JMIR AI
A new peer reviewed journal focused on research and applications for the health AI community
Editor-in-Chief: Khaled El Emam, PhD, Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee
Recent Articles

Imbalanced health care resource distribution has been central to unequal health outcomes and political tension around the world. Artificial intelligence (AI) has emerged as a promising tool for facilitating resource distribution, especially during emergencies. However, no comprehensive review exists on the use and ethics of AI in health care resource distribution.

Given the growing use of machine learning (ML) technologies in health care, regulatory bodies face unique challenges in governing their clinical use. Under the regulatory framework of the Food and Drug Administration, approved ML algorithms are practically locked, preventing their adaptation in the ever-changing clinical environment, defeating the unique adaptive trait of ML technology in learning from real-world feedback. At the same time, regulations must enforce a strict level of patient safety to mitigate risk at a systemic level. Given that ML algorithms often support, or at times replace, the role of medical professionals, we have proposed a novel regulatory pathway analogous to the regulation of medical professionals, encompassing the life cycle of an algorithm from inception, development to clinical implementation, and continual clinical adaptation. We then discuss in-depth technical and nontechnical challenges to its implementation and offer potential solutions to unleash the full potential of ML technology in health care while ensuring quality, equity, and safety. References for this article were identified through searches of PubMed with the search terms “Artificial intelligence,” “Machine learning,” and “regulation” from June 25, 2017, until June 25, 2022. Articles were also identified through searches of the reference list of the articles. Only papers published in English were reviewed. The final reference list was generated based on originality and relevance to the broad scope of this paper.

The promise of artificial intelligence (AI) to transform health care is threatened by a tangle of challenges that emerge as new AI tools are introduced into clinical practice. AI tools with high accuracy, especially those that detect asymptomatic cases, may be hindered by barriers to adoption. Understanding provider needs and concerns is critical to inform implementation strategies that improve provider buy-in and adoption of AI tools in medicine.

Anterior cruciate ligament (ACL) injuries are common in sports and are critical knee injuries that require prompt diagnosis. Magnetic resonance imaging (MRI) is a strong, noninvasive tool for detecting ACL tears, which requires training to read accurately. Clinicians with different experiences in reading MR images require different information for the diagnosis of ACL tears. Artificial intelligence (AI) image processing could be a promising approach in the diagnosis of ACL tears.
Preprints Open for Peer-Review
There are no preprints available for open peer-review at this time. Please check back later.