JMIR AI
A new peer reviewed journal focused on research and applications for the health AI community
Editor-in-Chief:
Khaled El Emam, PhD, Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee
Recent Articles

The regulatory affairs (RA) division in a pharmaceutical establishment is the point of contact between regulatory authorities and pharmaceutical companies. They are delegated the crucial and strenuous task of extracting and summarizing relevant information in the most meticulous manner from various search systems. An artificial intelligence (AI)–based intelligent search system that can significantly bring down the manual efforts in the existing processes of the RA department while maintaining and improving the quality of final outcomes is desirable. We proposed a “frequently asked questions” component and its utility in an AI-based intelligent search system in this paper. The scenario is further complicated by the lack of publicly available relevant data sets in the RA domain to train the machine learning models that can facilitate cognitive search systems for regulatory authorities.

Accurate projections of procedural case durations are complex but critical to the planning of perioperative staffing, operating room resources, and patient communication. Nonlinear prediction models using machine learning methods may provide opportunities for hospitals to improve upon current estimates of procedure duration.

The use of patient health and treatment information captured in structured and unstructured formats in computerized electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources.

Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled research environments (where these models are developed) and clinical environments for which the AI tools are ultimately intended.

Extractive question-answering (EQA) is a useful natural language processing (NLP) application for answering patient-specific questions by locating answers in their clinical notes. Realistic clinical EQA can yield multiple answers to a single question and multiple focus points in 1 question, which are lacking in existing data sets for the development of artificial intelligence solutions.

Artificial intelligence (AI) is a branch of computer science that uses advanced computational methods, such as machine learning (ML), to calculate and predict health outcomes and address patient and provider health needs. While these technologies show great promise for improving health care, especially in diabetes management, there are usability and safety concerns for both patients and providers about the use of AI/ML in health care management.

Aspirin-exacerbated respiratory disease (AERD) is an acquired inflammatory condition characterized by the presence of asthma, chronic rhinosinusitis with nasal polyposis, and respiratory hypersensitivity reactions on ingestion of aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs). Despite AERD having a classic constellation of symptoms, the diagnosis is often overlooked, with an average of greater than 10 years between the onset of symptoms and diagnosis of AERD. Without a diagnosis, individuals will lack opportunities to receive effective treatments, such as aspirin desensitization or biologic medications.

With the growing volume and complexity of laboratory repositories, it has become tedious to parse unstructured data into structured and tabulated formats for secondary uses such as decision support, quality assurance, and outcome analysis. However, advances in natural language processing (NLP) approaches have enabled efficient and automated extraction of clinically meaningful medical concepts from unstructured reports.
Preprints Open for Peer-Review
Open Peer Review Period:
-