Published on in Vol 2 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/49023, first published .
Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial

Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial

Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial

Authors of this article:

Drew Wilimitis1 Author Orcid Image ;   Colin G Walsh1 Author Orcid Image

Journals

  1. El Emam K, Leung T, Malin B, Klement W, Eysenbach G. Consolidated Reporting Guidelines for Prognostic and Diagnostic Machine Learning Models (CREMLS). Journal of Medical Internet Research 2024;26:e52508 View
  2. Amanollahi M, Jameie M, Looha M, A. Basti F, Cattarinussi G, Moghaddam H, Di Camillo F, Akhondzadeh S, Pigoni A, Sambataro F, Brambilla P, Delvecchio G. Machine learning applied to the prediction of relapse, hospitalization, and suicide in bipolar disorder using neuroimaging and clinical data: A systematic review. Journal of Affective Disorders 2024;361:778 View
  3. DePaolo J, Biagetti G, Judy R, Wang G, Kelly J, Iyengar A, Goel N, Desai N, Szeto W, Bavaria J, Levin M, Damrauer S. Polygenic Scoring for Detection of Ascending Thoracic Aortic Dilation. Circulation: Genomic and Precision Medicine 2024;17(5) View
  4. Lumumba V, Kiprotich D, Mpaine M, Makena N, Kavita M. Comparative Analysis of Cross-Validation Techniques: LOOCV, K-folds Cross-Validation, and Repeated K-folds Cross-Validation in Machine Learning Models. American Journal of Theoretical and Applied Statistics 2024;13(5):127 View
  5. Yu X, Zhao J, Xu Z, Wei J, Wang Q, Shen F, Yang X, Guo Z. AIpollen: An Analytic Website for Pollen Identification Through Convolutional Neural Networks. Plants 2024;13(22):3118 View
  6. Rao A, Ranjan R, Sahana B, Kumar G. SchizoLMNet: a modified lightweight MobileNetV2- architecture for automated schizophrenia detection using EEG-derived spectrograms. Physical and Engineering Sciences in Medicine 2025;48(1):285 View
  7. Kasartzian D, Tsiampalis T. Transforming Cardiovascular Risk Prediction: A Review of Machine Learning and Artificial Intelligence Innovations. Life 2025;15(1):94 View
  8. Deng J, Heybati K, Yadav H. Development and validation of machine-learning models for predicting the risk of hypertriglyceridemia in critically ill patients receiving propofol sedation using retrospective data: a protocol. BMJ Open 2025;15(1):e092594 View
  9. Chau M, Vu H, Debnath T, Rahman M. A scoping review of automatic and semi-automatic MRI segmentation in human brain imaging. Radiography 2025;31(2):102878 View
  10. Hasanzadeh F, Josephson C, Waters G, Adedinsewo D, Azizi Z, White J. Bias recognition and mitigation strategies in artificial intelligence healthcare applications. npj Digital Medicine 2025;8(1) View
  11. Sakkal M, Hajal A. Machine learning predictions of tumor progression: How reliable are we?. Computers in Biology and Medicine 2025;191:110156 View
  12. Moodley Y, Brink W, van Wyk J, Kader S, Wexner S, Neugut A, Kiran R. Risk Model for Predicting Gaps in Surgical Oncology Care Among Patients With Stage I-III Rectal Cancer From KwaZulu-Natal, South Africa. JCO Global Oncology 2025;(11) View
  13. Araujo M, Winger T, Ghosn S, Saab C, Srivastava J, Kazaglis L, Mathur P, Mehra R. Status and opportunities of machine learning applications in obstructive sleep apnea: A narrative review. Computational and Structural Biotechnology Journal 2025;28:167 View
  14. Sacco P, Jeong J. Assessing the risk of problem gambling among lottery loyalty program members: A machine learning approach. Addictive Behaviors 2025;168:108372 View
  15. Li D, Wang X, Liu J, Sun J. Deep Learning-Based Automated Detection of Oral Leukoplakia in Clinical Imaging. Cureus 2025 View
  16. Merler M, Agurto C, Peller J, Roitberg E, Taitz A, Trevisan M, Navar I, Berry J, Fraenkel E, Ostrow L, Cecchi G, Norel R. Clinical assessment and interpretation of dysarthria in ALS using attention based deep learning AI models. npj Digital Medicine 2025;8(1) View
  17. Ji H, Zhang X, Wang T, Yang K, Jiang J, Xing Z. Oil spill area prediction model of submarine pipeline based on BP neural network and convolutional neural network. Process Safety and Environmental Protection 2025;199:107264 View
  18. Espinola-Sánchez M, Limay-Rios A, Campaña-Acuña A, Sanca-Valeriano S. Machine learning models for estimating fetal weight based on ultrasonographic biometry: Development and validation study. DIGITAL HEALTH 2025;11 View
  19. Deng J, Heybati K, Poudel K, Xie G, Zuberi E, Simha V, Yadav H. Propofol-associated Hypertriglyceridemia: Development and Multicenter Validation of a Machine-Learning-Based Prediction Tool. Journal of Intensive Care Medicine 2025 View
  20. DePaolo J, Zamirpour S, Abramowitz S, Biagetti G, Judy R, Beeche C, Duda J, Gee J, Witschey W, Chirinos J, Goel N, Desai N, Szeto W, Guo D, Milewicz D, Levin M, Pirruccello J, Damrauer S. Predicting Thoracic Aortic Dissection in a Diverse Biobank Using a Polygenic Risk Score. JACC: Advances 2025;4(5):101743 View
  21. Brizzi G, Pupillo C, Sajno E, Boltri M, Brusa F, Scarpina F, Mendolicchio L, Riva G. Predicting anorexia nervosa treatment efficacy: an explainable machine learning approach. Journal of Eating Disorders 2025;13(1) View
  22. Deng J, Elghobashy M, Zang K, Patel S, Guo E, Heybati K. So You’ve Got a High AUC, Now What? An Overview of Important Considerations when Bringing Machine-Learning Models from Computer to Bedside. Medical Decision Making 2025 View

Conference Proceedings

  1. Costa R, Pimentel P, Pessoa A, Braz Júnior G, Almeida J. Anais do XXV Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2025). Diagnóstico de Glaucoma em Retinografias de Oftalmoscópio Portátil Utilizando Ensemble Baseado em Transformers View