systems, 919,319 encounters met the
inclusion criteria. EHR data associated with these eligible
encounters were evaluated using the electronic Cardiac Arrest
Risk Triage score (eCART), an early warning score that
uses demographics, vital signs, and laboratory results to
predict clinical deterioration (ie, cardiac arrest, ICU trans-
fer, or death) [19]. Among these eligible encounters, 91,131
included 1 or more instances where the eCART model met
the threshold for elevated risk of clinical deterioration (top
5% risk score) while on the medical-surgical (non-ICU) ward.
For brevity, we refer to this event as an elevated risk score.
From each health system, 1000 encounters with at least 1
elevated risk score were randomly sampled for manual chart
review (4000 total) by expert acute care physicians. In this
work, 5 of the encounters from the University of Wisconsin-
Madison Hospital were ultimately excluded due to a lack of
EHR data availability, leaving 995 encounters for that health
system and 3995 overall. These 3995 encounters were further
filtered by chart review to the final cohort size of 2480 based
on the presence of a true deterioration event (ie, an occur-
rence of clinical deterioration rather than a false alarm) during
or following the elevated risk score. A complete flow diagram
is provided in Multimedia Appendix 1.

Ethical Considerations

The study was approved by the institutional review board
(IRB) at each health system with a waiver of informed
consent. IRB approval was given under University of Chicago
Biological Sciences Division IRB #18-0447, University of
Wisconsin-Madison IRB #2019-1258, Loyola University
Medical Center IRB #215437, and Endeavor Health IRB
#11-0539. All direct identifiers were deidentified before
analysis to ensure privacy and confidentiality. Participants did
not receive compensation for this data analysis, as this was a
retrospective analysis and no direct contact with participants
occurred.

Measures

Patient Measurements

A complete list of patient measurements included in our
modeling is provided in Multimedia Appendix 2. Approxi-
mately 50 measurement types were included in our modeling.
These measurements included demographic information (eg,
age and sex), vital signs (eg, heart rate and temperature),
and laboratory measurements (eg, electrolytes and blood cell
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counts). These measurement types were selected by expert
consensus as ubiquitous measures available in the EHR. The
measurements were used to construct features for the different
algorithms used in our modeling. Refer to the “Feature
Engineering” section for further description of the features
used in our tested models.

The EHR also included information about the treatments
each patient received. However, this treatment information
was not included as an input to our models and was only
used for evaluation purposes (ie, to assess when or whether
a patient received a treatment deemed lifesaving by manual
chart review). We chose to exclude treatments from the model
features to prevent label leakage into the dataset. Not only
could leakage artificially inflate assessed model performance,
but inclusion would have also allowed current treatment
practices to influence model predictions.

Chart Review

The 1000 encounters sampled from each health system were
manually chart-reviewed by trained reviewers in each health
system. The complete chart review procedures are described
in the study by Churpek et al [30]; we reiterate relevant
procedures and outcomes in this study.

First, the reviewers assessed whether the elevated risk
score corresponded to a true deterioration event or to a false
alarm (eg, due to a spike in heart rate associated with the
patient getting out of bed). Of the 3995 encounters in the
cohort, 2480 included 1 or more true deterioration events. For
these cases, the reviewers recorded 1 or more treatments that
would ultimately be considered lifesaving for the patient’s
deterioration event. For encounters that contained more than
1 deterioration event, the chart review assessed the first such
event. The reviewers used information from both before and
after the elevated risk score (eg, clinician notes following
treatment initiation that describe diagnostic test results and
the response to therapy). Lifesaving treatments included both
drug interventions, such as antiarrhythmics or steroids, and
nondrug interventions, such as transfusions or ventilation.
Additionally, while nearly all patients received the treatment
(or treatments) indicated to be lifesaving by the reviewers at
some point in their encounter, the chart-reviewed treatment
was not limited to the treatments the patient received. For
instance, if a patient died before the treatment could be
administered, it was still included as a lifesaving treatment
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during chart review. The chart review process did not assign
an optimal time for initiating each labeled intervention. As
our goal was to evaluate the performance of ML treatment
recommendation algorithms at the time of an elevated risk
score, all chart-reviewed labels were chosen such that they
would have been appropriate to administer at the time of the
elevated risk score.

Labels and Prediction Tasks

For each encounter, the chart review process established 1
or more treatments to be lifesaving for the patient. These
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treatments served as the labels for our predictive modeling.
We considered the 10 most common treatments indicated
by chart review, given in Textbox 2. Thus, the prediction
problem was to predict a patient’s need for each of the 10
treatment categories using the patient’s EHR measurements
(processed appropriately into model features) at the time
of the patient’s elevated risk score. This approach poses
the problem as multilabel prediction (ie, prediction for each
treatment type occurs in parallel) as opposed to multiclass
prediction (ie, treating combinations of treatments as possible
labels with only 1 label assigned to each encounter).

Textbox 2. Treatment labels in descending order of prevalence across encounters at the Loyola University Medical Center
(n=622 encounters). Encounters at this health system were used as our test set, while encounters from the remaining 3

health systems were used for model training and validation. For each treatment, we parenthetically note the number of
positive-labeled cases. A single encounter may be labeled with multiple lifesaving treatments, so positive labels do not sum to

the total number of encounters.

¢ Fluid bolus (n=231)
¢ Diuretic (n=93)

¢ Transfusion (n=60)

* Invasive ventilator (n=53)

* Vasoactive (including inotropes, n=49)
* Anticoagulant (n=36)

¢ Steroid (n=29)

* Antimicrobial (including antibiotics, antifungals, and antivirals; n=300)
* Antiarrhythmic (including beta-blockers and AV nodal blocking agents, n=111)

* Inhaled bronchodilator (including nebulizer treatments and asthma medications, n=79)

Tested Models
Model Types

A primary goal of our modeling was to assess whether
certain model types showed better or worse discriminative
performance on different treatment prediction tasks. As
such, we trained traditional, non—deep learning prediction
models, namely elastic net logistic regression (LR) and
gradient boosted machines, as well as deep learning time-ser-
ies models, specifically a type of recurrent neural network
called a long short-term memory (LSTM) model [31]. LR
was implemented using Scikit-learn [32], gradient boos-
ted machines were implemented using tree-based Extreme
Gradient Boosting, referred to as XGB [33], and LSTMs were
implemented using PyTorch [34]. Both single- and multilabel
LSTMs were evaluated for the various prediction tasks. In
the single-label case, we trained unique LSTMs (including
hyperparameter tuning) for each prediction task; this mirrors
the process for LR and XGB, which also natively consider
only a single label per model. In the multilabel case, we
trained 1 LSTM model (ie, with 1 set of hyperparameters)
that simultaneously made predictions for all 10 treatment
prediction tasks.

Given the success of ensemble learning approaches in
numerous health care prediction tasks [35,36], we also
evaluated the performance of a stacking ensemble learner in
this treatment recommendation context. Stacking, sometimes
also called late fusion, involves training a meta-learner
from the outputs of individual models, effectively learning
appropriate weighting values to assign to predictions made by

https://ai.jmir.org/2026/1/e81642

each model [37,38]. In this study, we used an elastic net LR
meta-learner, trained using the prediction probabilities from
the individual model as features.

Feature Engineering

While features for each model type relied on the same set
of EHR measurements, structural differences in the mod-
els necessitated different approaches in feature engineering.
We provide an overview of these differences here and
refer readers to a complete list of features and construction
procedures for each model in Multimedia Appendix 2.

The largest difference in features between LR or XGB and
the LSTM models was their handling of temporal informa-
tion. LR and XGB do not directly process time-series data
and thus required the creation of a single set of features to
describe each encounter. The first portion of these LR and
XGB features was the last available value for each EHR
measurement type at the time of the elevated risk score.
XGB can handle missing feature values (eg, for an individual
with no available measurements of a certain value before
the elevated risk score), so XGB models were trained with
a featurization of the dataset that preserved missingness. LR
cannot accommodate missing measurements, so we created a
separate version of the features for LR that imputed missing
values with medians from the training set; these LR and
XGB feature sets were otherwise identical. In addition to
the last-available measurement values, we also included a
set of temporal summary statistics for certain measurement
types over the 24 hours preceding the elevated risk score (eg,
minimum or maximum values, means and SDs, and rates of
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change over given time intervals). These quantities allowed
for the encoding of near-term temporal information about the
patient and have been shown to improve the performance of
these models in previous work on early warning scores [20].

In contrast, LSTM models are designed to handle
sequences of temporal measurements for each encounter. For
the LSTMs, we resampled the raw time-series data to uniform
intervals. The interval length (2, 4, or 6 h) was a tunable
hyperparameter for each of the prediction tasks (ie, treatment
types). Regardless of the interval length, a last-value-pulled-
forward approach was used for resampling the value at each
time step. If no value was available during the resampling
interval, it was pulled forward from the previous resampled
value. If no previous resampled value was available, it
was imputed using the median value from the training set.
Resampling was performed relative to the time of the elevated
risk score, meaning the elevated risk score time was used as
the anchor point and the EHR data were processed backward
from that time using the specified interval length. In addition
to the resampled measurement values, a tunable hyperparame-
ter in our LSTM models was the use of imputation Booleans
(ie, features that take the value 1 when a given measurement
is imputed and O when there is a true measurement) [39].
This allowed the LSTM to also learn patterns associated with
missing versus true measurement values.

For all models except XGB, we used the minimum and
maximum observed values in the training set to rescale
features to the interval [0,1]. The minimum and maximum
values used for rescaling were specific to the features
constructed for each model (ie, values in the resampled
time-series features for the LSTM were only used for
rescaling the LSTM features, not the LR features, and vice
versa). XGB is scale-independent, so variable scaling was not
performed for these models.

Model Training

Data from encounters containing deterioration events at 3
of the health systems (University of Chicago Medicine,
483 encounters; University of Wisconsin-Madison Hospital,
656 encounters; and Endeavor Health, 719 encounters) were
combined to form a training set (1858 encounters). The 622
encounters in the fourth health system, Loyola University
Medical Center, were used as a held-out test set. Struc-
tural differences between LR and XGB, the LSTMs, and
the stacking ensemble required slightly different tuning and
training procedures and are described further in this study.

LR and XGB followed a common fitting procedure aside
from LR’s use of features with imputation and XGB’s use
of features with missingness. Both LR and XGB models had
tunable hyperparameters (eg, regularization method for LR
and number of boosting rounds for XGB) that were evalu-
ated with cross-validation. Specifically, the best-performing
hyperparameters were established by grid search during 4
repeats of 3-fold stratified cross-validation of the training set.
The area under the receiver operating characteristic curve
(AUROC) was used as the cross-validation scoring metric
[40]. A complete set of hyperparameter ranges and chosen
hyperparameters for LR and XGB is provided in Multimedia
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Appendix 2 and Multimedia Appendix 3. After identifying
the best-performing hyperparameters via grid search, the LR
and XGB models were retrained on the complete training set
and evaluated on the test set.

Training differed slightly for the LSTMs as we used early
stopping as a form of model regularization; this meant that
the number of passes through the training set was included
in hyperparameter tuning. Specifically, in each iteration of
the same repeated 3-fold stratified cross-validation process,
2 folds of the training set were used for model training,
and 1 was used for validation. After each pass through the
training data, we evaluated the trained model’s AUROC on
the validation encounters. We repeated this process until 10
epochs passed without the current epoch’s validation AUROC
exceeding the best-observed validation AUROC across past
epochs. The best-observed AUROC was used as the scoring
value for that iteration of cross-validation. We recorded the
epoch count associated with the best-observed validation
AUROC and took the mean of this value across the 12 total
iterations of repeated cross-validation to obtain the tuned
epoch value for that set of hyperparameters.

In addition to tuning common hyperparameters, such as
the learning rate or number of hidden units, we explored the
effect of various other LSTM structures from the litera-
ture. For instance, we included a target replication parame-
ter that allowed for intermediate predictions (ie, those that
would be made at time steps before the elevated risk score)
to also factor into the model’s loss function [3641]. We
also included the option to use channel-wise inputs as a
binary hyperparameter [42]; when this option was used,
each measurement channel was passed through an additional
LSTM with its own tunable hyperparameters. This allowed
models to capture specific trends in individual measurement
streams before these quantities were combined in the primary
LSTM model. As with LR and XGB, a complete set of
hyperparameter ranges and chosen values is available in
Multimedia Appendix 2 and Multimedia Appendix 3. As
LSTM training was more time-consuming than that of LR
and XGB, we used Optuna (Preferred Networks) [43], a
package that uses Bayesian optimization to efficiently sample
candidate hyperparameters, to coordinate LSTM hyperpara-
meter tuning rather than performing a grid search. As with LR
and XGB, after identifying the best-performing hyperparame-
ters, we retrained a model on the complete training set and
evaluated its performance on the test set.

As our stacking ensemble model was an elastic net LR
model, it followed the same hyperparameter tuning process
as our individual LR models. However, special care was
needed to construct the training dataset for this stacking
model. Recall that a stacking model uses weighted predictions
from each submodel (eg, XGB) to make its predictions. To
learn an appropriate weighting, a stacking model must be
trained with out-of-sample predictions from each submodel.
For each of the submodels, we iteratively reconstructed a
complete set of the training encounters with out-of-sample
predictions; the training set was divided into 5 folds, and each
submodel type was trained on 4 of the folds (using the best
performing hyperparameters identified previously) to produce
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out-of-sample predictions for the remaining fold. Iterating
across all 5 folds allowed for complete reconstruction of the
training set with out-of-sample predictions. We repeated this
process 5 times to produce a dataset suitable for repeated
cross-validation (5 repeats of 5-fold cross-validation). We
used these out-of-sample predictions to perform hyperpara-
meter tuning and identify the best-performing hyperparame-
ters for the stacking models. We then trained the final
stacking model using the best-performing hyperparameters on
the complete set of out-of-sample predictions and evaluated
the stacking model’s performance on the test set.

Evaluation Criteria

Our primary evaluation criterion for the different models
was discriminatory ability, assessed using the AUROC.
We express uncertainty in calculated AUROC values using
nonparametric bootstrapped 95% CIs [44]. As a secondary
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metric, we assessed model calibration using calibration curves
and Brier scores, with uncertainties also expressed using
bootstrapped 95% Cls. Finally, Shapley Additive Explana-
tions (SHAP) values were used to provide model explainabil-
ity results, as described in the study by Lundberg and Lee
[45].

Results

Demographic Information

Table 1 provides a summary of the demographic characteris-
tics of the study cohort, including separation by encounters
at the train and test sites. The test site encounters came
from a separate health system but show similar demographic
characteristics to the encounters from the 3 health systems
used to form the training set.

Table 1. Demographic information for patient populations at the studied health systems.

Measure All sites Train sites Test site

Encounter count, n (%) 2480 (100) 1858 (74.9) 622 (25.1)
Age (y), median (IQR) 70 (50-84) 71 (59-86) 67 (57-79)
Female, n (%) 1244 (50.1) 944 (50.8) 300 (48.2)
Black, n (%) 492 (19.8) 359 (19.3) 133 (21.3)
Elevated risk score value (¢CART? score), median (IQR) 50 (40-76) 51 (40-78) 49 (40-69)

Length of stay before elevated risk score (hr), median (IQR)
Length of stay after elevated risk score (hr), median (IQR)
In ICUP before elevated risk score, n (%)

In operating room before elevated risk score, n (%)

ICU transfer after elevated risk score, n (%)
In-hospital mortality, n (%)

20.3 (6.4-67.2)
126.9 (68.1-241.0)

18.4 (5.7-60.5)
124.4 (67.0-234.8)

28.2 (8.1-88.8)
133.7 (72.0-260.7)

453 (18.2) 327(17.5) 126 (20.2)
401 (16.1) 285 (15.3) 116 (18.6)
721 (29) 501 (26.9) 220 (35.3)
357 (14.3) 253 (13.6) 104 (16.7)

4eCART: electronic Cardiac Arrest Risk Triage.
ICU: intensive care unit.

Timing of Treatment Initiation

To give insight into the treatment initiation practices observed
in the test site encounters, Table 2 summarizes the fraction of
patients who received each treatment during particular time
periods in their encounter. Additional information regarding
treatment initiation timing can be found in Multimedia

Appendix 2. While most patients received the lifesaving
treatments assessed by chart review at some point in their
encounter, a sizable fraction of patients were untreated at the
time of the elevated risk score. This untreated patient fraction
varied by treatment, ranging from roughly 20% in the case of
antiarrhythmics to nearly 90% in the case of vasoactives.

Table 2. Timing of lifesaving treatments for the 622 test set encounters from the Loyola University Medical Center. Each row describes summaries

of treatment initiation timing for the encounters labeled as requiring that treatment during chart review.

Treatment Encounters, n (%)

Any time during

@Patient received treatment during specified time window, n (%)

<48 h before

encounter +48 h of ERSP  Any time before ERS  ERS <24 h before ERS

Antimicrobial 300 (48.2) 295 (98.3) 291 (97) 217 (72.3) 202 (67.3) 129 (43)

Fluid bolus 231 (37.1) 185 (80.1) 171 (74) 107 (46.3) 89 (38.5) 73 (31.6)
Antiarrhythmic 111 (17.8) 110 (99.1) 108 (97.3) 87 (78.4) 85 (76.6) 39(35.1)
Diuretic 93 (14.9) 92 (98.9) 85(91.4) 56 (60.2) 53 (57) 30(322)

Inhaled bronchodilator 79 (12.7) 76 (96.2) 75 (94.9) 58 (734) 58 (734) 26 (32.9)
Transfusion 60 (9.6) 50 (83.3) 47 (78.3) 23 (38.3) 18 (30) 15 (25)
Vasoactive 49 (7.9) 46 (93.9) 35(714) 6(12.2) 4(8.2) 1(2)
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Treatment Encounters, n (%) “Patient received treatment during specified time window, n (%)

Any time during <48 h before

encounter +48 h of ERSP Any time before ERS ERS <24 h before ERS
Anticoagulant 36 (5.8) 34 (94.4) 33 (91.7) 25 (69.4) 23 (63.9) 12 (33.3)
Steroid 29 (4.7) 28 (96.6) 25 (86.2) 14 (48.3) 14 (48.3) 5(172)

4Subcolumns indicate if a patient was treated during the noted period of their encounter (ie, each subcolumn gives a particular summary of treatment
practices for the encounters labeled as needing the treatment described in each row). For instance, chart review labeled 300 of the 622 encounters
with antimicrobials as a lifesaving treatment. Among these 300 patient encounters, 295 (98.3%) received antimicrobial treatment at some point during
their encounter, 291 (97%) received antimicrobial treatment specifically within +48 hours of their elevated risk score, and so on. Patients may have
received treatment multiple times during their encounter. Note that the chart review process considered patients on invasive, mechanical ventilation

to be intensive care unit patients, thus making them ineligible for chart review sampling and implying that no patients in this cohort were receiving
invasive ventilation at the time of the elevated risk score. The electronic health record did not have a reliable signal indicating when invasive
ventilation began, so we do not report treatment summaries for this treatment.

YERS: elevated risk score.

Model Performance of patients not actively receiving treatment at the time of
the elevated risk score. Model performance varied widely

by model type and prediction task, with AUROCS typically
ranging from 0.7 t0 0.9.

Figure 1 summarizes the discriminative performance of the
tested models across the 10 prediction tasks, assessed by
AUROOC; this summary includes a separation of performance
on the complete test cohort from performance on the subset

Figure 1. Area under the receiver operating characteristic curve (AUROC) performance for each model type on the 10 treatment prediction tasks
(given as bar plots). The top panel summarizes model performance when evaluated on all patients in the test cohort. The middle panel summarizes
model performance when evaluated only on subjects in the test cohort who were not receiving the designated treatment at the time of the elevated risk
score (determined based on whether the patient received the treatment within the 48 h before the elevated risk score). Below each label in the top and
middle panels is the ratio of positive cases to total cases. The bottom panel summarizes the difference in AUROC values between the first and second
panels (AUROC on the untreated subset minus AUROC on all subjects). Negative values denote a decrease in performance on the untreated subset
compared with the full test cohort. In all panels, models are grouped together for each treatment. Inh. Bronch.: inhaled bronchodilator; LSTM: long
short-term memory; Vent.: ventilator; XGBoost: Extreme Gradient Boosting.
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Table 3 summarizes the discriminative performance of the
models for each prediction task, specifically by averaging the
AUROC performance across model types for each treatment.
Mean AUROC values are presented for both the complete
test site cohort and the subset of test site patients not
actively receiving treatment at the time of the elevated risk

Pulick et al

score. The rank-ordering of mean AUROCs varied slightly
between these cohorts. Broadly, the models tended to perform
best on prediction for antiarrhythmics, transfusions, and
inhaled bronchodilators and performed worst on anticoagu-
lants, vasoactive agents, and invasive ventilation.

Table 3. Summary of model performance for the different treatment types. Performance is assessed by the mean area under the receiver operating

characteristic curve performance of all model types (including the stacking ensemble) for each treatment. Mean values are calculated for both the full

test cohort and the untreated patient subset.

Untreated subset (AUROC), mean

Treatment Full test set (AUROC?), mean (SD) (SD)
Antiarrhythmic 0.866 (0.013) 0.822 (0.022)
Transfusion 0.823 (0.014) 0.818 (0.018)

Inhaled bronchodilator

Antimicrobial

0.805 (0.037)
0.788 (0.015)

0.778 (0.065)
0.761 (0.018)

Steroid 0.733 (0.031) 0.770 (0.026)
Fluid Bolus 0.722 (0.011) 0.700 (0.012)
Diuretic 0.701 (0.024) 0.669 (0.040)
Invasive ventilator 0.671 (0.042) 0.671 (0.042)
Vasoactive 0.669 (0.031) 0.666 (0.032)
Anticoagulant 0.660 (0.065) 0.585 (0.080)

2AUROC: area under the receiver operating characteristic curve.

Table 4 summarizes the relative performance of the different
model types. Specifically, model performance was assessed
by weighted AUROC performance across tasks and the mean
AUROC rank ordering of the models. Results are presen-
ted for both the complete test site cohort and the subset
of test site encounters not actively receiving treatment at
the time of the elevated risk score. While no individual

model universally outperformed the others, XGB showed the
best weighted AUROC across tasks. The stacking ensemble
offered improved performance over the individual models,
typically matching or exceeding the AUROC of the best
performing individual model and showing the best overall
weighted AUROC performance.

Table 4. Summary of tested model performance. Weighted model AUROCs?, mean AUROC model rank across all algorithms, and mean AUROC
model rank among individual models are provided for both patient populations (ie, the complete test site cohort and the untreated patient subset).

Weighted AUROCs were calculated using the number of positive cases for each prediction task as a weighting factor. Mean AUROC ranking

calculations weighted each prediction task equally. SD values are noted in parentheses.

Model Performance on full test set Performance on untreated subset
Mean AUROC Mean AUROC Rank Mean AUROC  Mean AUROC Rank
Weighted AUROC Rank (individual only) Weighted AUROC Rank (individual only)

Ensemble 0.781 1.7 (0.64) —b 0.743 1.8 (0.60) —

XGB¢ 0.769 2.5(1.20) 1.8 (0.87) 0.737 24(143) 1.8 (1.08)

LRd 0.755 3.1(1.14) 2.3 (0.90) 0.720 3.0(1.10) 22(0.87)

Multilabel LSTM®  0.749 39(1.22) 3.0 (1.00) 0.712 39(1.22) 3.0 (1.00)
Single-label LSTM  0.744 3.8 (1.40) 29(122) 0.699 39(1.22) 3.0 (1.00)

2AUROC: area under the receiver operating characteristic curve.
bNot applicable.

°XGB: Extreme Gradient Boosting.

dLR: logistic regression.

°LSTM: long short-term memory.

Figure 2 shows calibration curves for each modeling
approach when pooling predictions across all tasks. To further
assess calibration performance, we provide Brier scores and
task-specific calibration curves in Multimedia Appendix 2.
We note that we did not apply calibration postprocessing
techniques and instead evaluated the intrinsic calibration of
the methods. The classical ML approaches tended to be

https://ai.jmir.org/2026/1/e81642

well-calibrated, while the LSTMs showed poor calibration.
Global feature importance plots, assessed using SHAP values,
for the 3 most common treatments (antimicrobials, fluid
boluses, and antiarrhythmics) as well as case evaluations
of steroid and anticoagulant prediction can be found in the
“Feature Importance” section in Multimedia Appendix 2.
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Figure 2. Calibration curves for the tested algorithms using a pooled set of predictions (ie, all prediction tasks are combined). Pooling was performed
as many individual tasks had too few positive cases to create meaningful calibration curves. LSTM: long short-term memory; XGBoost: Extreme

Gradient Boosting.
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Discussion
Principal Findings

In this multicenter study developing and comparing treat-
ment recommendation algorithms for high-risk hospitalized
patients, we found that predictive performance varied
significantly by model type and prediction task, typically
with AUROC values of 0.7-0.9. When assessed by the
mean AUROC of all models, including the ensemble, we
observed the highest discriminative performance on antiar-
rhythmic, transfusion, and bronchodilator prediction (mean
AUROCs 0.866 [SD 0.012], 0.823 [SD 0.014], and 0.805
[SD 0.037], respectively) and observed the lowest discrimina-
tive performance on invasive ventilation, vasoactive agents,
and anticoagulant prediction (mean AUROCs 0.671 [SD
0.042], 0.669 [SD 0.031], and 0.660 [SD 0.065], respec-
tively). Overall, the XGB algorithm was the best-performing
individual model type, and an ensemble of all model types
further improved performance. However, each individual
model had the best discriminative performance in at least
1 prediction task. The timing of treatment initiation in the
test site cohort varied by therapy, and the models generally
performed similarly for patients receiving and not receiving
therapy at the time of the elevated risk score (except for
anticoagulants). To the best of our knowledge, these are the

https://ai.jmir.org/2026/1/e81642
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Mean predicted probability (Positive class: 1)

0.8 1.0

first models in the published literature that use gold-standard
chart-reviewed training data to make treatment predictions at
the time of a clinical deterioration elevated risk score. These
models could be incorporated alongside early warning scores
to enhance clinical decision-making and prompt earlier,
lifesaving treatments.

Predictive Performance by Treatment
Type

We first examine the differences in performance across the
various treatment types, which ranged in AUROC values
from approximately 0.7 to 0.9. Antiarrhythmic prediction
had the highest AUROC, while anticoagulant prediction had
the lowest AUROC, although several additional treatment
types showed similar performance to anticoagulant prediction
(diuretics, invasive ventilation, and vasoactives all had mean
AUROC:s close to 0.7). A potential contributor to differen-
ces in performance is likely the presence (or absence) of
useful predictive signals in the structured EHR data used
in this study. For instance, changes in heart rate, which
is a structured data element included in our models, often
signal a patient’s need for antiarrhythmics, while treatments
like diuretics rely on additional measurement modalities that
we did not include (eg, chest X-ray images or physical
observations showing signs of fluid overload). To validate
this intuition, we performed SHAP analysis for the 3 most
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common treatment types (antimicrobials, fluid boluses, and
antiarrhythmics; Multimedia Appendix 2). We found that
the most important features for each treatment type agreed
well with clinical intuition. For instance, the most important
features for antimicrobial prediction related to temperature,
white blood cell counts, heart rate, and lactate levels. The
most important features for fluid bolus prediction related to
blood pressure, electrolytes, and heart rate. For antiarrhyth-
mic prediction, features related to heart rate were the most
important.

As a result, we would expect our models to perform best
when the most relevant patient attributes for a given treatment
type are contained within structured EHR data, such as vital
signs and laboratory values. This naturally motivates the
fusion of additional data sources for such models in the future
to enhance their discriminative performance. Fusion methods,
particularly intermediate and late fusion approaches, have
been shown to improve predictive performance by integrat-
ing additional modalities, such as imaging and clinical notes
[46,47]. In particular, mixture-of-experts frameworks show
promise for effectively handling multimodal data even when
certain modalities are missing [48]. More broadly, however,
it may be the case that certain conditions are easier to predict
than others, for instance, due to lower variability in patient
presentation. Even without additional input modalities, the
models presented here can be helpful sources of recommen-
dations, especially if clinicians are informed about which
treatment recommendations are most accurate.

Predictive Performance by Model Type

We found that no single algorithm uniformly outperformed
the others on all prediction tasks, and the rank-ordering of
algorithm performance varied across tasks. The absence of
a universally superior algorithm is consistent with recent
literature comparing baseline models (eg, LR) with gradient
boosted trees (eg, XGB) and deep learning approaches [49].
Broadly, however, XGB showed the best individual model
performance, with the highest weighted AUROC across
tasks and the best mean AUROC ranking among individual
algorithms. This also agrees with recent literature demon-
strating that boosted decision trees tend to outperform other
modeling approaches in prediction tasks for moderately sized
tabular datasets [49-51]. Importantly, however, all tested
models were the best-performing individual model in at least
1 prediction type; XGB performed best on 5 tasks, LR
performed best on 2 tasks, the single-label LSTMs performed
best on 2 tasks, and the multilabel LSTM performed best on
1 task. Additionally, while discrimination was our primary
evaluation metric, model calibration is also an important
consideration for use in a medical recommendation setting, as
it measures whether predicted probabilities reflect observed
outcome frequencies [52]. This work evaluated the calibra-
tion performance of the tested methods without applying
any corrective postprocessing techniques. XGB and LR
both showed good calibration, while the LSTM approaches
were poorly calibrated. We suspect that this is partially
due to the use of class weighting for the LSTMs on all
tasks to reduce the computational burden of hyperparameter
tuning. Furthermore, modern neural networks are known to
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exhibit poor calibration [53]. Numerous methods are available
to improve model calibration via postprocessing, such as
Platt scaling or isotonic regression [53-55]. However, best
practices for these techniques rely on the use of additional
held-out data, so model types with better intrinsic calibration
may be especially valuable in this data-scarce setting.

Given the varied performance of the individual models, it
was not surprising to see that the stacking ensemble, which
incorporated weighted contributions from each individual
model, tended to outperform the individual models. Specifi-
cally, the ensemble had the best overall performance on 4
individual prediction tasks, had the highest weighted AUROC
across tasks, and had a higher mean AUROC ranking across
prediction tasks when ranked alongside individual models.
The ensemble also tended to show the best calibration across
the tested methods. This performance is consistent with
existing literature, which has shown the benefits of ensem-
ble approaches in medical diagnostics [35]. However, we
note that the AUROC improvement of the ensemble over
that of the individual models was typically modest. There-
fore, clinician stakeholders will need to assess whether the
improved performance merits additional implementation or
explainability costs compared with implementing a single
model like XGB. Hyperparameter tuning for the LSTM
approaches, for instance, carried significantly more compu-
tational burden compared with LR and XGB. Furthermore,
while we focused on establishing the discriminative perform-
ance of the different methods, future work will need to
consider the misclassification costs associated with each of
the treatment types to guide such modeling decisions.

Timing of Treatment Initiation

The timing of treatment initiation for chart-reviewed
lifesaving treatments varied by treatment type. We focused
on the fraction of individuals receiving lifesaving treat-
ment within 48 hours before their elevated risk score, as
these treatments are more likely to be clinician responses
to the deterioration event of interest. For some interven-
tions (eg, antimicrobials, antiarrhythmics, bronchodilators,
and anticoagulants), approximately 75% of patients received
the corresponding treatment before the elevated risk score.
However, for other interventions (eg, steroids, fluid boluses,
transfusions, and vasoactive medications), fewer than half
of the encounters had their treatment initiated before the
elevated risk score. As a result, we expect that our mod-
els will offer different benefits to some patients and condi-
tions compared with others. For instance, in some cases,
the models reinforce clinician intuition (ie, where treatment
has already been initiated), whereas in others, they would
prompt treatment initiation. Furthermore, nearly all patients
received the lifesaving treatment at some point during their
encounter, with slight variations by treatment type. As noted
previously, the early initiation of appropriate treatments is
associated with improved patient outcomes [7-11], reinforc-
ing the potential benefit of AI decision support tools in
recommending lifesaving treatments.
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Predictive Performance for Untreated
Patients

We further assessed predictive performance for the subset
of test site patients who were not receiving each treatment
type at the time of the elevated risk score. A patient was
included in this untreated subset if they did not receive the
noted treatment within the 48 hours before the elevated risk
score for the deterioration event under study. We noted a
small but near-universal drop in AUROC across algorithms
and treatment types, typically less than 0.05. The effect
is more pronounced for some treatment types than others.
There are several possible explanations for this phenomenon.
Cases with near-negligible differences, such as vasoactive
medications, are likely explained by near-identical study
populations (ie, AUROC calculations are performed on nearly
the same population since very few patients receive such
a treatment). Beyond these cases, we expect that some of
the performance drop is explained by the nature of this
patient subset; by excluding patients who already received
treatment from clinicians, we are presumably left with a
cohort that is more difficult to correctly diagnose and treat.
Thus, we would expect the algorithms to perform worse when
evaluated specifically on this more challenging patient subset.
A further contributor to the drop in AUROC is likely the
presence of label leakage through certain EHR measurements.
Because some treatments have clear markers in the EHR,
once initiated, it is possible for the models to use these
quantities for shortcut learning [56]. Anticoagulants showed
the largest drop in performance between the overall and
subset cohorts and serve as a particularly salient example
for this effect; heparin treatment impacts a patient’s partial
thromboplastin time, which is one of the measurements used
by the models. If the trained model learns to rely on the
presence of treatment proxies to perform prediction, the
absence of this signal in the untreated cohort is likely to result
in poorer performance. Finally, we note that steroid predic-
tion showed a counterintuitive increase in performance across
all models when measured on the untreated patient subset.
SHAP analysis of relevant model features cross-referenced
with differences in these patient populations did not suggest a
clear explanation for this increase in discriminative perform-
ance (Multimedia Appendix 2). We suspect that this is an
artifact of steroids having the most severe class imbalance,
making random variation in positive cases more pronounced
than the other prediction tasks.

Case Study of Anticoagulant Prediction

We highlight the prediction of anticoagulants to illustrate
2 important performance trends for the studied algorithms.
First, anticoagulant prediction was a task with noticea-
bly better performance by the multilabel LSTM compared
with XGB. While XGB tended to outperform the LSTM
approaches in general, here we see the potential value of
time-series models relative to non—time-series approaches for
certain prediction tasks. As LR and XGB are not fundamen-
tally time-series methods, these approaches required hand-
crafted temporal features to capture such information (eg,
SD of a measurement type over the previous day). SHAP
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analysis of the XGB model’s test set predictions (Multimedia
Appendix 2) suggested that the 3 most important covariates
for anticoagulant prediction were temporal summary statistics
(in descending order): SD of heart rate over the past 24 hours,
slope of temperature measurements over the past 24 hours,
and SD of temperature measurements over the past 24 hours.
Furthermore, for the most important feature, 24-hour SD of
heart rate, higher values were associated with the positive
class, suggesting that these patients experienced significant
variation in heart rate measurements. Thus, it may be that
the better performance observed from the multilabel LSTM
owes to its ability to learn relevant patterns directly from the
time-series data for these measurements rather than relying on
less informative temporal summary statistics.

However, anticoagulants also highlight a possible pitfall of
using data-hungry, deep learning approaches in this relatively
low-data regime [57]; while the multilabel LSTM had the
best performance for this treatment type, the single-label
LSTM had the worst performance. Direct consideration of
time-series data may allow higher capacity models to extract
additional information for prediction, but it may also lead
to poorer performance through overfitting, even with the
types of regularization used in the training of our mod-
els. This is especially relevant for the single-label LSTMs,
where we performed dedicated hyperparameter tuning for
each prediction task. To this end, we observed that single-
label LSTMs tended to outperform multilabel LSTMs for
prediction tasks with less class imbalance, and vice versa.

Deployment Considerations

While our primary focus in this study is to establish predic-
tive performance benchmarks for various ML approaches, we
also discuss several important points related to the real-
world deployment of these models. Foremost, we envision
these models providing suggestions to clinicians to enhance
their decision-making, rather than having decision-making
authority themselves. However, even in this recommender
capacity, several relevant implementation considerations
follow.

The first consideration is the predictive performance
of such models with respect to novel populations and to
subpopulations. While the results presented in this manuscript
come from model validation on an external site, all 4 sites
included in this study are regionally similar, academic health
systems in the United States. Further study will be required
to evaluate model predictive performance in other settings,
such as community or international hospitals, where varying
degrees of data shift may meaningfully impact performance
[58]. Even in settings with significant data shifts, models
like those trained in this manuscript may provide a valuable
foundation for transfer learning using setting-specific data
[59,60]. Furthermore, additional study is needed to evalu-
ate the performance of such models on particular patient
subpopulations to assess concerns related to algorithmic
fairness [61,62].

Second, the prospective operation of these models relies
on a minimum level of in-hospital data infrastructure,
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including the real-time availability of structured EHR data
and the ability to calculate the model scores [63]. While this
infrastructure is readily available in the academic medical
centers described in this manuscript, this may not be true
in community or international hospital settings. Furthermore,
we briefly noted how these recommendation models could
be augmented to include other measurement modalities, such
as imaging or clinical notes; these modalities are expected
to improve model performance but may not be available for
real-time prediction models in some hospitals, leading to
wider differences in performance between high- and low-
resource hospital settings.

Third, much additional study is needed to evaluate the
most effective integration of these treatment suggestions into
clinical workflows. While these models are naturally tied to
the usage of clinical deterioration early warning systems, such
as eCART, there is significant flexibility in how treatment
recommendations are actually delivered to clinicians (eg,
the use of thresholding vs probability scores, the integration
into other rapid response system elements, or the temporal
and visual manner of delivery). The field of human fac-
tors provides a principled means to design effective clinical
decision support system implementations in close collabora-
tion with relevant stakeholders [64-66]. These efforts will
be a critical component of future work in order to address
common problems with early-warning—type systems, such as
alarm fatigue and cognitive overload.

Finally, we briefly address broader ethical concerns with
clinical decision support systems in medical decision-mak-
ing, such as those related to misclassification and clini-
cian reliance. An important finding from this study was
the difference in predictive performance across treatment
categories and model types. One aspect of future work will
be assessing false positive and false negative costs associated
with each treatment type to inform tradeoffs when present-
ing threshold-based model scores. As incorrect treatment
initiation costs may vary significantly across treatments, the
level of clinically meaningful model performance is expected
to differ by treatment type. These types of considerations
may motivate the use of more complex models for certain
treatment types but not others, even if doing so incurs greater
certification costs or effort. With respect to clinician reliance,
we emphasize that such models can never be expected to be
perfectly accurate and that, in this proposed framework, the
clinician has ultimate responsibility for choosing whether to
initiate treatment.

Limitations

We emphasize and reiterate some limitations of our
study. First, our work does not show that a treatment
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recommendation algorithm improves outcomes for patients,
such as decreasing treatment latency and time in the
hospital. This needs to be assessed through future prospec-
tive implementation studies to determine if the use of our
recommendation algorithms improves patient care. We expect
that prospective implementation efforts will raise important
human factors considerations (eg, trust between a clinician
and the clinical decision support) that we do not address in
this work. Next, while this is a large, chart-reviewed dataset,
it is still relatively small compared with datasets typically
used to train medical ML models. This is an especially
important consideration for the performance of the deep
learning (ie, LSTM) approaches, as the dataset may be too
small to fully leverage the additional signal present in each
encounter’s time series data. Furthermore, while we used
a multicenter dataset, the included sites are all regionally
similar health systems in the Midwest region of the United
States; additional sites would be needed to assess how well
these results generalize to other health systems. Finally, our
work focuses primarily on the discriminative and calibration
performance of the tested models; we do not address concrete
tradeoffs for initiation or incorrect initiation of the differ-
ent treatment types. We plan to incorporate these factors
into future work, as they help inform tradeoffs in modeling
decisions and enable a more complete evaluation of algorithm
performance.

Conclusion

This work provides benchmark discrimination and calibra-
tion performance for a variety of ML methods on a col-
lection of common treatment recommendation tasks. The
difficulty of the recommendation tasks was found to vary
widely by treatment, with mean model AUROCSs ranging
from approximately 0.7 (eg, anticoagulants or vasoactives)
to nearly 0.9 (eg, antiarrhythmics). While no individual model
uniformly outperformed all other models across prediction
tasks, XGB had the best weighted discriminative perform-
ance across tasks and exhibited well-calibrated predictions.
An ensemble combining both classical ML and time-series,
deep learning approaches tended to match or outperform
the best-performing individual model in each prediction
task in both discrimination and calibration. The observed
performance suggests that such ML tools may serve as
valuable clinical decision support in tandem with generalized
early warning scores to improve the timely and appropriate
treatment of deteriorating general ward patients.
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