JMIR AI

A new peer reviewed journal focused on research and applications for the health artificial intelligence (AI) community.

Editor-in-Chief:

Khaled El Emam, PhD,  Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa, Canada

Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee, USA


JMIR AI is a new journal that focuses on the applications of AI in health settings. This includes contemporary developments as well as historical examples, with an emphasis on sound methodological evaluations of AI techniques and authoritative analyses. It is intended to be the main source of reliable information for health informatics professionals to learn about how AI techniques can be applied and evaluated. 

JMIR AI is indexed in DOAJ, PubMed and PubMed Central.

 

Recent Articles

Article Thumbnail
Machine Learning

Type 2 diabetes (T2D) is a significant global health challenge. Physicians need to assess whether future glycemic control will be poor on the current trajectory of usual care and usual-care treatment intensifications so that they can consider taking extra treatment measures to prevent poor outcomes. Predicting poor glycemic control from trends in hemoglobin A1c (HbA1c) levels is difficult due to the influence of seasonal fluctuations and other factors.

|
Article Thumbnail
Artificial Intelligence

Abdominal auscultation (i.e., listening to bowel sounds (BSs)) can be used to analyze digestion. An automated retrieval of BS would be beneficial to assess gastrointestinal disorders noninvasively.

|
Article Thumbnail
Machine Learning

Breastfeeding benefits both the mother and infant and is a topic of attention in public health. After childbirth, untreated medical conditions or lack of support lead many mothers to discontinue breastfeeding. For instance, nipple damage and mastitis affect 80% and 20% of US mothers, respectively. Lactation consultants (LCs) help mothers with breastfeeding, providing in-person, remote, and hybrid lactation support. LCs guide, encourage, and find ways for mothers to have a better experience breastfeeding. Current telehealth services help mothers seek LCs for breastfeeding support, where images help them identify and address many issues. Due to the disproportional ratio of LCs and mothers in need, these professionals are often overloaded and burned out.

|
Article Thumbnail
Clinical Information and Decision Making

Clinical decision-making is a crucial aspect of health care, involving the balanced integration of scientific evidence, clinical judgment, ethical considerations, and patient involvement. This process is dynamic and multifaceted, relying on clinicians’ knowledge, experience, and intuitive understanding to achieve optimal patient outcomes through informed, evidence-based choices. The advent of generative artificial intelligence (AI) presents a revolutionary opportunity in clinical decision-making. AI’s advanced data analysis and pattern recognition capabilities can significantly enhance the diagnosis and treatment of diseases, processing vast medical data to identify patterns, tailor treatments, predict disease progression, and aid in proactive patient management. However, the incorporation of AI into clinical decision-making raises concerns regarding the reliability and accuracy of AI-generated insights. To address these concerns, 11 “verification paradigms” are proposed in this paper, with each paradigm being a unique method to verify the evidence-based nature of AI in clinical decision-making. This paper also frames the concept of “clinically explainable, fair, and responsible, clinician-, expert-, and patient-in-the-loop AI.” This model focuses on ensuring AI’s comprehensibility, collaborative nature, and ethical grounding, advocating for AI to serve as an augmentative tool, with its decision-making processes being transparent and understandable to clinicians and patients. The integration of AI should enhance, not replace, the clinician’s judgment and should involve continuous learning and adaptation based on real-world outcomes and ethical and legal compliance. In conclusion, while generative AI holds immense promise in enhancing clinical decision-making, it is essential to ensure that it produces evidence-based, reliable, and impactful knowledge. Using the outlined paradigms and approaches can help the medical and patient communities harness AI’s potential while maintaining high patient care standards.

|
Article Thumbnail
Natural Language Processing

The COVID-19 pandemic had a devastating global impact. In the United States, there were >98 million COVID-19 cases and >1 million resulting deaths. One consequence of COVID-19 infection has been post–COVID-19 condition (PCC). People with this syndrome, colloquially called long haulers, experience symptoms that impact their quality of life. The root cause of PCC and effective treatments remains unknown. Many long haulers have turned to social media for support and guidance.

|
Article Thumbnail
Machine Learning

The integration of artificial intelligence (AI), particularly deep learning models, has transformed the landscape of medical technology, especially in the field of diagnosis using imaging and physiological data. In otolaryngology, AI has shown promise in image classification for middle ear diseases. However, existing models often lack patient-specific data and clinical context, limiting their universal applicability. The emergence of GPT-4 Vision (GPT-4V) has enabled a multimodal diagnostic approach, integrating language processing with image analysis.

|
Article Thumbnail
Artificial Intelligence

Leveraging free smartphone apps can help expand the availability and use of evidence-based smoking cessation interventions. However, there is a need for additional research investigating how the use of different features within such apps impacts their effectiveness.

|
Article Thumbnail
Original Papers

Passive mobile sensing provides opportunities for measuring and monitoring health status in the wild and outside of clinics. However, longitudinal, multimodal mobile sensor data can be small, noisy, and incomplete. This makes processing, modeling, and prediction of these data challenging. The small size of the data set restricts it from being modeled using complex deep learning networks. The current state of the art (SOTA) tackles small sensor data sets following a singular modeling paradigm based on traditional machine learning (ML) algorithms. These opt for either a user-agnostic modeling approach, making the model susceptible to a larger degree of noise, or a personalized approach, where training on individual data alludes to a more limited data set, giving rise to overfitting, therefore, ultimately, having to seek a trade-off by choosing 1 of the 2 modeling approaches to reach predictions.

|
Article Thumbnail
Original Papers

Health care–associated infections due to multidrug-resistant organisms (MDROs), such as methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place a significant burden on our health care infrastructure.

|
Article Thumbnail
Machine Learning

Large language models (LLMs) have the potential to support promising new applications in health informatics. However, practical data on sample size considerations for fine-tuning LLMs to perform specific tasks in biomedical and health policy contexts are lacking.

|
Article Thumbnail
Machine Learning

There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease, associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers, the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.

|
Article Thumbnail
Artificial Intelligence

Widespread misinformation in web resources can lead to serious implications for individuals seeking health advice. Despite that, information retrieval models are often focused only on the query-document relevance dimension to rank results.

|

We are working in partnership with