JMIR AI

A new peer reviewed journal focused on research and applications for the health artificial intelligence (AI) community.

Editor-in-Chief:

Khaled El Emam, PhD,  Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa, Canada

Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee, USA


Impact Factor [2025]

JMIR AI is a new journal that focuses on the applications of AI in health settings. This includes contemporary developments as well as historical examples, with an emphasis on sound methodological evaluations of AI techniques and authoritative analyses. It is intended to be the main source of reliable information for health informatics professionals to learn about how AI techniques can be applied and evaluated. 

JMIR AI is indexed in DOAJ, PubMed and PubMed Central and has been selected for inclusion in the Web of Science Core Collection as well as Scopus. 

 

Recent Articles

Article Thumbnail
Foundations of AI

Deep learning techniques have shown promising results in the automatic classification of respiratory sounds. However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. In addition, predicting signals with only background noise could undermine user trust in the system.

|
Article Thumbnail
Applications of AI

Pharmaceutical manufacturers address health care professionals’ information needs through scientific response documents (SRDs), offering evidence-based answers to medication and disease state questions. Medical information departments, staffed by medical experts, develop SRDs that provide concise summaries consisting of relevant background information, search strategies, clinical data, and balanced references. With an escalating demand for SRDs and the increasing complexity of therapies, medical information departments are exploring advanced technologies and artificial intelligence (AI) tools like large language models (LLMs) to streamline content development. While AI and LLMs show promise in generating draft responses, a synergistic approach combining an LLM with traditional machine learning classifiers in a series of human-supervised and -curated steps could help address limitations, including hallucinations. This will ensure accuracy, context, traceability, and accountability in the development of the concise clinical data summaries of an SRD.

|
Article Thumbnail
Reviews in AI

Physician autonomy has been found to play a role in physician acceptance and adoption of artificial intelligence (AI) in medicine. However, there is still no consensus in the literature on how to define and assess physician autonomy. Furthermore, there is a lack of research focusing specifically on the potential effects of AI on physician autonomy.

|
Article Thumbnail
Applications of AI

The ever-evolving field of medicine has highlighted the potential for ChatGPT as an assistive platform. However, its use in medical board exam preparation and completion remains divided.

|
Article Thumbnail
Applications of AI

Cerebrovascular diseases are the second most common cause of death worldwide and one of the major causes of disability burden. Advancements in artificial intelligence have the potential to revolutionize health care delivery, particularly in critical decision-making scenarios such as ischemic stroke management.

|
Article Thumbnail
Foundations of AI

Despite significant time spent on billing, family physicians routinely make errors and miss billing opportunities. In other disciplines, machine learning models have predicted current procedural terminology codes with high accuracy.

|
Article Thumbnail
Applications of AI

Electronic health records (EHRs) and routine documentation practices play a vital role in patients’ daily care, providing a holistic record of health, diagnoses, and treatment. However, complex and verbose EHR narratives can overwhelm health care providers, increasing the risk of diagnostic inaccuracies. While large language models (LLMs) have showcased their potential in diverse language tasks, their application in health care must prioritize the minimization of diagnostic errors and the prevention of patient harm. Integrating knowledge graphs (KGs) into LLMs offers a promising approach because structured knowledge from KGs could enhance LLMs’ diagnostic reasoning by providing contextually relevant medical information.

|
Article Thumbnail
Reviews in AI

Pain, a leading reason people seek medical care, has become a social issue. Automated pain assessment has seen notable advancements over recent decades, addressing a critical need in both clinical and everyday settings.

|
Article Thumbnail
Applications of AI

Chat-based counseling services are popular for the low-threshold provision of mental health support to youth. In addition, they are particularly suitable for the utilization of natural language processing (NLP) for improved provision of care.

|
Article Thumbnail
Applications of AI

Living kidney donation (LKD), where individuals donate one kidney while alive, plays a critical role in increasing the number of kidneys available for those experiencing kidney failure. Previous studies show that many generous people are interested in becoming living donors; however, a huge gap exists between the number of patients on the waiting list and the number of living donors yearly.

|
Article Thumbnail
Applications of AI

The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.

|
Article Thumbnail
Applications of AI

In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted in this area.

|

We are working in partnership with