Published on in Vol 2 (2023)
This is a member publication of The University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/46717, first published
.

Journals
- di Biase L, Pecoraro P, Pecoraro G, Shah S, Di Lazzaro V. Machine learning and wearable sensors for automated Parkinson’s disease diagnosis aid: a systematic review. Journal of Neurology 2024;271(10):6452 View
- Lisik D, Basna R, Dinh T, Hennig C, Shah S, Wennergren G, Goksör E, Nwaru B. Artificial intelligence in pediatric allergy research. European Journal of Pediatrics 2024;184(1) View
- Mahmood S, Hasan R, Hussain S, Adhikari R. An Interpretable and Generalizable Machine Learning Model for Predicting Asthma Outcomes: Integrating AutoML and Explainable AI Techniques. World 2025;6(1):15 View
- Dinh T, Wong H, Fournier-Viger P, Lisik D, Ha M, Dam H, Huynh V. Categorical data clustering: 25 years beyond K-modes. Expert Systems with Applications 2025;272:126608 View