JMIR AI
A new peer reviewed journal focused on research and applications for the health artificial intelligence (AI) community.
Editor-in-Chief:
Khaled El Emam, PhD, Canada Research Chair in Medical AI, University of Ottawa; Senior Scientist, Children’s Hospital of Eastern Ontario Research Institute: Professor, School of Epidemiology and Public Health, University of Ottawa, Canada Bradley Malin, PhD, Accenture Professor of Biomedical Informatics, Biostatistics, and Computer Science; Vice Chair for Research Affairs, Department of Biomedical Informatics: Affiliated Faculty, Center for Biomedical Ethics & Society, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Impact Factor [2025]
Recent Articles

Electronic health records (EHRs) and routine documentation practices play a vital role in patients’ daily care, providing a holistic record of health, diagnoses, and treatment. However, complex and verbose EHR narratives can overwhelm health care providers, increasing the risk of diagnostic inaccuracies. While large language models (LLMs) have showcased their potential in diverse language tasks, their application in health care must prioritize the minimization of diagnostic errors and the prevention of patient harm. Integrating knowledge graphs (KGs) into LLMs offers a promising approach because structured knowledge from KGs could enhance LLMs’ diagnostic reasoning by providing contextually relevant medical information.

Living kidney donation (LKD), where individuals donate one kidney while alive, plays a critical role in increasing the number of kidneys available for those experiencing kidney failure. Previous studies show that many generous people are interested in becoming living donors; however, a huge gap exists between the number of patients on the waiting list and the number of living donors yearly.

The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.

In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted in this area.

Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

The global obesity epidemic demands innovative approaches to understand its complex environmental and social determinants. Spatial technologies, such as geographic information systems, remote sensing, and spatial machine learning, offer new insights into this health issue. This study uses deep learning and spatial modeling to predict obesity rates for census tracts in Missouri.

Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible deep learning solutions and integration tools for radiology practice in hospitals.

In medical education, particularly in anatomy and dermatology, generative artificial intelligence (AI) can be used to create customized illustrations. However, the underrepresentation of darker skin tones in medical textbooks and elsewhere, which serve as training data for AI, poses a significant challenge in ensuring diverse and inclusive educational materials.
Preprints Open for Peer-Review
Open Peer Review Period:
-