JMIR AI
A new peer reviewed journal focused on research and applications for the health artificial intelligence (AI) community.
Editor-in-Chief:
Khaled El Emam, PhD, Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa, Canada Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Impact Factor [2025]
Recent Articles

Cerebrovascular diseases are the second most common cause of death worldwide and one of the major causes of disability burden. Advancements in artificial intelligence have the potential to revolutionize health care delivery, particularly in critical decision-making scenarios such as ischemic stroke management.

Electronic health records (EHRs) and routine documentation practices play a vital role in patients’ daily care, providing a holistic record of health, diagnoses, and treatment. However, complex and verbose EHR narratives can overwhelm health care providers, increasing the risk of diagnostic inaccuracies. While large language models (LLMs) have showcased their potential in diverse language tasks, their application in health care must prioritize the minimization of diagnostic errors and the prevention of patient harm. Integrating knowledge graphs (KGs) into LLMs offers a promising approach because structured knowledge from KGs could enhance LLMs’ diagnostic reasoning by providing contextually relevant medical information.

Living kidney donation (LKD), where individuals donate one kidney while alive, plays a critical role in increasing the number of kidneys available for those experiencing kidney failure. Previous studies show that many generous people are interested in becoming living donors; however, a huge gap exists between the number of patients on the waiting list and the number of living donors yearly.

The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.

In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted in this area.

Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

The global obesity epidemic demands innovative approaches to understand its complex environmental and social determinants. Spatial technologies, such as geographic information systems, remote sensing, and spatial machine learning, offer new insights into this health issue. This study uses deep learning and spatial modeling to predict obesity rates for census tracts in Missouri.
Preprints Open for Peer-Review
Open Peer Review Period:
-