JMIR AI
A new peer reviewed journal focused on research and applications for the health AI community
Editor-in-Chief:
Khaled El Emam, PhD, Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee
Recent Articles

An early warning tool to predict attacks could enhance asthma management and reduce the likelihood of serious consequences. Electronic health records (EHRs) providing access to historical data about patients with asthma coupled with machine learning (ML) provide an opportunity to develop such a tool. Several studies have developed ML-based tools to predict asthma attacks.

Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research.

Depression and momentary depressive feelings are major public health concerns imposing a substantial burden on both individuals and society. Early detection of momentary depressive feelings is highly beneficial in reducing this burden and improving the quality of life for affected individuals. To this end, the abundance of data exemplified by X (formerly Twitter) presents an invaluable resource for discerning insights into individuals’ mental states and enabling timely detection of these transitory depressive feelings.

In 2021, the European Union reported >270,000 excess deaths, including >16,000 in Portugal. The Portuguese Directorate-General of Health developed a deep neural network, AUTOCOD, which determines the primary causes of death by analyzing the free text of physicians’ death certificates (DCs). Although AUTOCOD’s performance has been established, it remains unclear whether its performance remains consistent over time, particularly during periods of excess mortality.

Early warning score systems are widely used for identifying patients who are at the highest risk of deterioration to assist clinical decision-making. This could facilitate early intervention and consequently improve patient outcomes; for example, the National Early Warning Score (NEWS) system, which is recommended by the Royal College of Physicians in the United Kingdom, uses predefined alerting thresholds to assign scores to patients based on their vital signs. However, there is limited evidence of the reliability of such scores across patient cohorts in the United Arab Emirates.

Innovative tools leveraging artificial intelligence (AI) and machine learning (ML) are rapidly being developed for medicine, with new applications emerging in prediction, diagnosis, and treatment across a range of illnesses, patient populations, and clinical procedures. One barrier for successful innovation is the scarcity of research in the current literature seeking and analyzing the views of AI or ML researchers and physicians to support ethical guidance.

Diabetes mellitus is the most challenging and fastest-growing global public health concern. Approximately 10.5% of the global adult population is affected by diabetes, and almost half of them are undiagnosed. The growing at-risk population exacerbates the shortage of health resources, with an estimated 10.6% and 6.2% of adults worldwide having impaired glucose tolerance and impaired fasting glycemia, respectively. All current diabetes screening methods are invasive and opportunistic and must be conducted in a hospital or laboratory by trained professionals. At-risk participants might remain undetected for years and miss the precious time window for early intervention to prevent or delay the onset of diabetes and its complications.

Stressors for health care workers (HCWs) during the COVID-19 pandemic have been manifold, with high levels of depression and anxiety alongside gaps in care. Identifying the factors most tied to HCWs’ psychological challenges is crucial to addressing HCWs’ mental health needs effectively, now and for future large-scale events.

The regulatory affairs (RA) division in a pharmaceutical establishment is the point of contact between regulatory authorities and pharmaceutical companies. They are delegated the crucial and strenuous task of extracting and summarizing relevant information in the most meticulous manner from various search systems. An artificial intelligence (AI)–based intelligent search system that can significantly bring down the manual efforts in the existing processes of the RA department while maintaining and improving the quality of final outcomes is desirable. We proposed a “frequently asked questions” component and its utility in an AI-based intelligent search system in this paper. The scenario is further complicated by the lack of publicly available relevant data sets in the RA domain to train the machine learning models that can facilitate cognitive search systems for regulatory authorities.